/// Position::set() is an overload to initialize the position object with
/// the given endgame code string like "KBPKN". It is mainly a helper to
-/// get the material key out of an endgame code. Position is not playable,
-/// indeed is even not guaranteed to be legal.
+/// get the material key out of an endgame code.
Position& Position::set(const string& code, Color c, StateInfo* si) {
std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower);
- string fenStr = sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/8/8/"
- + sides[1] + char(8 - sides[1].length() + '0') + " w - - 0 10";
+ string fenStr = "8/" + sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/"
+ + sides[1] + char(8 - sides[1].length() + '0') + "/8 w - - 0 10";
return set(fenStr, false, si, nullptr);
}
/// Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the
-/// SEE value of move is greater or equal to the given value. We'll use an
+/// SEE value of move is greater or equal to the given threshold. We'll use an
/// algorithm similar to alpha-beta pruning with a null window.
-bool Position::see_ge(Move m, Value v) const {
+bool Position::see_ge(Move m, Value threshold) const {
assert(is_ok(m));
// handled correctly. Simply assume the SEE value is VALUE_ZERO that is always
// correct unless in the rare case the rook ends up under attack.
if (type_of(m) == CASTLING)
- return VALUE_ZERO >= v;
+ return VALUE_ZERO >= threshold;
Square from = from_sq(m), to = to_sq(m);
PieceType nextVictim = type_of(piece_on(from));
occupied = 0;
}
- if (balance < v)
+ if (balance < threshold)
return false;
if (nextVictim == KING)
balance -= PieceValue[MG][nextVictim];
- if (balance >= v)
+ if (balance >= threshold)
return true;
bool relativeStm = true; // True if the opponent is to move
relativeStm = !relativeStm;
- if (relativeStm == (balance >= v))
+ if (relativeStm == (balance >= threshold))
return relativeStm;
stm = ~stm;
}
-/// Position::pos_is_ok() performs some consistency checks for the position object.
+/// Position::pos_is_ok() performs some consistency checks for the
+/// position object and raises an asserts if something wrong is detected.
/// This is meant to be helpful when debugging.
-bool Position::pos_is_ok(int* failedStep) const {
+bool Position::pos_is_ok() const {
const bool Fast = true; // Quick (default) or full check?
- enum { Default, King, Bitboards, State, Lists, Castling };
+ if ( (sideToMove != WHITE && sideToMove != BLACK)
+ || piece_on(square<KING>(WHITE)) != W_KING
+ || piece_on(square<KING>(BLACK)) != B_KING
+ || ( ep_square() != SQ_NONE
+ && relative_rank(sideToMove, ep_square()) != RANK_6))
+ assert(0 && "pos_is_ok: Default");
- for (int step = Default; step <= (Fast ? Default : Castling); step++)
- {
- if (failedStep)
- *failedStep = step;
-
- if (step == Default)
- if ( (sideToMove != WHITE && sideToMove != BLACK)
- || piece_on(square<KING>(WHITE)) != W_KING
- || piece_on(square<KING>(BLACK)) != B_KING
- || ( ep_square() != SQ_NONE
- && relative_rank(sideToMove, ep_square()) != RANK_6))
- return false;
+ if (Fast)
+ return true;
- if (step == King)
- if ( std::count(board, board + SQUARE_NB, W_KING) != 1
- || std::count(board, board + SQUARE_NB, B_KING) != 1
- || attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove))
- return false;
+ if ( pieceCount[W_KING] != 1
+ || pieceCount[B_KING] != 1
+ || attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove))
+ assert(0 && "pos_is_ok: Kings");
- if (step == Bitboards)
- {
- if ( (pieces(WHITE) & pieces(BLACK))
- ||(pieces(WHITE) | pieces(BLACK)) != pieces())
- return false;
+ if ( (pieces(PAWN) & (Rank1BB | Rank8BB))
+ || pieceCount[W_PAWN] > 8
+ || pieceCount[B_PAWN] > 8)
+ assert(0 && "pos_is_ok: Pawns");
- for (PieceType p1 = PAWN; p1 <= KING; ++p1)
- for (PieceType p2 = PAWN; p2 <= KING; ++p2)
- if (p1 != p2 && (pieces(p1) & pieces(p2)))
- return false;
- }
+ if ( (pieces(WHITE) & pieces(BLACK))
+ || (pieces(WHITE) | pieces(BLACK)) != pieces()
+ || popcount(pieces(WHITE)) > 16
+ || popcount(pieces(BLACK)) > 16)
+ assert(0 && "pos_is_ok: Bitboards");
- if (step == State)
- {
- StateInfo si = *st;
- set_state(&si);
- if (std::memcmp(&si, st, sizeof(StateInfo)))
- return false;
- }
+ for (PieceType p1 = PAWN; p1 <= KING; ++p1)
+ for (PieceType p2 = PAWN; p2 <= KING; ++p2)
+ if (p1 != p2 && (pieces(p1) & pieces(p2)))
+ assert(0 && "pos_is_ok: Bitboards");
- if (step == Lists)
- for (Piece pc : Pieces)
- {
- if (pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc))))
- return false;
+ StateInfo si = *st;
+ set_state(&si);
+ if (std::memcmp(&si, st, sizeof(StateInfo)))
+ assert(0 && "pos_is_ok: State");
- for (int i = 0; i < pieceCount[pc]; ++i)
- if (board[pieceList[pc][i]] != pc || index[pieceList[pc][i]] != i)
- return false;
- }
+ for (Piece pc : Pieces)
+ {
+ if ( pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc)))
+ || pieceCount[pc] != std::count(board, board + SQUARE_NB, pc))
+ assert(0 && "pos_is_ok: Pieces");
- if (step == Castling)
- for (Color c = WHITE; c <= BLACK; ++c)
- for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))
- {
- if (!can_castle(c | s))
- continue;
-
- if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK)
- || castlingRightsMask[castlingRookSquare[c | s]] != (c | s)
- ||(castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s))
- return false;
- }
+ for (int i = 0; i < pieceCount[pc]; ++i)
+ if (board[pieceList[pc][i]] != pc || index[pieceList[pc][i]] != i)
+ assert(0 && "pos_is_ok: Index");
}
+ for (Color c = WHITE; c <= BLACK; ++c)
+ for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))
+ {
+ if (!can_castle(c | s))
+ continue;
+
+ if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK)
+ || castlingRightsMask[castlingRookSquare[c | s]] != (c | s)
+ || (castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s))
+ assert(0 && "pos_is_ok: Castling");
+ }
+
return true;
}