]> git.sesse.net Git - bmusb/blob - bmusb.cpp
b3739caf28db7052ae9fe68024004d5ca526a299
[bmusb] / bmusb.cpp
1 // Intensity Shuttle USB3 prototype capture driver, v0.3
2 // Can download 8-bit and 10-bit UYVY/v210 frames from HDMI, quite stable
3 // (can do captures for hours at a time with no drops), except during startup
4 // 576p60/720p60/1080i60 works, 1080p60 does not work (firmware limitation)
5 // Audio comes out as 8-channel 24-bit raw audio.
6
7 #include <assert.h>
8 #include <errno.h>
9 #include <libusb.h>
10 #include <netinet/in.h>
11 #include <sched.h>
12 #include <stdint.h>
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #ifdef __SSE4_1__
17 #include <immintrin.h>
18 #endif
19 #include "bmusb.h"
20
21 #include <algorithm>
22 #include <atomic>
23 #include <condition_variable>
24 #include <cstddef>
25 #include <cstdint>
26 #include <deque>
27 #include <functional>
28 #include <memory>
29 #include <mutex>
30 #include <stack>
31 #include <thread>
32
33 using namespace std;
34 using namespace std::placeholders;
35
36 #define WIDTH 1280
37 #define HEIGHT 750  /* 30 lines ancillary data? */
38 //#define WIDTH 1920
39 //#define HEIGHT 1125  /* ??? lines ancillary data? */
40 #define HEADER_SIZE 44
41 //#define HEADER_SIZE 0
42 #define AUDIO_HEADER_SIZE 4
43
44 //#define FRAME_SIZE (WIDTH * HEIGHT * 2 + HEADER_SIZE)  // UYVY
45 //#define FRAME_SIZE (WIDTH * HEIGHT * 2 * 4 / 3 + HEADER_SIZE)  // v210
46 #define FRAME_SIZE (8 << 20)
47
48 FILE *audiofp;
49
50 thread usb_thread;
51 atomic<bool> should_quit;
52
53 FrameAllocator::~FrameAllocator() {}
54
55 // Audio is more important than video, and also much cheaper.
56 // By having many more audio frames available, hopefully if something
57 // starts to drop, we'll have CPU load go down (from not having to
58 // process as much video) before we have to drop audio.
59 #define NUM_QUEUED_VIDEO_FRAMES 16
60 #define NUM_QUEUED_AUDIO_FRAMES 64
61
62 class MallocFrameAllocator : public FrameAllocator {
63 public:
64         MallocFrameAllocator(size_t frame_size, size_t num_queued_frames);
65         Frame alloc_frame() override;
66         void release_frame(Frame frame) override;
67
68 private:
69         size_t frame_size;
70
71         mutex freelist_mutex;
72         stack<unique_ptr<uint8_t[]>> freelist;  // All of size <frame_size>.
73 };
74
75 MallocFrameAllocator::MallocFrameAllocator(size_t frame_size, size_t num_queued_frames)
76         : frame_size(frame_size)
77 {
78         for (size_t i = 0; i < num_queued_frames; ++i) {
79                 freelist.push(unique_ptr<uint8_t[]>(new uint8_t[frame_size]));
80         }
81 }
82
83 FrameAllocator::Frame MallocFrameAllocator::alloc_frame()
84 {
85         Frame vf;
86         vf.owner = this;
87
88         unique_lock<mutex> lock(freelist_mutex);  // Meh.
89         if (freelist.empty()) {
90                 printf("Frame overrun (no more spare frames of size %ld), dropping frame!\n",
91                         frame_size);
92         } else {
93                 vf.data = freelist.top().release();
94                 vf.size = frame_size;
95                 freelist.pop();  // Meh.
96         }
97         return vf;
98 }
99
100 void MallocFrameAllocator::release_frame(Frame frame)
101 {
102         if (frame.overflow > 0) {
103                 printf("%d bytes overflow after last (malloc) frame\n", int(frame.overflow));
104         }
105         unique_lock<mutex> lock(freelist_mutex);
106         freelist.push(unique_ptr<uint8_t[]>(frame.data));
107 }
108
109 bool uint16_less_than_with_wraparound(uint16_t a, uint16_t b)
110 {
111         if (a == b) {
112                 return false;
113         } else if (a < b) {
114                 return (b - a < 0x8000);
115         } else {
116                 int wrap_b = 0x10000 + int(b);
117                 return (wrap_b - a < 0x8000);
118         }
119 }
120
121 void BMUSBCapture::queue_frame(uint16_t format, uint16_t timecode, FrameAllocator::Frame frame, deque<QueuedFrame> *q)
122 {
123         if (!q->empty() && !uint16_less_than_with_wraparound(q->back().timecode, timecode)) {
124                 printf("Blocks going backwards: prev=0x%04x, cur=0x%04x (dropped)\n",
125                         q->back().timecode, timecode);
126                 frame.owner->release_frame(frame);
127                 return;
128         }
129
130         QueuedFrame qf;
131         qf.format = format;
132         qf.timecode = timecode;
133         qf.frame = frame;
134
135         {
136                 unique_lock<mutex> lock(queue_lock);
137                 q->push_back(move(qf));
138         }
139         queues_not_empty.notify_one();  // might be spurious
140 }
141
142 void dump_frame(const char *filename, uint8_t *frame_start, size_t frame_len)
143 {
144         FILE *fp = fopen(filename, "wb");
145         if (fwrite(frame_start + HEADER_SIZE, frame_len - HEADER_SIZE, 1, fp) != 1) {
146                 printf("short write!\n");
147         }
148         fclose(fp);
149 }
150
151 void dump_audio_block(uint8_t *audio_start, size_t audio_len)
152 {
153         fwrite(audio_start + AUDIO_HEADER_SIZE, 1, audio_len - AUDIO_HEADER_SIZE, audiofp);
154 }
155
156 void BMUSBCapture::dequeue_thread_func()
157 {
158         if (has_dequeue_callbacks) {
159                 dequeue_init_callback();
160         }
161         while (!dequeue_thread_should_quit) {
162                 unique_lock<mutex> lock(queue_lock);
163                 queues_not_empty.wait(lock, [this]{ return dequeue_thread_should_quit || (!pending_video_frames.empty() && !pending_audio_frames.empty()); });
164
165                 uint16_t video_timecode = pending_video_frames.front().timecode;
166                 uint16_t audio_timecode = pending_audio_frames.front().timecode;
167                 if (uint16_less_than_with_wraparound(video_timecode, audio_timecode)) {
168                         printf("Video block 0x%04x without corresponding audio block, dropping.\n",
169                                 video_timecode);
170                         video_frame_allocator->release_frame(pending_video_frames.front().frame);
171                         pending_video_frames.pop_front();
172                 } else if (uint16_less_than_with_wraparound(audio_timecode, video_timecode)) {
173                         printf("Audio block 0x%04x without corresponding video block, sending blank frame.\n",
174                                 audio_timecode);
175                         QueuedFrame audio_frame = pending_audio_frames.front();
176                         pending_audio_frames.pop_front();
177                         lock.unlock();
178                         frame_callback(audio_timecode,
179                                        FrameAllocator::Frame(), 0, 0x0000,
180                                        audio_frame.frame, AUDIO_HEADER_SIZE, audio_frame.format);
181                 } else {
182                         QueuedFrame video_frame = pending_video_frames.front();
183                         QueuedFrame audio_frame = pending_audio_frames.front();
184                         pending_audio_frames.pop_front();
185                         pending_video_frames.pop_front();
186                         lock.unlock();
187
188 #if 0
189                         char filename[255];
190                         snprintf(filename, sizeof(filename), "%04x%04x.uyvy", video_frame.format, video_timecode);
191                         dump_frame(filename, video_frame.frame.data, video_frame.data_len);
192                         dump_audio_block(audio_frame.frame.data, audio_frame.data_len); 
193 #endif
194
195                         frame_callback(video_timecode,
196                                        video_frame.frame, HEADER_SIZE, video_frame.format,
197                                        audio_frame.frame, AUDIO_HEADER_SIZE, audio_frame.format);
198                 }
199         }
200         if (has_dequeue_callbacks) {
201                 dequeue_cleanup_callback();
202         }
203 }
204
205 void BMUSBCapture::start_new_frame(const uint8_t *start)
206 {
207         uint16_t format = (start[3] << 8) | start[2];
208         uint16_t timecode = (start[1] << 8) | start[0];
209
210         if (current_video_frame.len > 0) {
211                 // If format is 0x0800 (no signal), add a fake (empty) audio
212                 // frame to get it out of the queue.
213                 // TODO: Figure out if there are other formats that come with
214                 // no audio, and treat them the same.
215                 if (format == 0x0800) {
216                         FrameAllocator::Frame fake_audio_frame = audio_frame_allocator->alloc_frame();
217                         if (fake_audio_frame.data == nullptr) {
218                                 // Oh well, it's just a no-signal frame anyway.
219                                 printf("Couldn't allocate fake audio frame, also dropping no-signal video frame.\n");
220                                 current_video_frame.owner->release_frame(current_video_frame);
221                                 current_video_frame = video_frame_allocator->alloc_frame();
222                                 return;
223                         }
224                         queue_frame(format, timecode, fake_audio_frame, &pending_audio_frames);
225                 }
226                 //dump_frame();
227                 queue_frame(format, timecode, current_video_frame, &pending_video_frames);
228         }
229         //printf("Found frame start, format 0x%04x timecode 0x%04x, previous frame length was %d/%d\n",
230         //      format, timecode,
231         //      //start[7], start[6], start[5], start[4],
232         //      read_current_frame, FRAME_SIZE);
233
234         current_video_frame = video_frame_allocator->alloc_frame();
235         //if (current_video_frame.data == nullptr) {
236         //      read_current_frame = -1;
237         //} else {
238         //      read_current_frame = 0;
239         //}
240 }
241
242 void BMUSBCapture::start_new_audio_block(const uint8_t *start)
243 {
244         uint16_t format = (start[3] << 8) | start[2];
245         uint16_t timecode = (start[1] << 8) | start[0];
246         if (current_audio_frame.len > 0) {
247                 //dump_audio_block();
248                 queue_frame(format, timecode, current_audio_frame, &pending_audio_frames);
249         }
250         //printf("Found audio block start, format 0x%04x timecode 0x%04x, previous block length was %d\n",
251         //      format, timecode, read_current_audio_block);
252         current_audio_frame = audio_frame_allocator->alloc_frame();
253 }
254
255 #if 0
256 static void dump_pack(const libusb_transfer *xfr, int offset, const libusb_iso_packet_descriptor *pack)
257 {
258         //      printf("ISO pack%u length:%u, actual_length:%u, offset:%u\n", i, pack->length, pack->actual_length, offset);
259         for (unsigned j = 0; j < pack->actual_length; j++) {
260         //for (int j = 0; j < min(pack->actual_length, 16u); j++) {
261                 printf("%02x", xfr->buffer[j + offset]);
262                 if ((j % 16) == 15)
263                         printf("\n");
264                 else if ((j % 8) == 7)
265                         printf("  ");
266                 else
267                         printf(" ");
268         }
269 }
270 #endif
271
272 void memcpy_interleaved(uint8_t *dest1, uint8_t *dest2, const uint8_t *src, size_t n)
273 {
274         assert(n % 2 == 0);
275         uint8_t *dptr1 = dest1;
276         uint8_t *dptr2 = dest2;
277
278         for (size_t i = 0; i < n; i += 2) {
279                 *dptr1++ = *src++;
280                 *dptr2++ = *src++;
281         }
282 }
283
284 void add_to_frame(FrameAllocator::Frame *current_frame, const char *frame_type_name, const uint8_t *start, const uint8_t *end)
285 {
286         if (current_frame->data == nullptr ||
287             current_frame->len > current_frame->size ||
288             start == end) {
289                 return;
290         }
291
292         int bytes = end - start;
293         if (current_frame->len + bytes > current_frame->size) {
294                 current_frame->overflow = current_frame->len + bytes - current_frame->size;
295                 current_frame->len = current_frame->size;
296                 if (current_frame->overflow > 1048576) {
297                         printf("%d bytes overflow after last %s frame\n",
298                                 int(current_frame->overflow), frame_type_name);
299                         current_frame->overflow = 0;
300                 }
301                 //dump_frame();
302         } else {
303                 if (current_frame->interleaved) {
304                         uint8_t *data = current_frame->data + current_frame->len / 2;
305                         uint8_t *data2 = current_frame->data2 + current_frame->len / 2;
306                         if (current_frame->len % 2 == 1) {
307                                 ++data;
308                                 swap(data, data2);
309                         }
310                         if (bytes % 2 == 1) {
311                                 *data++ = *start++;
312                                 swap(data, data2);
313                                 ++current_frame->len;
314                                 --bytes;
315                         }
316                         memcpy_interleaved(data, data2, start, bytes);
317                         current_frame->len += bytes;
318                 } else {
319                         memcpy(current_frame->data + current_frame->len, start, bytes);
320                         current_frame->len += bytes;
321                 }
322         }
323 }
324
325 #ifdef __SSE4_1__
326
327 #if 0
328 void avx2_dump(const char *name, __m256i n)
329 {
330         printf("%-10s:", name);
331         printf(" %02x", _mm256_extract_epi8(n, 0));
332         printf(" %02x", _mm256_extract_epi8(n, 1));
333         printf(" %02x", _mm256_extract_epi8(n, 2));
334         printf(" %02x", _mm256_extract_epi8(n, 3));
335         printf(" %02x", _mm256_extract_epi8(n, 4));
336         printf(" %02x", _mm256_extract_epi8(n, 5));
337         printf(" %02x", _mm256_extract_epi8(n, 6));
338         printf(" %02x", _mm256_extract_epi8(n, 7));
339         printf(" ");
340         printf(" %02x", _mm256_extract_epi8(n, 8));
341         printf(" %02x", _mm256_extract_epi8(n, 9));
342         printf(" %02x", _mm256_extract_epi8(n, 10));
343         printf(" %02x", _mm256_extract_epi8(n, 11));
344         printf(" %02x", _mm256_extract_epi8(n, 12));
345         printf(" %02x", _mm256_extract_epi8(n, 13));
346         printf(" %02x", _mm256_extract_epi8(n, 14));
347         printf(" %02x", _mm256_extract_epi8(n, 15));
348         printf(" ");
349         printf(" %02x", _mm256_extract_epi8(n, 16));
350         printf(" %02x", _mm256_extract_epi8(n, 17));
351         printf(" %02x", _mm256_extract_epi8(n, 18));
352         printf(" %02x", _mm256_extract_epi8(n, 19));
353         printf(" %02x", _mm256_extract_epi8(n, 20));
354         printf(" %02x", _mm256_extract_epi8(n, 21));
355         printf(" %02x", _mm256_extract_epi8(n, 22));
356         printf(" %02x", _mm256_extract_epi8(n, 23));
357         printf(" ");
358         printf(" %02x", _mm256_extract_epi8(n, 24));
359         printf(" %02x", _mm256_extract_epi8(n, 25));
360         printf(" %02x", _mm256_extract_epi8(n, 26));
361         printf(" %02x", _mm256_extract_epi8(n, 27));
362         printf(" %02x", _mm256_extract_epi8(n, 28));
363         printf(" %02x", _mm256_extract_epi8(n, 29));
364         printf(" %02x", _mm256_extract_epi8(n, 30));
365         printf(" %02x", _mm256_extract_epi8(n, 31));
366         printf("\n");
367 }
368 #endif
369
370 // Does a memcpy and memchr in one to reduce processing time.
371 // Note that the benefit is somewhat limited if your L3 cache is small,
372 // as you'll (unfortunately) spend most of the time loading the data
373 // from main memory.
374 //
375 // Complicated cases are left to the slow path; it basically stops copying
376 // up until the first instance of "sync_char" (usually a bit before, actually).
377 // This is fine, since 0x00 bytes shouldn't really show up in normal picture
378 // data, and what we really need this for is the 00 00 ff ff marker in video data.
379 const uint8_t *add_to_frame_fastpath(FrameAllocator::Frame *current_frame, const uint8_t *start, const uint8_t *limit, const char sync_char)
380 {
381         if (current_frame->data == nullptr ||
382             current_frame->len > current_frame->size ||
383             start == limit) {
384                 return start;
385         }
386         size_t orig_bytes = limit - start;
387         if (orig_bytes < 128) {
388                 // Don't bother.
389                 return start;
390         }
391
392         // Don't read more bytes than we can write.
393         limit = min(limit, start + (current_frame->size - current_frame->len));
394
395         // Align end to 32 bytes.
396         limit = (const uint8_t *)(intptr_t(limit) & ~31);
397
398         if (start >= limit) {
399                 return start;
400         }
401
402         // Process [0,31] bytes, such that start gets aligned to 32 bytes.
403         const uint8_t *aligned_start = (const uint8_t *)(intptr_t(start + 31) & ~31);
404         if (aligned_start != start) {
405                 const uint8_t *sync_start = (const uint8_t *)memchr(start, sync_char, aligned_start - start);
406                 if (sync_start == nullptr) {
407                         add_to_frame(current_frame, "", start, aligned_start);
408                 } else {
409                         add_to_frame(current_frame, "", start, sync_start);
410                         return sync_start;
411                 }
412         }
413
414         // Make the length a multiple of 64.
415         if (current_frame->interleaved) {
416                 if (((limit - aligned_start) % 64) != 0) {
417                         limit -= 32;
418                 }
419                 assert(((limit - aligned_start) % 64) == 0);
420         }
421
422 #if __AVX2__
423         const __m256i needle = _mm256_set1_epi8(sync_char);
424
425         const __restrict __m256i *in = (const __m256i *)aligned_start;
426         if (current_frame->interleaved) {
427                 __restrict __m256i *out1 = (__m256i *)(current_frame->data + (current_frame->len + 1) / 2);
428                 __restrict __m256i *out2 = (__m256i *)(current_frame->data2 + current_frame->len / 2);
429                 if (current_frame->len % 2 == 1) {
430                         swap(out1, out2);
431                 }
432
433                 __m256i shuffle_cw = _mm256_set_epi8(
434                         15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0,
435                         15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0);
436                 while (in < (const __m256i *)limit) {
437                         // Note: For brevity, comments show lanes as if they were 2x64-bit (they're actually 2x128).
438                         __m256i data1 = _mm256_stream_load_si256(in);         // AaBbCcDd EeFfGgHh
439                         __m256i data2 = _mm256_stream_load_si256(in + 1);     // IiJjKkLl MmNnOoPp
440
441                         __m256i found1 = _mm256_cmpeq_epi8(data1, needle);
442                         __m256i found2 = _mm256_cmpeq_epi8(data2, needle);
443                         __m256i found = _mm256_or_si256(found1, found2);
444
445                         data1 = _mm256_shuffle_epi8(data1, shuffle_cw);       // ABCDabcd EFGHefgh
446                         data2 = _mm256_shuffle_epi8(data2, shuffle_cw);       // IJKLijkl MNOPmnop
447                 
448                         data1 = _mm256_permute4x64_epi64(data1, 0b11011000);  // ABCDEFGH abcdefgh
449                         data2 = _mm256_permute4x64_epi64(data2, 0b11011000);  // IJKLMNOP ijklmnop
450
451                         __m256i lo = _mm256_permute2x128_si256(data1, data2, 0b00100000);
452                         __m256i hi = _mm256_permute2x128_si256(data1, data2, 0b00110001);
453
454                         _mm256_storeu_si256(out1, lo);  // Store as early as possible, even if the data isn't used.
455                         _mm256_storeu_si256(out2, hi);
456
457                         if (!_mm256_testz_si256(found, found)) {
458                                 break;
459                         }
460
461                         in += 2;
462                         ++out1;
463                         ++out2;
464                 }
465                 current_frame->len += (uint8_t *)in - aligned_start;
466         } else {
467                 __m256i *out = (__m256i *)(current_frame->data + current_frame->len);
468                 while (in < (const __m256i *)limit) {
469                         __m256i data = _mm256_load_si256(in);
470                         _mm256_storeu_si256(out, data);  // Store as early as possible, even if the data isn't used.
471                         __m256i found = _mm256_cmpeq_epi8(data, needle);
472                         if (!_mm256_testz_si256(found, found)) {
473                                 break;
474                         }
475
476                         ++in;
477                         ++out;
478                 }
479                 current_frame->len = (uint8_t *)out - current_frame->data;
480         }
481 #else
482         const __m128i needle = _mm_set1_epi8(sync_char);
483
484         const __m128i *in = (const __m128i *)aligned_start;
485         if (current_frame->interleaved) {
486                 __m128i *out1 = (__m128i *)(current_frame->data + (current_frame->len + 1) / 2);
487                 __m128i *out2 = (__m128i *)(current_frame->data2 + current_frame->len / 2);
488                 if (current_frame->len % 2 == 1) {
489                         swap(out1, out2);
490                 }
491
492                 __m128i mask_lower_byte = _mm_set1_epi16(0x00ff);
493                 while (in < (const __m128i *)limit) {
494                         __m128i data1 = _mm_load_si128(in);
495                         __m128i data2 = _mm_load_si128(in + 1);
496                         __m128i data1_lo = _mm_and_si128(data1, mask_lower_byte);
497                         __m128i data2_lo = _mm_and_si128(data2, mask_lower_byte);
498                         __m128i data1_hi = _mm_srli_epi16(data1, 8);
499                         __m128i data2_hi = _mm_srli_epi16(data2, 8);
500                         __m128i lo = _mm_packus_epi16(data1_lo, data2_lo);
501                         _mm_storeu_si128(out1, lo);  // Store as early as possible, even if the data isn't used.
502                         __m128i hi = _mm_packus_epi16(data1_hi, data2_hi);
503                         _mm_storeu_si128(out2, hi);
504                         __m128i found1 = _mm_cmpeq_epi8(data1, needle);
505                         __m128i found2 = _mm_cmpeq_epi8(data2, needle);
506                         if (!_mm_testz_si128(found1, found1) ||
507                             !_mm_testz_si128(found2, found2)) {
508                                 break;
509                         }
510
511                         in += 2;
512                         ++out1;
513                         ++out2;
514                 }
515                 current_frame->len += (uint8_t *)in - aligned_start;
516         } else {
517                 __m128i *out = (__m128i *)(current_frame->data + current_frame->len);
518                 while (in < (const __m128i *)limit) {
519                         __m128i data = _mm_load_si128(in);
520                         _mm_storeu_si128(out, data);  // Store as early as possible, even if the data isn't used.
521                         __m128i found = _mm_cmpeq_epi8(data, needle);
522                         if (!_mm_testz_si128(found, found)) {
523                                 break;
524                         }
525
526                         ++in;
527                         ++out;
528                 }
529                 current_frame->len = (uint8_t *)out - current_frame->data;
530         }
531 #endif
532
533         //printf("managed to fastpath %ld/%ld bytes\n", (const uint8_t *)in - (const uint8_t *)aligned_start, orig_bytes);
534
535         return (const uint8_t *)in;
536 }
537 #endif
538
539 void decode_packs(const libusb_transfer *xfr,
540                   const char *sync_pattern,
541                   int sync_length,
542                   FrameAllocator::Frame *current_frame,
543                   const char *frame_type_name,
544                   function<void(const uint8_t *start)> start_callback)
545 {
546         int offset = 0;
547         for (int i = 0; i < xfr->num_iso_packets; i++) {
548                 const libusb_iso_packet_descriptor *pack = &xfr->iso_packet_desc[i];
549
550                 if (pack->status != LIBUSB_TRANSFER_COMPLETED) {
551                         fprintf(stderr, "Error: pack %u/%u status %d\n", i, xfr->num_iso_packets, pack->status);
552                         continue;
553 //exit(5);
554                 }
555
556                 const uint8_t *start = xfr->buffer + offset;
557                 const uint8_t *limit = start + pack->actual_length;
558                 while (start < limit) {  // Usually runs only one iteration.
559 #ifdef __SSE4_1__
560                         start = add_to_frame_fastpath(current_frame, start, limit, sync_pattern[0]);
561                         if (start == limit) break;
562                         assert(start < limit);
563 #endif
564
565                         const unsigned char* start_next_frame = (const unsigned char *)memmem(start, limit - start, sync_pattern, sync_length);
566                         if (start_next_frame == nullptr) {
567                                 // add the rest of the buffer
568                                 add_to_frame(current_frame, frame_type_name, start, limit);
569                                 break;
570                         } else {
571                                 add_to_frame(current_frame, frame_type_name, start, start_next_frame);
572                                 start = start_next_frame + sync_length;  // skip sync
573                                 start_callback(start);
574                         }
575                 }
576 #if 0
577                 dump_pack(xfr, offset, pack);
578 #endif
579                 offset += pack->length;
580         }
581 }
582
583 void BMUSBCapture::cb_xfr(struct libusb_transfer *xfr)
584 {
585         if (xfr->status != LIBUSB_TRANSFER_COMPLETED) {
586                 fprintf(stderr, "transfer status %d\n", xfr->status);
587                 libusb_free_transfer(xfr);
588                 exit(3);
589         }
590
591         assert(xfr->user_data != nullptr);
592         BMUSBCapture *usb = static_cast<BMUSBCapture *>(xfr->user_data);
593
594         if (xfr->type == LIBUSB_TRANSFER_TYPE_ISOCHRONOUS) {
595                 if (xfr->endpoint == 0x84) {
596                         decode_packs(xfr, "DeckLinkAudioResyncT", 20, &usb->current_audio_frame, "audio", bind(&BMUSBCapture::start_new_audio_block, usb, _1));
597                 } else {
598                         decode_packs(xfr, "\x00\x00\xff\xff", 4, &usb->current_video_frame, "video", bind(&BMUSBCapture::start_new_frame, usb, _1));
599                 }
600         }
601         if (xfr->type == LIBUSB_TRANSFER_TYPE_CONTROL) {
602                 //const libusb_control_setup *setup = libusb_control_transfer_get_setup(xfr);
603                 uint8_t *buf = libusb_control_transfer_get_data(xfr);
604 #if 0
605                 if (setup->wIndex == 44) {
606                         printf("read timer register: 0x%02x%02x%02x%02x\n", buf[0], buf[1], buf[2], buf[3]);
607                 } else {
608                         printf("read register %2d:                      0x%02x%02x%02x%02x\n",
609                                 setup->wIndex, buf[0], buf[1], buf[2], buf[3]);
610                 }
611 #else
612                 memcpy(usb->register_file + usb->current_register, buf, 4);
613                 usb->current_register = (usb->current_register + 4) % NUM_BMUSB_REGISTERS;
614                 if (usb->current_register == 0) {
615                         // read through all of them
616                         printf("register dump:");
617                         for (int i = 0; i < NUM_BMUSB_REGISTERS; i += 4) {
618                                 printf(" 0x%02x%02x%02x%02x", usb->register_file[i], usb->register_file[i + 1], usb->register_file[i + 2], usb->register_file[i + 3]);
619                         }
620                         printf("\n");
621                 }
622                 libusb_fill_control_setup(xfr->buffer,
623                     LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, /*request=*/214, /*value=*/0,
624                         /*index=*/usb->current_register, /*length=*/4);
625 #endif
626         }
627
628 #if 0
629         printf("length:%u, actual_length:%u\n", xfr->length, xfr->actual_length);
630         for (i = 0; i < xfr->actual_length; i++) {
631                 printf("%02x", xfr->buffer[i]);
632                 if (i % 16)
633                         printf("\n");
634                 else if (i % 8)
635                         printf("  ");
636                 else
637                         printf(" ");
638         }
639 #endif
640
641         if (libusb_submit_transfer(xfr) < 0) {
642                 fprintf(stderr, "error re-submitting URB\n");
643                 exit(1);
644         }
645 }
646
647 void BMUSBCapture::usb_thread_func()
648 {
649         sched_param param;
650         memset(&param, 0, sizeof(param));
651         param.sched_priority = 1;
652         if (sched_setscheduler(0, SCHED_RR, &param) == -1) {
653                 printf("couldn't set realtime priority for USB thread: %s\n", strerror(errno));
654         }
655         while (!should_quit) {
656                 int rc = libusb_handle_events(nullptr);
657                 if (rc != LIBUSB_SUCCESS)
658                         break;
659         }
660 }
661
662 struct USBCardDevice {
663         uint16_t product;
664         uint8_t bus, port;
665         libusb_device *device;
666 };
667
668 libusb_device_handle *open_card(int card_index)
669 {       
670         libusb_device **devices;
671         ssize_t num_devices = libusb_get_device_list(nullptr, &devices);
672         if (num_devices == -1) {
673                 fprintf(stderr, "Error finding USB devices\n");
674                 exit(1);
675         }
676         vector<USBCardDevice> found_cards;
677         for (ssize_t i = 0; i < num_devices; ++i) {
678                 libusb_device_descriptor desc;
679                 if (libusb_get_device_descriptor(devices[i], &desc) < 0) {
680                         fprintf(stderr, "Error getting device descriptor for device %d\n", int(i));
681                         exit(1);
682                 }
683
684                 uint8_t bus = libusb_get_bus_number(devices[i]);
685                 uint8_t port = libusb_get_port_number(devices[i]);
686
687                 if (!(desc.idVendor == 0x1edb && desc.idProduct == 0xbd3b) &&
688                     !(desc.idVendor == 0x1edb && desc.idProduct == 0xbd4f)) {
689                         libusb_unref_device(devices[i]);
690                         continue;
691                 }
692
693                 found_cards.push_back({ desc.idProduct, bus, port, devices[i] });
694         }
695         libusb_free_device_list(devices, 0);
696
697         // Sort the devices to get a consistent ordering.
698         sort(found_cards.begin(), found_cards.end(), [](const USBCardDevice &a, const USBCardDevice &b) {
699                 if (a.product != b.product)
700                         return a.product < b.product;
701                 if (a.bus != b.bus)
702                         return a.bus < b.bus;
703                 return a.port < b.port;
704         });
705
706         for (size_t i = 0; i < found_cards.size(); ++i) {
707                 fprintf(stderr, "Card %d: Bus %03u Device %03u ", int(i), found_cards[i].bus, found_cards[i].port);
708                 if (found_cards[i].product == 0xbd3b) {
709                         fprintf(stderr, "Intensity Shuttle\n");
710                 } else if (found_cards[i].product == 0xbd4f) {
711                         fprintf(stderr, "UltraStudio SDI\n");
712                 } else {
713                         assert(false);
714                 }
715         }
716
717         if (size_t(card_index) >= found_cards.size()) {
718                 fprintf(stderr, "Could not open card %d (only %d found)\n", card_index, int(found_cards.size()));
719                 exit(1);
720         }
721
722         libusb_device_handle *devh;
723         int rc = libusb_open(found_cards[card_index].device, &devh);
724         if (rc < 0) {
725                 fprintf(stderr, "Error opening card %d: %s\n", card_index, libusb_error_name(rc));
726                 exit(1);
727         }
728
729         for (size_t i = 0; i < found_cards.size(); ++i) {
730                 libusb_unref_device(found_cards[i].device);
731         }
732
733         return devh;
734 }
735
736 void BMUSBCapture::configure_card()
737 {
738         if (video_frame_allocator == nullptr) {
739                 set_video_frame_allocator(new MallocFrameAllocator(FRAME_SIZE, NUM_QUEUED_VIDEO_FRAMES));  // FIXME: leak.
740         }
741         if (audio_frame_allocator == nullptr) {
742                 set_audio_frame_allocator(new MallocFrameAllocator(65536, NUM_QUEUED_AUDIO_FRAMES));  // FIXME: leak.
743         }
744         dequeue_thread_should_quit = false;
745         dequeue_thread = thread(&BMUSBCapture::dequeue_thread_func, this);
746
747         int rc;
748         struct libusb_transfer *xfr;
749
750         rc = libusb_init(nullptr);
751         if (rc < 0) {
752                 fprintf(stderr, "Error initializing libusb: %s\n", libusb_error_name(rc));
753                 exit(1);
754         }
755
756         libusb_device_handle *devh = open_card(card_index);
757         if (!devh) {
758                 fprintf(stderr, "Error finding USB device\n");
759                 exit(1);
760         }
761
762         libusb_config_descriptor *config;
763         rc = libusb_get_config_descriptor(libusb_get_device(devh), /*config_index=*/0, &config);
764         if (rc < 0) {
765                 fprintf(stderr, "Error getting configuration: %s\n", libusb_error_name(rc));
766                 exit(1);
767         }
768         printf("%d interface\n", config->bNumInterfaces);
769         for (int interface_number = 0; interface_number < config->bNumInterfaces; ++interface_number) {
770                 printf("  interface %d\n", interface_number);
771                 const libusb_interface *interface = &config->interface[interface_number];
772                 for (int altsetting = 0; altsetting < interface->num_altsetting; ++altsetting) {
773                         const libusb_interface_descriptor *interface_desc = &interface->altsetting[altsetting];
774                         printf("    alternate setting %d\n", interface_desc->bAlternateSetting);
775                         for (int endpoint_number = 0; endpoint_number < interface_desc->bNumEndpoints; ++endpoint_number) {
776                                 const libusb_endpoint_descriptor *endpoint = &interface_desc->endpoint[endpoint_number];
777                                 printf("        endpoint address 0x%02x\n", endpoint->bEndpointAddress);
778                         }
779                 }
780         }
781
782         rc = libusb_set_configuration(devh, /*configuration=*/1);
783         if (rc < 0) {
784                 fprintf(stderr, "Error setting configuration 1: %s\n", libusb_error_name(rc));
785                 exit(1);
786         }
787
788         rc = libusb_claim_interface(devh, 0);
789         if (rc < 0) {
790                 fprintf(stderr, "Error claiming interface 0: %s\n", libusb_error_name(rc));
791                 exit(1);
792         }
793
794         // Alternate setting 1 is output, alternate setting 2 is input.
795         // Card is reset when switching alternates, so the driver uses
796         // this “double switch” when it wants to reset.
797         //
798         // There's also alternate settings 3 and 4, which seem to be
799         // like 1 and 2 except they advertise less bandwidth needed.
800         rc = libusb_set_interface_alt_setting(devh, /*interface=*/0, /*alternate_setting=*/1);
801         if (rc < 0) {
802                 fprintf(stderr, "Error setting alternate 1: %s\n", libusb_error_name(rc));
803                 exit(1);
804         }
805         rc = libusb_set_interface_alt_setting(devh, /*interface=*/0, /*alternate_setting=*/2);
806         if (rc < 0) {
807                 fprintf(stderr, "Error setting alternate 2: %s\n", libusb_error_name(rc));
808                 exit(1);
809         }
810 #if 0
811         rc = libusb_set_interface_alt_setting(devh, /*interface=*/0, /*alternate_setting=*/1);
812         if (rc < 0) {
813                 fprintf(stderr, "Error setting alternate 1: %s\n", libusb_error_name(rc));
814                 exit(1);
815         }
816 #endif
817
818 #if 0
819         rc = libusb_claim_interface(devh, 3);
820         if (rc < 0) {
821                 fprintf(stderr, "Error claiming interface 3: %s\n", libusb_error_name(rc));
822                 exit(1);
823         }
824 #endif
825
826         // theories:
827         //   44 is some kind of timer register (first 16 bits count upwards)
828         //   24 is some sort of watchdog?
829         //      you can seemingly set it to 0x73c60001 and that bit will eventually disappear
830         //      (or will go to 0x73c60010?), also seen 0x73c60100
831         //   12 also changes all the time, unclear why  
832         //   16 seems to be autodetected mode somehow
833         //      --    this is e00115e0 after reset?
834         //                    ed0115e0 after mode change [to output?]
835         //                    2d0015e0 after more mode change [to input]
836         //                    ed0115e0 after more mode change
837         //                    2d0015e0 after more mode change
838         //
839         //                    390115e0 seems to indicate we have signal
840         //         changes to 200115e0 when resolution changes/we lose signal, driver resets after a while
841         //
842         //                    200015e0 on startup
843         //         changes to 250115e0 when we sync to the signal
844         //
845         //    so only first 16 bits count, and 0x0100 is a mask for ok/stable signal?
846         //
847         //    Bottom 16 bits of this register seem to be firmware version number (possibly not all all of them).
848         //
849         //    28 and 32 seems to be analog audio input levels (one byte for each of the eight channels).
850         //    however, if setting 32 with HDMI embedded audio, it is immediately overwritten back (to 0xe137002a).
851         //
852         //    4, 8, 20 are unclear. seem to be some sort of bitmask, but we can set them to 0 with no apparent effect.
853         //    perhaps some of them are related to analog output?
854         //
855         //    36 can be set to 0 with no apparent effect (all of this tested on both video and audio),
856         //    but the driver sets it to 0x8036802a at some point.
857         //
858         //    all of this is on request 214/215. other requests (192, 219,
859         //    222, 223, 224) are used for firmware upgrade. Probably best to
860         //    stay out of it unless you know what you're doing.
861         //
862         //
863         // register 16:
864         // first byte is 0x39 for a stable 576p60 signal, 0x2d for a stable 720p60 signal, 0x20 for no signal
865         //
866         // theories:
867         //   0x01 - stable signal
868         //   0x04 - deep color
869         //   0x08 - unknown (audio??)
870         //   0x20 - 720p??
871         //   0x30 - 576p??
872
873         struct ctrl {
874                 int endpoint;
875                 int request;
876                 int index;
877                 uint32_t data;
878         };
879         static const ctrl ctrls[] = {
880                 { LIBUSB_ENDPOINT_IN,  214, 16, 0 },
881                 { LIBUSB_ENDPOINT_IN,  214,  0, 0 },
882
883                 // seems to capture on HDMI, clearing the 0x20000000 bit seems to activate 10-bit
884                 // capture (v210).
885                 // clearing the 0x08000000 bit seems to change the capture format (other source?)
886                 // 0x10000000 = analog audio instead of embedded audio, it seems
887                 // 0x3a000000 = component video? (analog audio)
888                 // 0x3c000000 = composite video? (analog audio)
889                 // 0x3e000000 = s-video? (analog audio)
890                 { LIBUSB_ENDPOINT_OUT, 215,  0, 0x29000000 },
891                 //{ LIBUSB_ENDPOINT_OUT, 215,  0, 0x80000100 },
892                 //{ LIBUSB_ENDPOINT_OUT, 215,  0, 0x09000000 },
893                 { LIBUSB_ENDPOINT_OUT, 215, 24, 0x73c60001 },  // latch for frame start?
894                 { LIBUSB_ENDPOINT_IN,  214, 24, 0 },  // 
895         };
896
897         for (unsigned req = 0; req < sizeof(ctrls) / sizeof(ctrls[0]); ++req) {
898                 uint32_t flipped = htonl(ctrls[req].data);
899                 static uint8_t value[4];
900                 memcpy(value, &flipped, sizeof(flipped));
901                 int size = sizeof(value);
902                 //if (ctrls[req].request == 215) size = 0;
903                 rc = libusb_control_transfer(devh, LIBUSB_REQUEST_TYPE_VENDOR | ctrls[req].endpoint,
904                         /*request=*/ctrls[req].request, /*value=*/0, /*index=*/ctrls[req].index, value, size, /*timeout=*/0);
905                 if (rc < 0) {
906                         fprintf(stderr, "Error on control %d: %s\n", ctrls[req].index, libusb_error_name(rc));
907                         exit(1);
908                 }
909                 
910                 printf("rc=%d: ep=%d@%d %d -> 0x", rc, ctrls[req].endpoint, ctrls[req].request, ctrls[req].index);
911                 for (int i = 0; i < rc; ++i) {
912                         printf("%02x", value[i]);
913                 }
914                 printf("\n");
915         }
916
917 #if 0
918         // DEBUG
919         for ( ;; ) {
920                 static int my_index = 0;
921                 static uint8_t value[4];
922                 int size = sizeof(value);
923                 rc = libusb_control_transfer(devh, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
924                         /*request=*/214, /*value=*/0, /*index=*/my_index, value, size, /*timeout=*/0);
925                 if (rc < 0) {
926                         fprintf(stderr, "Error on control\n");
927                         exit(1);
928                 }
929                 printf("rc=%d index=%d: 0x", rc, my_index);
930                 for (int i = 0; i < rc; ++i) {
931                         printf("%02x", value[i]);
932                 }
933                 printf("\n");
934         }
935 #endif
936
937 #if 0
938         // set up an asynchronous transfer of the timer register
939         static uint8_t cmdbuf[LIBUSB_CONTROL_SETUP_SIZE + 4];
940         static int completed = 0;
941
942         xfr = libusb_alloc_transfer(0);
943         libusb_fill_control_setup(cmdbuf,
944             LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, /*request=*/214, /*value=*/0,
945                 /*index=*/44, /*length=*/4);
946         libusb_fill_control_transfer(xfr, devh, cmdbuf, cb_xfr, &completed, 0);
947         xfr->user_data = this;
948         libusb_submit_transfer(xfr);
949
950         // set up an asynchronous transfer of register 24
951         static uint8_t cmdbuf2[LIBUSB_CONTROL_SETUP_SIZE + 4];
952         static int completed2 = 0;
953
954         xfr = libusb_alloc_transfer(0);
955         libusb_fill_control_setup(cmdbuf2,
956             LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, /*request=*/214, /*value=*/0,
957                 /*index=*/24, /*length=*/4);
958         libusb_fill_control_transfer(xfr, devh, cmdbuf2, cb_xfr, &completed2, 0);
959         xfr->user_data = this;
960         libusb_submit_transfer(xfr);
961 #endif
962
963         // set up an asynchronous transfer of the register dump
964         static uint8_t cmdbuf3[LIBUSB_CONTROL_SETUP_SIZE + 4];
965         static int completed3 = 0;
966
967         xfr = libusb_alloc_transfer(0);
968         libusb_fill_control_setup(cmdbuf3,
969             LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN, /*request=*/214, /*value=*/0,
970                 /*index=*/current_register, /*length=*/4);
971         libusb_fill_control_transfer(xfr, devh, cmdbuf3, cb_xfr, &completed3, 0);
972         xfr->user_data = this;
973         //libusb_submit_transfer(xfr);
974
975         audiofp = fopen("audio.raw", "wb");
976
977         // set up isochronous transfers for audio and video
978         for (int e = 3; e <= 4; ++e) {
979                 //int num_transfers = (e == 3) ? 6 : 6;
980                 int num_transfers = 6;
981                 for (int i = 0; i < num_transfers; ++i) {
982                         int num_iso_pack, size;
983                         if (e == 3) {
984                                 // Video seems to require isochronous packets scaled with the width; 
985                                 // seemingly six lines is about right, rounded up to the required 1kB
986                                 // multiple.
987                                 size = WIDTH * 2 * 6;
988                                 // Note that for 10-bit input, you'll need to increase size accordingly.
989                                 //size = size * 4 / 3;
990                                 if (size % 1024 != 0) {
991                                         size &= ~1023;
992                                         size += 1024;
993                                 }
994                                 num_iso_pack = (2 << 18) / size;  // 512 kB.
995                                 printf("Picking %d packets of 0x%x bytes each\n", num_iso_pack, size);
996                         } else {
997                                 size = 0xc0;
998                                 num_iso_pack = 80;
999                         }
1000                         int num_bytes = num_iso_pack * size;
1001                         uint8_t *buf = new uint8_t[num_bytes];
1002
1003                         xfr = libusb_alloc_transfer(num_iso_pack);
1004                         if (!xfr) {
1005                                 fprintf(stderr, "oom\n");
1006                                 exit(1);
1007                         }
1008
1009                         int ep = LIBUSB_ENDPOINT_IN | e;
1010                         libusb_fill_iso_transfer(xfr, devh, ep, buf, num_bytes,
1011                                 num_iso_pack, cb_xfr, nullptr, 0);
1012                         libusb_set_iso_packet_lengths(xfr, size);
1013                         xfr->user_data = this;
1014                         iso_xfrs.push_back(xfr);
1015                 }
1016         }
1017 }
1018
1019 void BMUSBCapture::start_bm_capture()
1020 {
1021         printf("starting capture\n");
1022         int i = 0;
1023         for (libusb_transfer *xfr : iso_xfrs) {
1024                 printf("submitting transfer...\n");
1025                 int rc = libusb_submit_transfer(xfr);
1026                 ++i;
1027                 if (rc < 0) {
1028                         //printf("num_bytes=%d\n", num_bytes);
1029                         fprintf(stderr, "Error submitting iso to endpoint 0x%02x, number %d: %s\n",
1030                                 xfr->endpoint, i, libusb_error_name(rc));
1031                         exit(1);
1032                 }
1033         }
1034
1035
1036 #if 0
1037         libusb_release_interface(devh, 0);
1038 out:
1039         if (devh)
1040                 libusb_close(devh);
1041         libusb_exit(nullptr);
1042         return rc;
1043 #endif
1044 }
1045
1046 void BMUSBCapture::stop_dequeue_thread()
1047 {
1048         dequeue_thread_should_quit = true;
1049         queues_not_empty.notify_all();
1050         dequeue_thread.join();
1051 }
1052
1053 void BMUSBCapture::start_bm_thread()
1054 {
1055         should_quit = false;
1056         usb_thread = thread(&BMUSBCapture::usb_thread_func);
1057 }
1058
1059 void BMUSBCapture::stop_bm_thread()
1060 {
1061         should_quit = true;
1062         usb_thread.join();
1063 }