]> git.sesse.net Git - movit/blobdiff - resample_effect.cpp
Compute version of ResampleEffect.
[movit] / resample_effect.cpp
index c688d704bec9342fa03c080ec8d0dcbe914f88ab..74508646091872aec75b020b7dfa60d0639ae125 100644 (file)
@@ -197,6 +197,21 @@ void normalize_sum(Tap<T>* vals, unsigned num)
        }
 }
 
+template<class T>
+void normalize_sum(T* vals, unsigned num)
+{
+       for (int normalize_pass = 0; normalize_pass < 2; ++normalize_pass) {
+               float sum = 0.0;
+               for (unsigned i = 0; i < num; ++i) {
+                       sum += to_fp32(vals[i]);
+               }
+               float inv_sum = 1.0 / sum;
+               for (unsigned i = 0; i < num; ++i) {
+                       vals[i] = from_fp32<T>(to_fp32(vals[i]) * inv_sum);
+               }
+       }
+}
+
 // Make use of the bilinear filtering in the GPU to reduce the number of samples
 // we need to make. This is a bit more complex than BlurEffect since we cannot combine
 // two neighboring samples if their weights have differing signs, so we first need to
@@ -309,13 +324,19 @@ ResampleEffect::ResampleEffect()
        register_int("width", &output_width);
        register_int("height", &output_height);
 
-       // The first blur pass will forward resolution information to us.
-       hpass_owner.reset(new SingleResamplePassEffect(this));
-       hpass = hpass_owner.get();
-       CHECK(hpass->set_int("direction", SingleResamplePassEffect::HORIZONTAL));
-       vpass_owner.reset(new SingleResamplePassEffect(this));
-       vpass = vpass_owner.get();
-       CHECK(vpass->set_int("direction", SingleResamplePassEffect::VERTICAL));
+       if (movit_compute_shaders_supported) {
+               // The effect will forward resolution information to us.
+               compute_effect_owner.reset(new ResampleComputeEffect(this));
+               compute_effect = compute_effect_owner.get();
+       } else {
+               // The first blur pass will forward resolution information to us.
+               hpass_owner.reset(new SingleResamplePassEffect(this));
+               hpass = hpass_owner.get();
+               CHECK(hpass->set_int("direction", SingleResamplePassEffect::HORIZONTAL));
+               vpass_owner.reset(new SingleResamplePassEffect(this));
+               vpass = vpass_owner.get();
+               CHECK(vpass->set_int("direction", SingleResamplePassEffect::VERTICAL));
+       }
 
        update_size();
 }
@@ -326,11 +347,17 @@ ResampleEffect::~ResampleEffect()
 
 void ResampleEffect::rewrite_graph(EffectChain *graph, Node *self)
 {
-       Node *hpass_node = graph->add_node(hpass_owner.release());
-       Node *vpass_node = graph->add_node(vpass_owner.release());
-       graph->connect_nodes(hpass_node, vpass_node);
-       graph->replace_receiver(self, hpass_node);
-       graph->replace_sender(self, vpass_node);
+       if (compute_effect != nullptr) {
+               Node *compute_node = graph->add_node(compute_effect_owner.release());
+               graph->replace_receiver(self, compute_node);
+               graph->replace_sender(self, compute_node);
+       } else {
+               Node *hpass_node = graph->add_node(hpass_owner.release());
+               Node *vpass_node = graph->add_node(vpass_owner.release());
+               graph->connect_nodes(hpass_node, vpass_node);
+               graph->replace_receiver(self, hpass_node);
+               graph->replace_sender(self, vpass_node);
+       }
        self->disabled = true;
 } 
 
@@ -349,16 +376,22 @@ void ResampleEffect::inform_input_size(unsigned input_num, unsigned width, unsig
 void ResampleEffect::update_size()
 {
        bool ok = true;
-       ok |= hpass->set_int("input_width", input_width);
-       ok |= hpass->set_int("input_height", input_height);
-       ok |= hpass->set_int("output_width", output_width);
-       ok |= hpass->set_int("output_height", input_height);
-
-       ok |= vpass->set_int("input_width", output_width);
-       ok |= vpass->set_int("input_height", input_height);
-       ok |= vpass->set_int("output_width", output_width);
-       ok |= vpass->set_int("output_height", output_height);
+       if (compute_effect != nullptr) {
+               ok |= compute_effect->set_int("input_width", input_width);
+               ok |= compute_effect->set_int("input_height", input_height);
+               ok |= compute_effect->set_int("output_width", output_width);
+               ok |= compute_effect->set_int("output_height", output_height);
+       } else {
+               ok |= hpass->set_int("input_width", input_width);
+               ok |= hpass->set_int("input_height", input_height);
+               ok |= hpass->set_int("output_width", output_width);
+               ok |= hpass->set_int("output_height", input_height);
 
+               ok |= vpass->set_int("input_width", output_width);
+               ok |= vpass->set_int("input_height", input_height);
+               ok |= vpass->set_int("output_width", output_width);
+               ok |= vpass->set_int("output_height", output_height);
+       }
        assert(ok);
 
        // The offset added due to zoom may have changed with the size.
@@ -374,10 +407,17 @@ void ResampleEffect::update_offset_and_zoom()
        float extra_offset_x = zoom_center_x * (1.0f - 1.0f / zoom_x) * input_width;
        float extra_offset_y = (1.0f - zoom_center_y) * (1.0f - 1.0f / zoom_y) * input_height;
 
-       ok |= hpass->set_float("offset", extra_offset_x + offset_x);
-       ok |= vpass->set_float("offset", extra_offset_y - offset_y);  // Compensate for the bottom-left origin.
-       ok |= hpass->set_float("zoom", zoom_x);
-       ok |= vpass->set_float("zoom", zoom_y);
+       if (compute_effect != nullptr) {
+               ok |= compute_effect->set_float("offset_x", extra_offset_x + offset_x);
+               ok |= compute_effect->set_float("offset_y", extra_offset_y - offset_y);  // Compensate for the bottom-left origin.
+               ok |= compute_effect->set_float("zoom_x", zoom_x);
+               ok |= compute_effect->set_float("zoom_y", zoom_y);
+       } else {
+               ok |= hpass->set_float("offset", extra_offset_x + offset_x);
+               ok |= vpass->set_float("offset", extra_offset_y - offset_y);  // Compensate for the bottom-left origin.
+               ok |= hpass->set_float("zoom", zoom_x);
+               ok |= vpass->set_float("zoom", zoom_y);
+       }
 
        assert(ok);
 }
@@ -502,7 +542,7 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
                assert(false);
        }
 
-       ScalingWeights weights = calculate_bilinear_scaling_weights(src_size, dst_size, zoom, offset);
+       ScalingWeights weights = calculate_bilinear_scaling_weights(src_size, dst_size, zoom, offset, BilinearFormatConstraints::ALLOW_FP16_AND_FP32);
        src_bilinear_samples = weights.src_bilinear_samples;
        num_loops = weights.num_loops;
        slice_height = 1.0f / weights.num_loops;
@@ -529,6 +569,106 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
        tex.update(weights.src_bilinear_samples, weights.dst_samples, internal_format, GL_RG, type, pixels);
 }
 
+ResampleComputeEffect::ResampleComputeEffect(ResampleEffect *parent)
+       : parent(parent),
+         input_width(1280),
+         input_height(720),
+         offset_x(0.0),
+         offset_y(0.0),
+         zoom_x(1.0),
+         zoom_y(1.0),
+         last_input_width(-1),
+         last_input_height(-1),
+         last_output_width(-1),
+         last_output_height(-1),
+         last_offset_x(0.0 / 0.0),  // NaN.
+         last_offset_y(0.0 / 0.0),  // NaN.
+         last_zoom_x(0.0 / 0.0),  // NaN.
+         last_zoom_y(0.0 / 0.0)  // NaN.
+{
+       register_int("input_width", &input_width);
+       register_int("input_height", &input_height);
+       register_int("output_width", &output_width);
+       register_int("output_height", &output_height);
+       register_float("offset_x", &offset_x);
+       register_float("offset_y", &offset_y);
+       register_float("zoom_x", &zoom_x);
+       register_float("zoom_y", &zoom_y);
+       register_uniform_sampler2d("sample_tex_horizontal", &uniform_sample_tex_horizontal);
+       register_uniform_sampler2d("sample_tex_vertical", &uniform_sample_tex_vertical);
+       register_uniform_int("num_horizontal_samples", &uniform_num_horizontal_samples);
+       register_uniform_int("num_vertical_samples", &uniform_num_vertical_samples);
+       register_uniform_int("vertical_int_radius", &uniform_vertical_int_radius);
+       register_uniform_float("inv_vertical_scaling_factor", &uniform_inv_vertical_scaling_factor);
+       register_uniform_int("output_samples_per_block", &uniform_output_samples_per_block);
+       register_uniform_int("num_horizontal_filters", &uniform_num_horizontal_filters);
+       register_uniform_int("num_vertical_filters", &uniform_num_vertical_filters);
+       register_uniform_float("slice_height", &uniform_slice_height);
+       register_uniform_float("horizontal_whole_pixel_offset", &uniform_horizontal_whole_pixel_offset);
+       register_uniform_int("vertical_whole_pixel_offset", &uniform_vertical_whole_pixel_offset);
+       register_uniform_float("inv_input_height", &uniform_inv_input_height);
+       register_uniform_float("input_texcoord_y_adjust", &uniform_input_texcoord_y_adjust);
+
+       call_once(lanczos_table_init_done, init_lanczos_table);
+}
+
+ResampleComputeEffect::~ResampleComputeEffect()
+{
+}
+
+string ResampleComputeEffect::output_fragment_shader()
+{
+       char buf[256] = "";
+       return buf + read_file("resample_effect.comp");
+}
+
+// The compute shader does horizontal scaling first, using exactly the same
+// two-component texture format as in the two-pass version (see the comments
+// on ResampleComputeEffect). The vertical scaling calculates the offset values
+// in the shader, so we only store a one-component texture with the weights
+// for each filter.
+void ResampleComputeEffect::update_texture(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
+{
+       ScalingWeights horiz_weights = calculate_bilinear_scaling_weights(input_width, output_width, zoom_x, offset_x, BilinearFormatConstraints::ALLOW_FP32_ONLY);
+       ScalingWeights vert_weights = calculate_raw_scaling_weights(input_height, output_height, zoom_y, offset_y);
+       uniform_vertical_int_radius = vert_weights.int_radius;
+       vertical_scaling_factor = vert_weights.scaling_factor;
+       uniform_inv_vertical_scaling_factor = 1.0f / vert_weights.scaling_factor;
+       src_horizontal_bilinear_samples = horiz_weights.src_bilinear_samples;
+       src_vertical_samples = vert_weights.src_bilinear_samples;
+       uniform_num_horizontal_filters = horiz_weights.dst_samples;
+       uniform_num_vertical_filters = vert_weights.dst_samples;
+       slice_height = 1.0f / horiz_weights.num_loops;
+
+       // Encode as a two-component texture. Note the GL_REPEAT.
+       glActiveTexture(GL_TEXTURE0 + *sampler_num);
+       check_error();
+       glBindTexture(GL_TEXTURE_2D, tex_horiz.get_texnum());
+       check_error();
+
+       tex_horiz.update(horiz_weights.src_bilinear_samples, horiz_weights.dst_samples, GL_RG32F, GL_RG, GL_FLOAT, horiz_weights.bilinear_weights_fp32.get());
+
+       glActiveTexture(GL_TEXTURE0 + *sampler_num + 1);
+       check_error();
+       glBindTexture(GL_TEXTURE_2D, tex_vert.get_texnum());
+       check_error();
+
+       // Storing the vertical weights as fp16 instead of fp32 saves a few
+       // percent on NVIDIA, and it doesn't seem to hurt quality any.
+       // (The horizontal weights is a different story, since the offsets
+       // can get large and are fairly accuracy-sensitive. Also, they are
+       // loaded only once per workgroup, at the very beginning.)
+       tex_vert.update(vert_weights.src_bilinear_samples, vert_weights.dst_samples, GL_R16F, GL_RED, GL_HALF_FLOAT, vert_weights.raw_weights.get());
+
+       // Figure out how many output samples each compute shader block is going to output.
+       int usable_input_samples_per_block = 128 - 2 * uniform_vertical_int_radius;
+       int output_samples_per_block = int(floor(usable_input_samples_per_block * vertical_scaling_factor));
+       if (output_samples_per_block < 1) {
+               output_samples_per_block = 1;
+       }
+       uniform_output_samples_per_block = output_samples_per_block;
+}
+
 namespace {
 
 ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, float zoom, float offset)
@@ -632,15 +772,18 @@ ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, f
        ScalingWeights ret;
        ret.src_bilinear_samples = src_samples;
        ret.dst_samples = dst_samples;
+       ret.int_radius = int_radius;
+       ret.scaling_factor = scaling_factor;
        ret.num_loops = num_loops;
        ret.bilinear_weights_fp16 = nullptr;
        ret.bilinear_weights_fp32 = move(weights);
+       ret.raw_weights = nullptr;
        return ret;
 }
 
 }  // namespace
 
-ScalingWeights calculate_bilinear_scaling_weights(unsigned src_size, unsigned dst_size, float zoom, float offset)
+ScalingWeights calculate_bilinear_scaling_weights(unsigned src_size, unsigned dst_size, float zoom, float offset, BilinearFormatConstraints constraints)
 {
        ScalingWeights ret = calculate_scaling_weights(src_size, dst_size, zoom, offset);
        unique_ptr<Tap<float>[]> weights = move(ret.bilinear_weights_fp32);
@@ -652,17 +795,23 @@ ScalingWeights calculate_bilinear_scaling_weights(unsigned src_size, unsigned ds
        // samples, since one would assume overall errors in the shape don't matter as much.
        const float max_error = 2.0f / (255.0f * 255.0f);
        unique_ptr<Tap<fp16_int_t>[]> bilinear_weights_fp16;
-       int src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, ret.dst_samples, &bilinear_weights_fp16);
-       unique_ptr<Tap<float>[]> bilinear_weights_fp32 = nullptr;
+       unique_ptr<Tap<float>[]> bilinear_weights_fp32;
        double max_sum_sq_error_fp16 = 0.0;
-       for (unsigned y = 0; y < ret.dst_samples; ++y) {
-               double sum_sq_error_fp16 = compute_sum_sq_error(
-                       weights.get() + y * src_samples, src_samples,
-                       bilinear_weights_fp16.get() + y * src_bilinear_samples, src_bilinear_samples,
-                       src_size);
-               max_sum_sq_error_fp16 = std::max(max_sum_sq_error_fp16, sum_sq_error_fp16);
-               if (max_sum_sq_error_fp16 > max_error) {
-                       break;
+       int src_bilinear_samples;
+       if (constraints == BilinearFormatConstraints::ALLOW_FP32_ONLY) {
+               max_sum_sq_error_fp16 = numeric_limits<double>::max();
+       } else {
+               assert(constraints == BilinearFormatConstraints::ALLOW_FP16_AND_FP32);
+               src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, ret.dst_samples, &bilinear_weights_fp16);
+               for (unsigned y = 0; y < ret.dst_samples; ++y) {
+                       double sum_sq_error_fp16 = compute_sum_sq_error(
+                               weights.get() + y * src_samples, src_samples,
+                               bilinear_weights_fp16.get() + y * src_bilinear_samples, src_bilinear_samples,
+                               src_size);
+                       max_sum_sq_error_fp16 = std::max(max_sum_sq_error_fp16, sum_sq_error_fp16);
+                       if (max_sum_sq_error_fp16 > max_error) {
+                               break;
+                       }
                }
        }
 
@@ -677,6 +826,28 @@ ScalingWeights calculate_bilinear_scaling_weights(unsigned src_size, unsigned ds
        return ret;
 }
 
+// Unlike calculate_bilinear_scaling_weights(), this just converts the weights,
+// without any combining trickery. Thus, it is also much faster.
+ScalingWeights calculate_raw_scaling_weights(unsigned src_size, unsigned dst_size, float zoom, float offset)
+{
+       ScalingWeights ret = calculate_scaling_weights(src_size, dst_size, zoom, offset);
+       unique_ptr<Tap<float>[]> weights = move(ret.bilinear_weights_fp32);
+       const int src_samples = ret.src_bilinear_samples;
+
+       // Convert to fp16 (without any positions, as they are calculated implicitly
+       // by the compute shader) and normalize.
+       unique_ptr<fp16_int_t[]> raw_weights(new fp16_int_t[ret.dst_samples * src_samples]);
+       for (unsigned y = 0; y < ret.dst_samples; ++y) {
+               for (int i = 0; i < src_samples; ++i) {
+                       raw_weights[y * src_samples + i] = fp32_to_fp16(weights[y * src_samples + i].weight);
+               }
+               normalize_sum(raw_weights.get() + y * src_samples, src_samples);
+       }
+
+       ret.raw_weights = move(raw_weights);
+       return ret;
+}
+
 void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
 {
        Effect::set_gl_state(glsl_program_num, prefix, sampler_num);
@@ -763,4 +934,65 @@ void Support2DTexture::update(GLint width, GLint height, GLenum internal_format,
        }
 }
 
+void ResampleComputeEffect::get_compute_dimensions(unsigned output_width, unsigned output_height,
+                                                   unsigned *x, unsigned *y, unsigned *z) const
+{
+       *x = output_width;
+       *y = (output_height + uniform_output_samples_per_block - 1) / uniform_output_samples_per_block;
+       *z = 1;
+}
+
+void ResampleComputeEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
+{
+       Effect::set_gl_state(glsl_program_num, prefix, sampler_num);
+
+       assert(input_width > 0);
+       assert(input_height > 0);
+       assert(output_width > 0);
+       assert(output_height > 0);
+
+       if (input_width != last_input_width ||
+           input_height != last_input_height ||
+           output_width != last_output_width ||
+           output_height != last_output_height ||
+           offset_x != last_offset_x ||
+           offset_y != last_offset_y ||
+           zoom_x != last_zoom_x ||
+           zoom_x != last_zoom_y) {
+               update_texture(glsl_program_num, prefix, sampler_num);
+               last_input_width = input_width;
+               last_input_height = input_height;
+               last_output_width = output_width;
+               last_output_height = output_height;
+               last_offset_x = offset_x;
+               last_offset_y = offset_y;
+               last_zoom_x = zoom_x;
+               last_zoom_y = zoom_y;
+       }
+
+       glActiveTexture(GL_TEXTURE0 + *sampler_num);
+       check_error();
+       glBindTexture(GL_TEXTURE_2D, tex_horiz.get_texnum());
+       check_error();
+       uniform_sample_tex_horizontal = *sampler_num;
+       ++*sampler_num;
+
+       glActiveTexture(GL_TEXTURE0 + *sampler_num);
+       check_error();
+       glBindTexture(GL_TEXTURE_2D, tex_vert.get_texnum());
+       check_error();
+       uniform_sample_tex_vertical = *sampler_num;
+       ++*sampler_num;
+
+       uniform_num_horizontal_samples = src_horizontal_bilinear_samples;
+       uniform_num_vertical_samples = src_vertical_samples;
+       uniform_slice_height = slice_height;
+
+       uniform_horizontal_whole_pixel_offset = lrintf(offset_x) / float(input_width);
+       uniform_vertical_whole_pixel_offset = lrintf(offset_y);
+
+       uniform_inv_input_height = 1.0f / float(input_height);
+       uniform_input_texcoord_y_adjust = 0.5f / float(input_height);
+}
+
 }  // namespace movit