2 Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3 Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)
5 Stockfish is free software: you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation, either version 3 of the License, or
8 (at your option) any later version.
10 Stockfish is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include <cstring> // For std::memset
36 #include "syzygy/tbprobe.h"
45 namespace Tablebases {
53 namespace TB = Tablebases;
57 using namespace Search;
61 // Different node types, used as a template parameter
62 enum NodeType { NonPV, PV, Root };
65 Value futility_margin(Depth d, bool improving) {
66 return Value(158 * (d - improving));
69 // Reductions lookup table, initialized at startup
70 int Reductions[MAX_MOVES]; // [depth or moveNumber]
72 Depth reduction(bool i, Depth d, int mn, Value delta, Value rootDelta) {
73 int r = Reductions[d] * Reductions[mn];
74 return (r + 1460 - int(delta) * 1024 / int(rootDelta)) / 1024 + (!i && r > 937);
77 constexpr int futility_move_count(bool improving, Depth depth) {
78 return improving ? (3 + depth * depth)
79 : (3 + depth * depth) / 2;
82 // History and stats update bonus, based on depth
83 int stat_bonus(Depth d) {
84 return std::min((11 * d + 284) * d - 363 , 1650);
87 // Add a small random component to draw evaluations to avoid 3-fold blindness
88 Value value_draw(const Thread* thisThread) {
89 return VALUE_DRAW - 1 + Value(thisThread->nodes & 0x2);
92 // Skill structure is used to implement strength limit. If we have an uci_elo then
93 // we convert it to a suitable fractional skill level using anchoring to CCRL Elo
94 // (goldfish 1.13 = 2000) and a fit through Ordo derived Elo for match (TC 60+0.6)
95 // results spanning a wide range of k values.
97 Skill(int skill_level, int uci_elo) {
99 level = std::clamp(std::pow((uci_elo - 1346.6) / 143.4, 1 / 0.806), 0.0, 20.0);
101 level = double(skill_level);
103 bool enabled() const { return level < 20.0; }
104 bool time_to_pick(Depth depth) const { return depth == 1 + int(level); }
105 Move pick_best(size_t multiPV);
108 Move best = MOVE_NONE;
111 template <NodeType nodeType>
112 Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
114 template <NodeType nodeType>
115 Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = 0);
117 Value value_to_tt(Value v, int ply);
118 Value value_from_tt(Value v, int ply, int r50c);
119 void update_pv(Move* pv, Move move, const Move* childPv);
120 void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus);
121 void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus);
122 void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq,
123 Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth);
125 // perft() is our utility to verify move generation. All the leaf nodes up
126 // to the given depth are generated and counted, and the sum is returned.
128 uint64_t perft(Position& pos, Depth depth) {
131 ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
133 uint64_t cnt, nodes = 0;
134 const bool leaf = (depth == 2);
136 for (const auto& m : MoveList<LEGAL>(pos))
138 if (Root && depth <= 1)
143 cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - 1);
148 sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
156 /// Search::init() is called at startup to initialize various lookup tables
158 void Search::init() {
160 for (int i = 1; i < MAX_MOVES; ++i)
161 Reductions[i] = int((20.26 + std::log(Threads.size()) / 2) * std::log(i));
165 /// Search::clear() resets search state to its initial value
167 void Search::clear() {
169 Threads.main()->wait_for_search_finished();
171 Time.availableNodes = 0;
174 Tablebases::init(Options["SyzygyPath"]); // Free mapped files
178 /// MainThread::search() is started when the program receives the UCI 'go'
179 /// command. It searches from the root position and outputs the "bestmove".
181 void MainThread::search() {
185 nodes = perft<true>(rootPos, Limits.perft);
186 sync_cout << "\nNodes searched: " << nodes << "\n" << sync_endl;
190 Color us = rootPos.side_to_move();
191 Time.init(Limits, us, rootPos.game_ply());
194 Eval::NNUE::verify();
196 if (rootMoves.empty())
198 rootMoves.emplace_back(MOVE_NONE);
199 sync_cout << "info depth 0 score "
200 << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
205 Threads.start_searching(); // start non-main threads
206 Thread::search(); // main thread start searching
209 // When we reach the maximum depth, we can arrive here without a raise of
210 // Threads.stop. However, if we are pondering or in an infinite search,
211 // the UCI protocol states that we shouldn't print the best move before the
212 // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
213 // until the GUI sends one of those commands.
215 while (!Threads.stop && (ponder || Limits.infinite))
216 {} // Busy wait for a stop or a ponder reset
218 // Stop the threads if not already stopped (also raise the stop if
219 // "ponderhit" just reset Threads.ponder).
222 // Wait until all threads have finished
223 Threads.wait_for_search_finished();
225 // When playing in 'nodes as time' mode, subtract the searched nodes from
226 // the available ones before exiting.
228 Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();
230 Thread* bestThread = this;
231 Skill skill = Skill(Options["Skill Level"], Options["UCI_LimitStrength"] ? int(Options["UCI_Elo"]) : 0);
233 if ( int(Options["MultiPV"]) == 1
236 && rootMoves[0].pv[0] != MOVE_NONE)
237 bestThread = Threads.get_best_thread();
239 bestPreviousScore = bestThread->rootMoves[0].score;
240 bestPreviousAverageScore = bestThread->rootMoves[0].averageScore;
242 for (Thread* th : Threads)
243 th->previousDepth = bestThread->completedDepth;
245 // Send again PV info if we have a new best thread
246 if (bestThread != this)
247 sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth) << sync_endl;
249 sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
251 if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
252 std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
254 std::cout << sync_endl;
258 /// Thread::search() is the main iterative deepening loop. It calls search()
259 /// repeatedly with increasing depth until the allocated thinking time has been
260 /// consumed, the user stops the search, or the maximum search depth is reached.
262 void Thread::search() {
264 // To allow access to (ss-7) up to (ss+2), the stack must be oversized.
265 // The former is needed to allow update_continuation_histories(ss-1, ...),
266 // which accesses its argument at ss-6, also near the root.
267 // The latter is needed for statScore and killer initialization.
268 Stack stack[MAX_PLY+10], *ss = stack+7;
270 Value alpha, beta, delta;
271 Move lastBestMove = MOVE_NONE;
272 Depth lastBestMoveDepth = 0;
273 MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
274 double timeReduction = 1, totBestMoveChanges = 0;
275 Color us = rootPos.side_to_move();
278 std::memset(ss-7, 0, 10 * sizeof(Stack));
279 for (int i = 7; i > 0; --i)
281 (ss-i)->continuationHistory = &this->continuationHistory[0][0][NO_PIECE][0]; // Use as a sentinel
282 (ss-i)->staticEval = VALUE_NONE;
285 for (int i = 0; i <= MAX_PLY + 2; ++i)
290 bestValue = delta = alpha = -VALUE_INFINITE;
291 beta = VALUE_INFINITE;
295 if (mainThread->bestPreviousScore == VALUE_INFINITE)
296 for (int i = 0; i < 4; ++i)
297 mainThread->iterValue[i] = VALUE_ZERO;
299 for (int i = 0; i < 4; ++i)
300 mainThread->iterValue[i] = mainThread->bestPreviousScore;
303 size_t multiPV = size_t(Options["MultiPV"]);
304 Skill skill(Options["Skill Level"], Options["UCI_LimitStrength"] ? int(Options["UCI_Elo"]) : 0);
306 // When playing with strength handicap enable MultiPV search that we will
307 // use behind the scenes to retrieve a set of possible moves.
309 multiPV = std::max(multiPV, (size_t)4);
311 multiPV = std::min(multiPV, rootMoves.size());
313 complexityAverage.set(153, 1);
315 optimism[us] = optimism[~us] = VALUE_ZERO;
317 int searchAgainCounter = 0;
319 // Iterative deepening loop until requested to stop or the target depth is reached
320 while ( ++rootDepth < MAX_PLY
322 && !(Limits.depth && mainThread && rootDepth > Limits.depth))
324 // Age out PV variability metric
326 totBestMoveChanges /= 2;
328 // Save the last iteration's scores before first PV line is searched and
329 // all the move scores except the (new) PV are set to -VALUE_INFINITE.
330 for (RootMove& rm : rootMoves)
331 rm.previousScore = rm.score;
336 if (!Threads.increaseDepth)
337 searchAgainCounter++;
339 // MultiPV loop. We perform a full root search for each PV line
340 for (pvIdx = 0; pvIdx < multiPV && !Threads.stop; ++pvIdx)
345 for (pvLast++; pvLast < rootMoves.size(); pvLast++)
346 if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank)
350 // Reset UCI info selDepth for each depth and each PV line
353 // Reset aspiration window starting size
356 Value prev = rootMoves[pvIdx].averageScore;
357 delta = Value(10) + int(prev) * prev / 15400;
358 alpha = std::max(prev - delta,-VALUE_INFINITE);
359 beta = std::min(prev + delta, VALUE_INFINITE);
361 // Adjust optimism based on root move's previousScore
362 int opt = 116 * prev / (std::abs(prev) + 170);
363 optimism[ us] = Value(opt);
364 optimism[~us] = -optimism[us];
367 // Start with a small aspiration window and, in the case of a fail
368 // high/low, re-search with a bigger window until we don't fail
370 int failedHighCnt = 0;
373 // Adjust the effective depth searched, but ensuring at least one effective increment for every
374 // four searchAgain steps (see issue #2717).
375 Depth adjustedDepth = std::max(1, rootDepth - failedHighCnt - 3 * (searchAgainCounter + 1) / 4);
376 bestValue = Stockfish::search<Root>(rootPos, ss, alpha, beta, adjustedDepth, false);
378 // Bring the best move to the front. It is critical that sorting
379 // is done with a stable algorithm because all the values but the
380 // first and eventually the new best one are set to -VALUE_INFINITE
381 // and we want to keep the same order for all the moves except the
382 // new PV that goes to the front. Note that in case of MultiPV
383 // search the already searched PV lines are preserved.
384 std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast);
386 // If search has been stopped, we break immediately. Sorting is
387 // safe because RootMoves is still valid, although it refers to
388 // the previous iteration.
392 // When failing high/low give some update (without cluttering
393 // the UI) before a re-search.
396 && (bestValue <= alpha || bestValue >= beta)
397 && Time.elapsed() > 3000)
398 sync_cout << UCI::pv(rootPos, rootDepth) << sync_endl;
400 // In case of failing low/high increase aspiration window and
401 // re-search, otherwise exit the loop.
402 if (bestValue <= alpha)
404 beta = (alpha + beta) / 2;
405 alpha = std::max(bestValue - delta, -VALUE_INFINITE);
409 mainThread->stopOnPonderhit = false;
411 else if (bestValue >= beta)
413 beta = std::min(bestValue + delta, VALUE_INFINITE);
419 delta += delta / 4 + 2;
421 assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
424 // Sort the PV lines searched so far and update the GUI
425 std::stable_sort(rootMoves.begin() + pvFirst, rootMoves.begin() + pvIdx + 1);
428 && (Threads.stop || pvIdx + 1 == multiPV || Time.elapsed() > 3000))
429 sync_cout << UCI::pv(rootPos, rootDepth) << sync_endl;
433 completedDepth = rootDepth;
435 if (rootMoves[0].pv[0] != lastBestMove) {
436 lastBestMove = rootMoves[0].pv[0];
437 lastBestMoveDepth = rootDepth;
440 // Have we found a "mate in x"?
442 && bestValue >= VALUE_MATE_IN_MAX_PLY
443 && VALUE_MATE - bestValue <= 2 * Limits.mate)
449 // If skill level is enabled and time is up, pick a sub-optimal best move
450 if (skill.enabled() && skill.time_to_pick(rootDepth))
451 skill.pick_best(multiPV);
453 // Use part of the gained time from a previous stable move for the current move
454 for (Thread* th : Threads)
456 totBestMoveChanges += th->bestMoveChanges;
457 th->bestMoveChanges = 0;
460 // Do we have time for the next iteration? Can we stop searching now?
461 if ( Limits.use_time_management()
463 && !mainThread->stopOnPonderhit)
465 double fallingEval = (71 + 12 * (mainThread->bestPreviousAverageScore - bestValue)
466 + 6 * (mainThread->iterValue[iterIdx] - bestValue)) / 656.7;
467 fallingEval = std::clamp(fallingEval, 0.5, 1.5);
469 // If the bestMove is stable over several iterations, reduce time accordingly
470 timeReduction = lastBestMoveDepth + 9 < completedDepth ? 1.37 : 0.65;
471 double reduction = (1.4 + mainThread->previousTimeReduction) / (2.15 * timeReduction);
472 double bestMoveInstability = 1 + 1.7 * totBestMoveChanges / Threads.size();
473 int complexity = mainThread->complexityAverage.value();
474 double complexPosition = std::min(1.0 + (complexity - 261) / 1738.7, 1.5);
476 double totalTime = Time.optimum() * fallingEval * reduction * bestMoveInstability * complexPosition;
478 // Cap used time in case of a single legal move for a better viewer experience in tournaments
479 // yielding correct scores and sufficiently fast moves.
480 if (rootMoves.size() == 1)
481 totalTime = std::min(500.0, totalTime);
483 // Stop the search if we have exceeded the totalTime
484 if (Time.elapsed() > totalTime)
486 // If we are allowed to ponder do not stop the search now but
487 // keep pondering until the GUI sends "ponderhit" or "stop".
488 if (mainThread->ponder)
489 mainThread->stopOnPonderhit = true;
493 else if ( !mainThread->ponder
494 && Time.elapsed() > totalTime * 0.53)
495 Threads.increaseDepth = false;
497 Threads.increaseDepth = true;
500 mainThread->iterValue[iterIdx] = bestValue;
501 iterIdx = (iterIdx + 1) & 3;
507 mainThread->previousTimeReduction = timeReduction;
509 // If skill level is enabled, swap best PV line with the sub-optimal one
511 std::swap(rootMoves[0], *std::find(rootMoves.begin(), rootMoves.end(),
512 skill.best ? skill.best : skill.pick_best(multiPV)));
518 // search<>() is the main search function for both PV and non-PV nodes
520 template <NodeType nodeType>
521 Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
523 constexpr bool PvNode = nodeType != NonPV;
524 constexpr bool rootNode = nodeType == Root;
525 const Depth maxNextDepth = rootNode ? depth : depth + 1;
527 // Check if we have an upcoming move which draws by repetition, or
528 // if the opponent had an alternative move earlier to this position.
530 && pos.rule50_count() >= 3
531 && alpha < VALUE_DRAW
532 && pos.has_game_cycle(ss->ply))
534 alpha = value_draw(pos.this_thread());
539 // Dive into quiescence search when the depth reaches zero
541 return qsearch<PvNode ? PV : NonPV>(pos, ss, alpha, beta);
543 assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
544 assert(PvNode || (alpha == beta - 1));
545 assert(0 < depth && depth < MAX_PLY);
546 assert(!(PvNode && cutNode));
548 Move pv[MAX_PLY+1], capturesSearched[32], quietsSearched[64];
550 ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
554 Move ttMove, move, excludedMove, bestMove;
555 Depth extension, newDepth;
556 Value bestValue, value, ttValue, eval, maxValue, probCutBeta;
557 bool givesCheck, improving, priorCapture, singularQuietLMR;
558 bool capture, moveCountPruning, ttCapture;
560 int moveCount, captureCount, quietCount, improvement, complexity;
562 // Step 1. Initialize node
563 Thread* thisThread = pos.this_thread();
564 ss->inCheck = pos.checkers();
565 priorCapture = pos.captured_piece();
566 Color us = pos.side_to_move();
567 moveCount = captureCount = quietCount = ss->moveCount = 0;
568 bestValue = -VALUE_INFINITE;
569 maxValue = VALUE_INFINITE;
571 // Check for the available remaining time
572 if (thisThread == Threads.main())
573 static_cast<MainThread*>(thisThread)->check_time();
575 // Used to send selDepth info to GUI (selDepth counts from 1, ply from 0)
576 if (PvNode && thisThread->selDepth < ss->ply + 1)
577 thisThread->selDepth = ss->ply + 1;
581 // Step 2. Check for aborted search and immediate draw
582 if ( Threads.stop.load(std::memory_order_relaxed)
583 || pos.is_draw(ss->ply)
584 || ss->ply >= MAX_PLY)
585 return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos)
586 : value_draw(pos.this_thread());
588 // Step 3. Mate distance pruning. Even if we mate at the next move our score
589 // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
590 // a shorter mate was found upward in the tree then there is no need to search
591 // because we will never beat the current alpha. Same logic but with reversed
592 // signs applies also in the opposite condition of being mated instead of giving
593 // mate. In this case return a fail-high score.
594 alpha = std::max(mated_in(ss->ply), alpha);
595 beta = std::min(mate_in(ss->ply+1), beta);
600 thisThread->rootDelta = beta - alpha;
602 assert(0 <= ss->ply && ss->ply < MAX_PLY);
604 (ss+1)->ttPv = false;
605 (ss+1)->excludedMove = bestMove = MOVE_NONE;
606 (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
607 (ss+2)->cutoffCnt = 0;
608 ss->doubleExtensions = (ss-1)->doubleExtensions;
609 Square prevSq = to_sq((ss-1)->currentMove);
611 // Initialize statScore to zero for the grandchildren of the current position.
612 // So statScore is shared between all grandchildren and only the first grandchild
613 // starts with statScore = 0. Later grandchildren start with the last calculated
614 // statScore of the previous grandchild. This influences the reduction rules in
615 // LMR which are based on the statScore of parent position.
617 (ss+2)->statScore = 0;
619 // Step 4. Transposition table lookup. We don't want the score of a partial
620 // search to overwrite a previous full search TT value, so we use a different
621 // position key in case of an excluded move.
622 excludedMove = ss->excludedMove;
623 posKey = excludedMove == MOVE_NONE ? pos.key() : pos.key() ^ make_key(excludedMove);
624 tte = TT.probe(posKey, ss->ttHit);
625 ttValue = ss->ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
626 ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0]
627 : ss->ttHit ? tte->move() : MOVE_NONE;
628 ttCapture = ttMove && pos.capture(ttMove);
630 ss->ttPv = PvNode || (ss->ttHit && tte->is_pv());
632 // At non-PV nodes we check for an early TT cutoff
635 && tte->depth() > depth - (tte->bound() == BOUND_EXACT)
636 && ttValue != VALUE_NONE // Possible in case of TT access race
637 && (tte->bound() & (ttValue >= beta ? BOUND_LOWER : BOUND_UPPER)))
639 // If ttMove is quiet, update move sorting heuristics on TT hit (~2 Elo)
644 // Bonus for a quiet ttMove that fails high (~2 Elo)
646 update_quiet_stats(pos, ss, ttMove, stat_bonus(depth));
648 // Extra penalty for early quiet moves of the previous ply (~0 Elo on STC, ~2 Elo on LTC)
649 if ((ss-1)->moveCount <= 2 && !priorCapture)
650 update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + 1));
652 // Penalty for a quiet ttMove that fails low (~1 Elo)
655 int penalty = -stat_bonus(depth);
656 thisThread->mainHistory[us][from_to(ttMove)] << penalty;
657 update_continuation_histories(ss, pos.moved_piece(ttMove), to_sq(ttMove), penalty);
661 // Partial workaround for the graph history interaction problem
662 // For high rule50 counts don't produce transposition table cutoffs.
663 if (pos.rule50_count() < 90)
667 // Step 5. Tablebases probe
668 if (!rootNode && TB::Cardinality)
670 int piecesCount = pos.count<ALL_PIECES>();
672 if ( piecesCount <= TB::Cardinality
673 && (piecesCount < TB::Cardinality || depth >= TB::ProbeDepth)
674 && pos.rule50_count() == 0
675 && !pos.can_castle(ANY_CASTLING))
678 TB::WDLScore wdl = Tablebases::probe_wdl(pos, &err);
680 // Force check of time on the next occasion
681 if (thisThread == Threads.main())
682 static_cast<MainThread*>(thisThread)->callsCnt = 0;
684 if (err != TB::ProbeState::FAIL)
686 thisThread->tbHits.fetch_add(1, std::memory_order_relaxed);
688 int drawScore = TB::UseRule50 ? 1 : 0;
690 // use the range VALUE_MATE_IN_MAX_PLY to VALUE_TB_WIN_IN_MAX_PLY to score
691 value = wdl < -drawScore ? VALUE_MATED_IN_MAX_PLY + ss->ply + 1
692 : wdl > drawScore ? VALUE_MATE_IN_MAX_PLY - ss->ply - 1
693 : VALUE_DRAW + 2 * wdl * drawScore;
695 Bound b = wdl < -drawScore ? BOUND_UPPER
696 : wdl > drawScore ? BOUND_LOWER : BOUND_EXACT;
698 if ( b == BOUND_EXACT
699 || (b == BOUND_LOWER ? value >= beta : value <= alpha))
701 tte->save(posKey, value_to_tt(value, ss->ply), ss->ttPv, b,
702 std::min(MAX_PLY - 1, depth + 6),
703 MOVE_NONE, VALUE_NONE);
710 if (b == BOUND_LOWER)
711 bestValue = value, alpha = std::max(alpha, bestValue);
719 CapturePieceToHistory& captureHistory = thisThread->captureHistory;
721 // Step 6. Static evaluation of the position
724 // Skip early pruning when in check
725 ss->staticEval = eval = VALUE_NONE;
733 // Never assume anything about values stored in TT
734 ss->staticEval = eval = tte->eval();
735 if (eval == VALUE_NONE)
736 ss->staticEval = eval = evaluate(pos, &complexity);
737 else // Fall back to (semi)classical complexity for TT hits, the NNUE complexity is lost
738 complexity = abs(ss->staticEval - pos.psq_eg_stm());
740 // ttValue can be used as a better position evaluation (~7 Elo)
741 if ( ttValue != VALUE_NONE
742 && (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER)))
747 ss->staticEval = eval = evaluate(pos, &complexity);
749 // Save static evaluation into transposition table
751 tte->save(posKey, VALUE_NONE, ss->ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval);
754 thisThread->complexityAverage.update(complexity);
756 // Use static evaluation difference to improve quiet move ordering (~4 Elo)
757 if (is_ok((ss-1)->currentMove) && !(ss-1)->inCheck && !priorCapture)
759 int bonus = std::clamp(-19 * int((ss-1)->staticEval + ss->staticEval), -1940, 1940);
760 thisThread->mainHistory[~us][from_to((ss-1)->currentMove)] << bonus;
763 // Set up the improvement variable, which is the difference between the current
764 // static evaluation and the previous static evaluation at our turn (if we were
765 // in check at our previous move we look at the move prior to it). The improvement
766 // margin and the improving flag are used in various pruning heuristics.
767 improvement = (ss-2)->staticEval != VALUE_NONE ? ss->staticEval - (ss-2)->staticEval
768 : (ss-4)->staticEval != VALUE_NONE ? ss->staticEval - (ss-4)->staticEval
770 improving = improvement > 0;
772 // Step 7. Razoring (~1 Elo).
773 // If eval is really low check with qsearch if it can exceed alpha, if it can't,
774 // return a fail low.
775 if (eval < alpha - 394 - 255 * depth * depth)
777 value = qsearch<NonPV>(pos, ss, alpha - 1, alpha);
782 // Step 8. Futility pruning: child node (~40 Elo).
783 // The depth condition is important for mate finding.
786 && eval - futility_margin(depth, improving) - (ss-1)->statScore / 304 >= beta
788 && eval < 28580) // larger than VALUE_KNOWN_WIN, but smaller than TB wins
791 // Step 9. Null move search with verification search (~35 Elo)
793 && (ss-1)->currentMove != MOVE_NULL
794 && (ss-1)->statScore < 18200
796 && eval >= ss->staticEval
797 && ss->staticEval >= beta - 20 * depth - improvement / 14 + 235 + complexity / 24
799 && pos.non_pawn_material(us)
800 && (ss->ply >= thisThread->nmpMinPly || us != thisThread->nmpColor))
802 assert(eval - beta >= 0);
804 // Null move dynamic reduction based on depth, eval and complexity of position
805 Depth R = std::min(int(eval - beta) / 165, 6) + depth / 3 + 4 - (complexity > 800);
807 ss->currentMove = MOVE_NULL;
808 ss->continuationHistory = &thisThread->continuationHistory[0][0][NO_PIECE][0];
810 pos.do_null_move(st);
812 Value nullValue = -search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
814 pos.undo_null_move();
816 if (nullValue >= beta)
818 // Do not return unproven mate or TB scores
819 if (nullValue >= VALUE_TB_WIN_IN_MAX_PLY)
822 if (thisThread->nmpMinPly || (abs(beta) < VALUE_KNOWN_WIN && depth < 14))
825 assert(!thisThread->nmpMinPly); // Recursive verification is not allowed
827 // Do verification search at high depths, with null move pruning disabled
828 // for us, until ply exceeds nmpMinPly.
829 thisThread->nmpMinPly = ss->ply + 3 * (depth-R) / 4;
830 thisThread->nmpColor = us;
832 Value v = search<NonPV>(pos, ss, beta-1, beta, depth-R, false);
834 thisThread->nmpMinPly = 0;
841 probCutBeta = beta + 180 - 54 * improving;
843 // Step 10. ProbCut (~10 Elo)
844 // If we have a good enough capture and a reduced search returns a value
845 // much above beta, we can (almost) safely prune the previous move.
848 && abs(beta) < VALUE_TB_WIN_IN_MAX_PLY
849 // if value from transposition table is lower than probCutBeta, don't attempt probCut
850 // there and in further interactions with transposition table cutoff depth is set to depth - 3
851 // because probCut search has depth set to depth - 4 but we also do a move before it
852 // so effective depth is equal to depth - 3
854 && tte->depth() >= depth - 3
855 && ttValue != VALUE_NONE
856 && ttValue < probCutBeta))
858 assert(probCutBeta < VALUE_INFINITE);
860 MovePicker mp(pos, ttMove, probCutBeta - ss->staticEval, &captureHistory);
862 while ((move = mp.next_move()) != MOVE_NONE)
863 if (move != excludedMove && pos.legal(move))
865 assert(pos.capture(move) || promotion_type(move) == QUEEN);
867 ss->currentMove = move;
868 ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
870 [pos.moved_piece(move)]
873 pos.do_move(move, st);
875 // Perform a preliminary qsearch to verify that the move holds
876 value = -qsearch<NonPV>(pos, ss+1, -probCutBeta, -probCutBeta+1);
878 // If the qsearch held, perform the regular search
879 if (value >= probCutBeta)
880 value = -search<NonPV>(pos, ss+1, -probCutBeta, -probCutBeta+1, depth - 4, !cutNode);
884 if (value >= probCutBeta)
886 // Save ProbCut data into transposition table
887 tte->save(posKey, value_to_tt(value, ss->ply), ss->ttPv, BOUND_LOWER, depth - 3, move, ss->staticEval);
893 // Step 11. If the position is not in TT, decrease depth by 3.
894 // Use qsearch if depth is equal or below zero (~9 Elo)
900 return qsearch<PV>(pos, ss, alpha, beta);
907 moves_loop: // When in check, search starts here
909 // Step 12. A small Probcut idea, when we are in check (~4 Elo)
910 probCutBeta = beta + 402;
915 && (tte->bound() & BOUND_LOWER)
916 && tte->depth() >= depth - 3
917 && ttValue >= probCutBeta
918 && abs(ttValue) <= VALUE_KNOWN_WIN
919 && abs(beta) <= VALUE_KNOWN_WIN
924 const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
925 nullptr , (ss-4)->continuationHistory,
926 nullptr , (ss-6)->continuationHistory };
928 Move countermove = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];
930 MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
937 moveCountPruning = singularQuietLMR = false;
939 // Indicate PvNodes that will probably fail low if the node was searched
940 // at a depth equal or greater than the current depth, and the result of this search was a fail low.
941 bool likelyFailLow = PvNode
943 && (tte->bound() & BOUND_UPPER)
944 && tte->depth() >= depth;
946 // Step 13. Loop through all pseudo-legal moves until no moves remain
947 // or a beta cutoff occurs.
948 while ((move = mp.next_move(moveCountPruning)) != MOVE_NONE)
952 if (move == excludedMove)
955 // At root obey the "searchmoves" option and skip moves not listed in Root
956 // Move List. As a consequence any illegal move is also skipped. In MultiPV
957 // mode we also skip PV moves which have been already searched and those
958 // of lower "TB rank" if we are in a TB root position.
959 if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx,
960 thisThread->rootMoves.begin() + thisThread->pvLast, move))
963 // Check for legality
964 if (!rootNode && !pos.legal(move))
967 ss->moveCount = ++moveCount;
969 if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000)
970 sync_cout << "info depth " << depth
971 << " currmove " << UCI::move(move, pos.is_chess960())
972 << " currmovenumber " << moveCount + thisThread->pvIdx << sync_endl;
974 (ss+1)->pv = nullptr;
977 capture = pos.capture(move);
978 movedPiece = pos.moved_piece(move);
979 givesCheck = pos.gives_check(move);
981 // Calculate new depth for this move
982 newDepth = depth - 1;
984 Value delta = beta - alpha;
986 // Step 14. Pruning at shallow depth (~120 Elo). Depth conditions are important for mate finding.
988 && pos.non_pawn_material(us)
989 && bestValue > VALUE_TB_LOSS_IN_MAX_PLY)
991 // Skip quiet moves if movecount exceeds our FutilityMoveCount threshold (~8 Elo)
992 moveCountPruning = moveCount >= futility_move_count(improving, depth);
994 // Reduced depth of the next LMR search
995 int lmrDepth = std::max(newDepth - reduction(improving, depth, moveCount, delta, thisThread->rootDelta), 0);
1000 // Futility pruning for captures (~2 Elo)
1005 && ss->staticEval + 185 + 203 * lmrDepth + PieceValue[EG][pos.piece_on(to_sq(move))]
1006 + captureHistory[movedPiece][to_sq(move)][type_of(pos.piece_on(to_sq(move)))] / 6 < alpha)
1009 // SEE based pruning (~11 Elo)
1010 if (!pos.see_ge(move, Value(-220) * depth))
1015 int history = (*contHist[0])[movedPiece][to_sq(move)]
1016 + (*contHist[1])[movedPiece][to_sq(move)]
1017 + (*contHist[3])[movedPiece][to_sq(move)];
1019 // Continuation history based pruning (~2 Elo)
1021 && history < -4180 * (depth - 1))
1024 history += 2 * thisThread->mainHistory[us][from_to(move)];
1026 // Futility pruning: parent node (~13 Elo)
1029 && ss->staticEval + 103 + 136 * lmrDepth + history / 53 <= alpha)
1032 // Prune moves with negative SEE (~4 Elo)
1033 if (!pos.see_ge(move, Value(-25 * lmrDepth * lmrDepth - 16 * lmrDepth)))
1038 // Step 15. Extensions (~100 Elo)
1039 // We take care to not overdo to avoid search getting stuck.
1040 if (ss->ply < thisThread->rootDepth * 2)
1042 // Singular extension search (~94 Elo). If all moves but one fail low on a
1043 // search of (alpha-s, beta-s), and just one fails high on (alpha, beta),
1044 // then that move is singular and should be extended. To verify this we do
1045 // a reduced search on all the other moves but the ttMove and if the
1046 // result is lower than ttValue minus a margin, then we will extend the ttMove.
1048 && depth >= 4 - (thisThread->previousDepth > 24) + 2 * (PvNode && tte->is_pv())
1050 && !excludedMove // Avoid recursive singular search
1051 /* && ttValue != VALUE_NONE Already implicit in the next condition */
1052 && abs(ttValue) < VALUE_KNOWN_WIN
1053 && (tte->bound() & BOUND_LOWER)
1054 && tte->depth() >= depth - 3)
1056 Value singularBeta = ttValue - (3 + (ss->ttPv && !PvNode)) * depth;
1057 Depth singularDepth = (depth - 1) / 2;
1059 ss->excludedMove = move;
1060 value = search<NonPV>(pos, ss, singularBeta - 1, singularBeta, singularDepth, cutNode);
1061 ss->excludedMove = MOVE_NONE;
1063 if (value < singularBeta)
1066 singularQuietLMR = !ttCapture;
1068 // Avoid search explosion by limiting the number of double extensions
1070 && value < singularBeta - 25
1071 && ss->doubleExtensions <= 10)
1074 depth += depth < 12;
1078 // Multi-cut pruning
1079 // Our ttMove is assumed to fail high, and now we failed high also on a reduced
1080 // search without the ttMove. So we assume this expected Cut-node is not singular,
1081 // that multiple moves fail high, and we can prune the whole subtree by returning
1083 else if (singularBeta >= beta)
1084 return singularBeta;
1086 // If the eval of ttMove is greater than beta, we reduce it (negative extension)
1087 else if (ttValue >= beta)
1090 // If the eval of ttMove is less than alpha and value, we reduce it (negative extension)
1091 else if (ttValue <= alpha && ttValue <= value)
1095 // Check extensions (~1 Elo)
1096 else if ( givesCheck
1098 && abs(ss->staticEval) > 78)
1101 // Quiet ttMove extensions (~1 Elo)
1104 && move == ss->killers[0]
1105 && (*contHist[0])[movedPiece][to_sq(move)] >= 5600)
1109 // Add extension to new depth
1110 newDepth += extension;
1111 ss->doubleExtensions = (ss-1)->doubleExtensions + (extension == 2);
1113 // Speculative prefetch as early as possible
1114 prefetch(TT.first_entry(pos.key_after(move)));
1116 // Update the current move (this must be done after singular extension search)
1117 ss->currentMove = move;
1118 ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
1123 // Step 16. Make the move
1124 pos.do_move(move, st, givesCheck);
1126 Depth r = reduction(improving, depth, moveCount, delta, thisThread->rootDelta);
1128 // Decrease reduction if position is or has been on the PV
1129 // and node is not likely to fail low. (~3 Elo)
1134 // Decrease reduction if opponent's move count is high (~1 Elo)
1135 if ((ss-1)->moveCount > 7)
1138 // Increase reduction for cut nodes (~3 Elo)
1142 // Increase reduction if ttMove is a capture (~3 Elo)
1146 // Decrease reduction for PvNodes based on depth
1148 r -= 1 + 11 / (3 + depth);
1150 // Decrease reduction if ttMove has been singularly extended (~1 Elo)
1151 if (singularQuietLMR)
1154 // Decrease reduction if we move a threatened piece (~1 Elo)
1156 && (mp.threatenedPieces & from_sq(move)))
1159 // Increase reduction if next ply has a lot of fail high
1160 if ((ss+1)->cutoffCnt > 3)
1163 ss->statScore = 2 * thisThread->mainHistory[us][from_to(move)]
1164 + (*contHist[0])[movedPiece][to_sq(move)]
1165 + (*contHist[1])[movedPiece][to_sq(move)]
1166 + (*contHist[3])[movedPiece][to_sq(move)]
1169 // Decrease/increase reduction for moves with a good/bad history (~30 Elo)
1170 r -= ss->statScore / (12800 + 4410 * (depth > 7 && depth < 19));
1172 // Step 17. Late moves reduction / extension (LMR, ~117 Elo)
1173 // We use various heuristics for the sons of a node after the first son has
1174 // been searched. In general we would like to reduce them, but there are many
1175 // cases where we extend a son if it has good chances to be "interesting".
1177 && moveCount > 1 + (PvNode && ss->ply <= 1)
1180 || (cutNode && (ss-1)->moveCount > 1)))
1182 // In general we want to cap the LMR depth search at newDepth, but when
1183 // reduction is negative, we allow this move a limited search extension
1184 // beyond the first move depth. This may lead to hidden double extensions.
1185 Depth d = std::clamp(newDepth - r, 1, newDepth + 1);
1187 value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
1189 // Do full depth search when reduced LMR search fails high
1190 if (value > alpha && d < newDepth)
1192 // Adjust full depth search based on LMR results - if result
1193 // was good enough search deeper, if it was bad enough search shallower
1194 const bool doDeeperSearch = value > (alpha + 66 + 11 * (newDepth - d));
1195 const bool doEvenDeeperSearch = value > alpha + 582 && ss->doubleExtensions <= 5;
1196 const bool doShallowerSearch = value < bestValue + newDepth;
1198 ss->doubleExtensions = ss->doubleExtensions + doEvenDeeperSearch;
1200 newDepth += doDeeperSearch - doShallowerSearch + doEvenDeeperSearch;
1203 value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
1205 int bonus = value > alpha ? stat_bonus(newDepth)
1206 : -stat_bonus(newDepth);
1211 update_continuation_histories(ss, movedPiece, to_sq(move), bonus);
1215 // Step 18. Full depth search when LMR is skipped. If expected reduction is high, reduce its depth by 1.
1216 else if (!PvNode || moveCount > 1)
1218 // Increase reduction for cut nodes and not ttMove (~1 Elo)
1219 if (!ttMove && cutNode)
1222 value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth - (r > 4), !cutNode);
1225 // For PV nodes only, do a full PV search on the first move or after a fail
1226 // high (in the latter case search only if value < beta), otherwise let the
1227 // parent node fail low with value <= alpha and try another move.
1228 if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta))))
1231 (ss+1)->pv[0] = MOVE_NONE;
1233 value = -search<PV>(pos, ss+1, -beta, -alpha,
1234 std::min(maxNextDepth, newDepth), false);
1237 // Step 19. Undo move
1238 pos.undo_move(move);
1240 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1242 // Step 20. Check for a new best move
1243 // Finished searching the move. If a stop occurred, the return value of
1244 // the search cannot be trusted, and we return immediately without
1245 // updating best move, PV and TT.
1246 if (Threads.stop.load(std::memory_order_relaxed))
1251 RootMove& rm = *std::find(thisThread->rootMoves.begin(),
1252 thisThread->rootMoves.end(), move);
1254 rm.averageScore = rm.averageScore != -VALUE_INFINITE ? (2 * value + rm.averageScore) / 3 : value;
1256 // PV move or new best move?
1257 if (moveCount == 1 || value > alpha)
1259 rm.score = rm.uciScore = value;
1260 rm.selDepth = thisThread->selDepth;
1261 rm.scoreLowerbound = rm.scoreUpperbound = false;
1263 if (value >= beta) {
1264 rm.scoreLowerbound = true;
1267 else if (value <= alpha) {
1268 rm.scoreUpperbound = true;
1269 rm.uciScore = alpha;
1275 for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
1276 rm.pv.push_back(*m);
1278 // We record how often the best move has been changed in each iteration.
1279 // This information is used for time management. In MultiPV mode,
1280 // we must take care to only do this for the first PV line.
1282 && !thisThread->pvIdx)
1283 ++thisThread->bestMoveChanges;
1286 // All other moves but the PV are set to the lowest value: this
1287 // is not a problem when sorting because the sort is stable and the
1288 // move position in the list is preserved - just the PV is pushed up.
1289 rm.score = -VALUE_INFINITE;
1292 if (value > bestValue)
1300 if (PvNode && !rootNode) // Update pv even in fail-high case
1301 update_pv(ss->pv, move, (ss+1)->pv);
1303 if (PvNode && value < beta) // Update alpha! Always alpha < beta
1307 // Reduce other moves if we have found at least one score improvement
1310 && beta < VALUE_KNOWN_WIN
1311 && alpha > -VALUE_KNOWN_WIN)
1319 assert(value >= beta); // Fail high
1326 // If the move is worse than some previously searched move, remember it to update its stats later
1327 if (move != bestMove)
1329 if (capture && captureCount < 32)
1330 capturesSearched[captureCount++] = move;
1332 else if (!capture && quietCount < 64)
1333 quietsSearched[quietCount++] = move;
1337 // The following condition would detect a stop only after move loop has been
1338 // completed. But in this case bestValue is valid because we have fully
1339 // searched our subtree, and we can anyhow save the result in TT.
1345 // Step 21. Check for mate and stalemate
1346 // All legal moves have been searched and if there are no legal moves, it
1347 // must be a mate or a stalemate. If we are in a singular extension search then
1348 // return a fail low score.
1350 assert(moveCount || !ss->inCheck || excludedMove || !MoveList<LEGAL>(pos).size());
1353 bestValue = excludedMove ? alpha :
1354 ss->inCheck ? mated_in(ss->ply)
1357 // If there is a move which produces search value greater than alpha we update stats of searched moves
1359 update_all_stats(pos, ss, bestMove, bestValue, beta, prevSq,
1360 quietsSearched, quietCount, capturesSearched, captureCount, depth);
1362 // Bonus for prior countermove that caused the fail low
1363 else if ( (depth >= 5 || PvNode || bestValue < alpha - 65 * depth)
1366 // Extra bonuses for PV/Cut nodes or bad fail lows
1367 int bonus = 1 + (PvNode || cutNode) + (bestValue < alpha - 88 * depth);
1368 update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, stat_bonus(depth) * bonus);
1372 bestValue = std::min(bestValue, maxValue);
1374 // If no good move is found and the previous position was ttPv, then the previous
1375 // opponent move is probably good and the new position is added to the search tree.
1376 if (bestValue <= alpha)
1377 ss->ttPv = ss->ttPv || ((ss-1)->ttPv && depth > 3);
1379 // Write gathered information in transposition table
1380 if (!excludedMove && !(rootNode && thisThread->pvIdx))
1381 tte->save(posKey, value_to_tt(bestValue, ss->ply), ss->ttPv,
1382 bestValue >= beta ? BOUND_LOWER :
1383 PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
1384 depth, bestMove, ss->staticEval);
1386 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1392 // qsearch() is the quiescence search function, which is called by the main search
1393 // function with zero depth, or recursively with further decreasing depth per call.
1395 template <NodeType nodeType>
1396 Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
1398 static_assert(nodeType != Root);
1399 constexpr bool PvNode = nodeType == PV;
1401 assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
1402 assert(PvNode || (alpha == beta - 1));
1407 ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
1411 Move ttMove, move, bestMove;
1413 Value bestValue, value, ttValue, futilityValue, futilityBase;
1414 bool pvHit, givesCheck, capture;
1420 ss->pv[0] = MOVE_NONE;
1423 Thread* thisThread = pos.this_thread();
1424 bestMove = MOVE_NONE;
1425 ss->inCheck = pos.checkers();
1428 // Check for an immediate draw or maximum ply reached
1429 if ( pos.is_draw(ss->ply)
1430 || ss->ply >= MAX_PLY)
1431 return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos) : VALUE_DRAW;
1433 assert(0 <= ss->ply && ss->ply < MAX_PLY);
1435 // Decide whether or not to include checks: this fixes also the type of
1436 // TT entry depth that we are going to use. Note that in qsearch we use
1437 // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
1438 ttDepth = ss->inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
1439 : DEPTH_QS_NO_CHECKS;
1440 // Transposition table lookup
1442 tte = TT.probe(posKey, ss->ttHit);
1443 ttValue = ss->ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
1444 ttMove = ss->ttHit ? tte->move() : MOVE_NONE;
1445 pvHit = ss->ttHit && tte->is_pv();
1449 && tte->depth() >= ttDepth
1450 && ttValue != VALUE_NONE // Only in case of TT access race
1451 && (tte->bound() & (ttValue >= beta ? BOUND_LOWER : BOUND_UPPER)))
1454 // Evaluate the position statically
1457 ss->staticEval = VALUE_NONE;
1458 bestValue = futilityBase = -VALUE_INFINITE;
1464 // Never assume anything about values stored in TT
1465 if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
1466 ss->staticEval = bestValue = evaluate(pos);
1468 // ttValue can be used as a better position evaluation (~13 Elo)
1469 if ( ttValue != VALUE_NONE
1470 && (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER)))
1471 bestValue = ttValue;
1474 // In case of null move search use previous static eval with a different sign
1475 ss->staticEval = bestValue =
1476 (ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
1477 : -(ss-1)->staticEval;
1479 // Stand pat. Return immediately if static value is at least beta
1480 if (bestValue >= beta)
1482 // Save gathered info in transposition table
1484 tte->save(posKey, value_to_tt(bestValue, ss->ply), false, BOUND_LOWER,
1485 DEPTH_NONE, MOVE_NONE, ss->staticEval);
1490 if (PvNode && bestValue > alpha)
1493 futilityBase = bestValue + 158;
1496 const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
1497 nullptr , (ss-4)->continuationHistory,
1498 nullptr , (ss-6)->continuationHistory };
1500 // Initialize a MovePicker object for the current position, and prepare
1501 // to search the moves. Because the depth is <= 0 here, only captures,
1502 // queen promotions, and other checks (only if depth >= DEPTH_QS_CHECKS)
1503 // will be generated.
1504 Square prevSq = to_sq((ss-1)->currentMove);
1505 MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
1506 &thisThread->captureHistory,
1510 int quietCheckEvasions = 0;
1512 // Loop through the moves until no moves remain or a beta cutoff occurs
1513 while ((move = mp.next_move()) != MOVE_NONE)
1515 assert(is_ok(move));
1517 // Check for legality
1518 if (!pos.legal(move))
1521 givesCheck = pos.gives_check(move);
1522 capture = pos.capture(move);
1526 // Futility pruning and moveCount pruning (~10 Elo)
1527 if ( bestValue > VALUE_TB_LOSS_IN_MAX_PLY
1529 && to_sq(move) != prevSq
1530 && futilityBase > -VALUE_KNOWN_WIN
1531 && type_of(move) != PROMOTION)
1536 futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
1538 if (futilityValue <= alpha)
1540 bestValue = std::max(bestValue, futilityValue);
1544 if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1))
1546 bestValue = std::max(bestValue, futilityBase);
1551 // Do not search moves with negative SEE values (~5 Elo)
1552 if ( bestValue > VALUE_TB_LOSS_IN_MAX_PLY
1553 && !pos.see_ge(move))
1556 // Speculative prefetch as early as possible
1557 prefetch(TT.first_entry(pos.key_after(move)));
1559 ss->currentMove = move;
1560 ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
1562 [pos.moved_piece(move)]
1565 // Continuation history based pruning (~3 Elo)
1567 && bestValue > VALUE_TB_LOSS_IN_MAX_PLY
1568 && (*contHist[0])[pos.moved_piece(move)][to_sq(move)] < 0
1569 && (*contHist[1])[pos.moved_piece(move)][to_sq(move)] < 0)
1572 // We prune after 2nd quiet check evasion where being 'in check' is implicitly checked through the counter
1573 // and being a 'quiet' apart from being a tt move is assumed after an increment because captures are pushed ahead.
1574 if ( bestValue > VALUE_TB_LOSS_IN_MAX_PLY
1575 && quietCheckEvasions > 1)
1578 quietCheckEvasions += !capture && ss->inCheck;
1580 // Make and search the move
1581 pos.do_move(move, st, givesCheck);
1582 value = -qsearch<nodeType>(pos, ss+1, -beta, -alpha, depth - 1);
1583 pos.undo_move(move);
1585 assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
1587 // Check for a new best move
1588 if (value > bestValue)
1596 if (PvNode) // Update pv even in fail-high case
1597 update_pv(ss->pv, move, (ss+1)->pv);
1599 if (PvNode && value < beta) // Update alpha here!
1607 // All legal moves have been searched. A special case: if we're in check
1608 // and no legal moves were found, it is checkmate.
1609 if (ss->inCheck && bestValue == -VALUE_INFINITE)
1611 assert(!MoveList<LEGAL>(pos).size());
1613 return mated_in(ss->ply); // Plies to mate from the root
1616 // Save gathered info in transposition table
1617 tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit,
1618 bestValue >= beta ? BOUND_LOWER : BOUND_UPPER,
1619 ttDepth, bestMove, ss->staticEval);
1621 assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
1627 // value_to_tt() adjusts a mate or TB score from "plies to mate from the root" to
1628 // "plies to mate from the current position". Standard scores are unchanged.
1629 // The function is called before storing a value in the transposition table.
1631 Value value_to_tt(Value v, int ply) {
1633 assert(v != VALUE_NONE);
1635 return v >= VALUE_TB_WIN_IN_MAX_PLY ? v + ply
1636 : v <= VALUE_TB_LOSS_IN_MAX_PLY ? v - ply : v;
1640 // value_from_tt() is the inverse of value_to_tt(): it adjusts a mate or TB score
1641 // from the transposition table (which refers to the plies to mate/be mated from
1642 // current position) to "plies to mate/be mated (TB win/loss) from the root". However,
1643 // for mate scores, to avoid potentially false mate scores related to the 50 moves rule
1644 // and the graph history interaction, we return an optimal TB score instead.
1646 Value value_from_tt(Value v, int ply, int r50c) {
1648 if (v == VALUE_NONE)
1651 if (v >= VALUE_TB_WIN_IN_MAX_PLY) // TB win or better
1653 if (v >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - v > 99 - r50c)
1654 return VALUE_MATE_IN_MAX_PLY - 1; // do not return a potentially false mate score
1659 if (v <= VALUE_TB_LOSS_IN_MAX_PLY) // TB loss or worse
1661 if (v <= VALUE_MATED_IN_MAX_PLY && VALUE_MATE + v > 99 - r50c)
1662 return VALUE_MATED_IN_MAX_PLY + 1; // do not return a potentially false mate score
1671 // update_pv() adds current move and appends child pv[]
1673 void update_pv(Move* pv, Move move, const Move* childPv) {
1675 for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
1681 // update_all_stats() updates stats at the end of search() when a bestMove is found
1683 void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq,
1684 Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth) {
1686 Color us = pos.side_to_move();
1687 Thread* thisThread = pos.this_thread();
1688 CapturePieceToHistory& captureHistory = thisThread->captureHistory;
1689 Piece moved_piece = pos.moved_piece(bestMove);
1690 PieceType captured = type_of(pos.piece_on(to_sq(bestMove)));
1691 int bonus1 = stat_bonus(depth + 1);
1693 if (!pos.capture(bestMove))
1695 int bonus2 = bestValue > beta + 146 ? bonus1 // larger bonus
1696 : stat_bonus(depth); // smaller bonus
1698 // Increase stats for the best move in case it was a quiet move
1699 update_quiet_stats(pos, ss, bestMove, bonus2);
1701 // Decrease stats for all non-best quiet moves
1702 for (int i = 0; i < quietCount; ++i)
1704 thisThread->mainHistory[us][from_to(quietsSearched[i])] << -bonus2;
1705 update_continuation_histories(ss, pos.moved_piece(quietsSearched[i]), to_sq(quietsSearched[i]), -bonus2);
1709 // Increase stats for the best move in case it was a capture move
1710 captureHistory[moved_piece][to_sq(bestMove)][captured] << bonus1;
1712 // Extra penalty for a quiet early move that was not a TT move or
1713 // main killer move in previous ply when it gets refuted.
1714 if ( ((ss-1)->moveCount == 1 + (ss-1)->ttHit || ((ss-1)->currentMove == (ss-1)->killers[0]))
1715 && !pos.captured_piece())
1716 update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -bonus1);
1718 // Decrease stats for all non-best capture moves
1719 for (int i = 0; i < captureCount; ++i)
1721 moved_piece = pos.moved_piece(capturesSearched[i]);
1722 captured = type_of(pos.piece_on(to_sq(capturesSearched[i])));
1723 captureHistory[moved_piece][to_sq(capturesSearched[i])][captured] << -bonus1;
1728 // update_continuation_histories() updates histories of the move pairs formed
1729 // by moves at ply -1, -2, -4, and -6 with current move.
1731 void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) {
1733 for (int i : {1, 2, 4, 6})
1735 // Only update first 2 continuation histories if we are in check
1736 if (ss->inCheck && i > 2)
1738 if (is_ok((ss-i)->currentMove))
1739 (*(ss-i)->continuationHistory)[pc][to] << bonus;
1744 // update_quiet_stats() updates move sorting heuristics
1746 void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus) {
1749 if (ss->killers[0] != move)
1751 ss->killers[1] = ss->killers[0];
1752 ss->killers[0] = move;
1755 Color us = pos.side_to_move();
1756 Thread* thisThread = pos.this_thread();
1757 thisThread->mainHistory[us][from_to(move)] << bonus;
1758 update_continuation_histories(ss, pos.moved_piece(move), to_sq(move), bonus);
1760 // Update countermove history
1761 if (is_ok((ss-1)->currentMove))
1763 Square prevSq = to_sq((ss-1)->currentMove);
1764 thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] = move;
1768 // When playing with strength handicap, choose best move among a set of RootMoves
1769 // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
1771 Move Skill::pick_best(size_t multiPV) {
1773 const RootMoves& rootMoves = Threads.main()->rootMoves;
1774 static PRNG rng(now()); // PRNG sequence should be non-deterministic
1776 // RootMoves are already sorted by score in descending order
1777 Value topScore = rootMoves[0].score;
1778 int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
1779 int maxScore = -VALUE_INFINITE;
1780 double weakness = 120 - 2 * level;
1782 // Choose best move. For each move score we add two terms, both dependent on
1783 // weakness. One is deterministic and bigger for weaker levels, and one is
1784 // random. Then we choose the move with the resulting highest score.
1785 for (size_t i = 0; i < multiPV; ++i)
1787 // This is our magic formula
1788 int push = int(( weakness * int(topScore - rootMoves[i].score)
1789 + delta * (rng.rand<unsigned>() % int(weakness))) / 128);
1791 if (rootMoves[i].score + push >= maxScore)
1793 maxScore = rootMoves[i].score + push;
1794 best = rootMoves[i].pv[0];
1804 /// MainThread::check_time() is used to print debug info and, more importantly,
1805 /// to detect when we are out of available time and thus stop the search.
1807 void MainThread::check_time() {
1812 // When using nodes, ensure checking rate is not lower than 0.1% of nodes
1813 callsCnt = Limits.nodes ? std::min(1024, int(Limits.nodes / 1024)) : 1024;
1815 static TimePoint lastInfoTime = now();
1817 TimePoint elapsed = Time.elapsed();
1818 TimePoint tick = Limits.startTime + elapsed;
1820 if (tick - lastInfoTime >= 1000)
1822 lastInfoTime = tick;
1826 // We should not stop pondering until told so by the GUI
1830 if ( (Limits.use_time_management() && (elapsed > Time.maximum() - 10 || stopOnPonderhit))
1831 || (Limits.movetime && elapsed >= Limits.movetime)
1832 || (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes))
1833 Threads.stop = true;
1837 /// UCI::pv() formats PV information according to the UCI protocol. UCI requires
1838 /// that all (if any) unsearched PV lines are sent using a previous search score.
1840 string UCI::pv(const Position& pos, Depth depth) {
1842 std::stringstream ss;
1843 TimePoint elapsed = Time.elapsed() + 1;
1844 const RootMoves& rootMoves = pos.this_thread()->rootMoves;
1845 size_t pvIdx = pos.this_thread()->pvIdx;
1846 size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
1847 uint64_t nodesSearched = Threads.nodes_searched();
1848 uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0);
1850 for (size_t i = 0; i < multiPV; ++i)
1852 bool updated = rootMoves[i].score != -VALUE_INFINITE;
1854 if (depth == 1 && !updated && i > 0)
1857 Depth d = updated ? depth : std::max(1, depth - 1);
1858 Value v = updated ? rootMoves[i].uciScore : rootMoves[i].previousScore;
1860 if (v == -VALUE_INFINITE)
1863 bool tb = TB::RootInTB && abs(v) < VALUE_MATE_IN_MAX_PLY;
1864 v = tb ? rootMoves[i].tbScore : v;
1866 if (ss.rdbuf()->in_avail()) // Not at first line
1871 << " seldepth " << rootMoves[i].selDepth
1872 << " multipv " << i + 1
1873 << " score " << UCI::value(v);
1875 if (Options["UCI_ShowWDL"])
1876 ss << UCI::wdl(v, pos.game_ply());
1878 if (i == pvIdx && !tb && updated) // tablebase- and previous-scores are exact
1879 ss << (rootMoves[i].scoreLowerbound ? " lowerbound" : (rootMoves[i].scoreUpperbound ? " upperbound" : ""));
1881 ss << " nodes " << nodesSearched
1882 << " nps " << nodesSearched * 1000 / elapsed
1883 << " hashfull " << TT.hashfull()
1884 << " tbhits " << tbHits
1885 << " time " << elapsed
1888 for (Move m : rootMoves[i].pv)
1889 ss << " " << UCI::move(m, pos.is_chess960());
1896 /// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
1897 /// before exiting the search, for instance, in case we stop the search during a
1898 /// fail high at root. We try hard to have a ponder move to return to the GUI,
1899 /// otherwise in case of 'ponder on' we have nothing to think on.
1901 bool RootMove::extract_ponder_from_tt(Position& pos) {
1904 ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
1908 assert(pv.size() == 1);
1910 if (pv[0] == MOVE_NONE)
1913 pos.do_move(pv[0], st);
1914 TTEntry* tte = TT.probe(pos.key(), ttHit);
1918 Move m = tte->move(); // Local copy to be SMP safe
1919 if (MoveList<LEGAL>(pos).contains(m))
1923 pos.undo_move(pv[0]);
1924 return pv.size() > 1;
1927 void Tablebases::rank_root_moves(Position& pos, Search::RootMoves& rootMoves) {
1930 UseRule50 = bool(Options["Syzygy50MoveRule"]);
1931 ProbeDepth = int(Options["SyzygyProbeDepth"]);
1932 Cardinality = int(Options["SyzygyProbeLimit"]);
1933 bool dtz_available = true;
1935 // Tables with fewer pieces than SyzygyProbeLimit are searched with
1936 // ProbeDepth == DEPTH_ZERO
1937 if (Cardinality > MaxCardinality)
1939 Cardinality = MaxCardinality;
1943 if (Cardinality >= popcount(pos.pieces()) && !pos.can_castle(ANY_CASTLING))
1945 // Rank moves using DTZ tables
1946 RootInTB = root_probe(pos, rootMoves);
1950 // DTZ tables are missing; try to rank moves using WDL tables
1951 dtz_available = false;
1952 RootInTB = root_probe_wdl(pos, rootMoves);
1958 // Sort moves according to TB rank
1959 std::stable_sort(rootMoves.begin(), rootMoves.end(),
1960 [](const RootMove &a, const RootMove &b) { return a.tbRank > b.tbRank; } );
1962 // Probe during search only if DTZ is not available and we are winning
1963 if (dtz_available || rootMoves[0].tbScore <= VALUE_DRAW)
1968 // Clean up if root_probe() and root_probe_wdl() have failed
1969 for (auto& m : rootMoves)
1974 } // namespace Stockfish