value = Value(int(Options[name]));
}
-template<> void Tune::Entry<Score>::init_option() {
- make_option("m" + name, mg_value(value), range);
- make_option("e" + name, eg_value(value), range);
-}
-
-template<> void Tune::Entry<Score>::read_option() {
- if (Options.count("m" + name))
- value = make_score(int(Options["m" + name]), eg_value(value));
-
- if (Options.count("e" + name))
- value = make_score(mg_value(value), int(Options["e" + name]));
-}
-
// Instead of a variable here we have a PostUpdate function: just call it
template<> void Tune::Entry<Tune::PostUpdate>::init_option() {}
template<> void Tune::Entry<Tune::PostUpdate>::read_option() { value(); }
/// qualifiers from the variables you want to tune and flag them for tuning, so
/// if you have:
///
-/// const Score myScore = S(10, 15);
/// const Value myValue[][2] = { { V(100), V(20) }, { V(7), V(78) } };
///
/// If you have a my_post_update() function to run after values have been updated,
/// and a my_range() function to set custom Option's min-max values, then you just
/// remove the 'const' qualifiers and write somewhere below in the file:
///
-/// TUNE(SetRange(my_range), myScore, myValue, my_post_update);
+/// TUNE(SetRange(my_range), myValue, my_post_update);
///
/// You can also set the range directly, and restore the default at the end
///
-/// TUNE(SetRange(-100, 100), myScore, SetDefaultRange);
+/// TUNE(SetRange(-100, 100), myValue, SetDefaultRange);
///
/// In case update function is slow and you have many parameters, you can add:
///
static_assert( std::is_same<T, int>::value
|| std::is_same<T, Value>::value
- || std::is_same<T, Score>::value
|| std::is_same<T, PostUpdate>::value, "Parameter type not supported!");
Entry(const std::string& n, T& v, const SetRange& r) : name(n), value(v), range(r) {}
};
enum Phase {
- PHASE_ENDGAME,
- PHASE_MIDGAME = 128,
MG = 0, EG = 1, PHASE_NB = 2
};
BishopValueMg = 825, BishopValueEg = 915,
RookValueMg = 1276, RookValueEg = 1380,
QueenValueMg = 2538, QueenValueEg = 2682,
-
- MidgameLimit = 15258, EndgameLimit = 3915
};
enum PieceType {
Square to[3];
};
-/// Score enum stores a middlegame and an endgame value in a single integer (enum).
-/// The least significant 16 bits are used to store the middlegame value and the
-/// upper 16 bits are used to store the endgame value. We have to take care to
-/// avoid left-shifting a signed int to avoid undefined behavior.
-enum Score : int { SCORE_ZERO };
-
-constexpr Score make_score(int mg, int eg) {
- return Score((int)((unsigned int)eg << 16) + mg);
-}
-
-/// Extracting the signed lower and upper 16 bits is not so trivial because
-/// according to the standard a simple cast to short is implementation defined
-/// and so is a right shift of a signed integer.
-inline Value eg_value(Score s) {
- union { uint16_t u; int16_t s; } eg = { uint16_t(unsigned(s + 0x8000) >> 16) };
- return Value(eg.s);
-}
-
-inline Value mg_value(Score s) {
- union { uint16_t u; int16_t s; } mg = { uint16_t(unsigned(s)) };
- return Value(mg.s);
-}
-
#define ENABLE_BASE_OPERATORS_ON(T) \
constexpr T operator+(T d1, int d2) { return T(int(d1) + d2); } \
constexpr T operator-(T d1, int d2) { return T(int(d1) - d2); } \
ENABLE_INCR_OPERATORS_ON(File)
ENABLE_INCR_OPERATORS_ON(Rank)
-ENABLE_BASE_OPERATORS_ON(Score)
-
#undef ENABLE_FULL_OPERATORS_ON
#undef ENABLE_INCR_OPERATORS_ON
#undef ENABLE_BASE_OPERATORS_ON
inline Square& operator+=(Square& s, Direction d) { return s = s + d; }
inline Square& operator-=(Square& s, Direction d) { return s = s - d; }
-/// Only declared but not defined. We don't want to multiply two scores due to
-/// a very high risk of overflow. So user should explicitly convert to integer.
-Score operator*(Score, Score) = delete;
-
-/// Division of a Score must be handled separately for each term
-inline Score operator/(Score s, int i) {
- return make_score(mg_value(s) / i, eg_value(s) / i);
-}
-
-/// Multiplication of a Score by an integer. We check for overflow in debug mode.
-inline Score operator*(Score s, int i) {
-
- Score result = Score(int(s) * i);
-
- assert(eg_value(result) == (i * eg_value(s)));
- assert(mg_value(result) == (i * mg_value(s)));
- assert((i == 0) || (result / i) == s);
-
- return result;
-}
-
-/// Multiplication of a Score by a boolean
-inline Score operator*(Score s, bool b) {
- return b ? s : SCORE_ZERO;
-}
-
constexpr Color operator~(Color c) {
return Color(c ^ BLACK); // Toggle color
}