]> git.sesse.net Git - casparcg/blob - dependencies/boost/boost/accumulators/statistics/weighted_p_square_quantile.hpp
Manually merged pull request #222
[casparcg] / dependencies / boost / boost / accumulators / statistics / weighted_p_square_quantile.hpp
1 ///////////////////////////////////////////////////////////////////////////////
2 // weighted_p_square_quantile.hpp
3 //
4 //  Copyright 2005 Daniel Egloff. Distributed under the Boost
5 //  Software License, Version 1.0. (See accompanying file
6 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
7
8 #ifndef BOOST_ACCUMULATORS_STATISTICS_WEIGHTED_P_SQUARE_QUANTILE_HPP_DE_01_01_2006
9 #define BOOST_ACCUMULATORS_STATISTICS_WEIGHTED_P_SQUARE_QUANTILE_HPP_DE_01_01_2006
10
11 #include <cmath>
12 #include <functional>
13 #include <boost/array.hpp>
14 #include <boost/parameter/keyword.hpp>
15 #include <boost/mpl/placeholders.hpp>
16 #include <boost/type_traits/is_same.hpp>
17 #include <boost/accumulators/framework/accumulator_base.hpp>
18 #include <boost/accumulators/framework/extractor.hpp>
19 #include <boost/accumulators/numeric/functional.hpp>
20 #include <boost/accumulators/framework/parameters/sample.hpp>
21 #include <boost/accumulators/statistics_fwd.hpp>
22 #include <boost/accumulators/statistics/count.hpp>
23 #include <boost/accumulators/statistics/sum.hpp>
24 #include <boost/accumulators/statistics/parameters/quantile_probability.hpp>
25
26 namespace boost { namespace accumulators
27 {
28
29 namespace impl {
30     ///////////////////////////////////////////////////////////////////////////////
31     // weighted_p_square_quantile_impl
32     //  single quantile estimation with weighted samples
33     /**
34         @brief Single quantile estimation with the \f$P^2\f$ algorithm for weighted samples
35
36         This version of the \f$P^2\f$ algorithm extends the \f$P^2\f$ algorithm to support weighted samples.
37         The \f$P^2\f$ algorithm estimates a quantile dynamically without storing samples. Instead of
38         storing the whole sample cumulative distribution, only five points (markers) are stored. The heights
39         of these markers are the minimum and the maximum of the samples and the current estimates of the
40         \f$(p/2)\f$-, \f$p\f$ - and \f$(1+p)/2\f$ -quantiles. Their positions are equal to the number
41         of samples that are smaller or equal to the markers. Each time a new sample is added, the
42         positions of the markers are updated and if necessary their heights are adjusted using a piecewise-
43         parabolic formula.
44
45         For further details, see
46
47         R. Jain and I. Chlamtac, The P^2 algorithmus for dynamic calculation of quantiles and
48         histograms without storing observations, Communications of the ACM,
49         Volume 28 (October), Number 10, 1985, p. 1076-1085.
50
51         @param quantile_probability
52     */
53     template<typename Sample, typename Weight, typename Impl>
54     struct weighted_p_square_quantile_impl
55       : accumulator_base
56     {
57         typedef typename numeric::functional::multiplies<Sample, Weight>::result_type weighted_sample;
58         typedef typename numeric::functional::average<weighted_sample, std::size_t>::result_type float_type;
59         typedef array<float_type, 5> array_type;
60         // for boost::result_of
61         typedef float_type result_type;
62
63         template<typename Args>
64         weighted_p_square_quantile_impl(Args const &args)
65           : p(is_same<Impl, for_median>::value ? 0.5 : args[quantile_probability | 0.5])
66           , heights()
67           , actual_positions()
68           , desired_positions()
69         {
70         }
71
72         template<typename Args>
73         void operator ()(Args const &args)
74         {
75             std::size_t cnt = count(args);
76
77             // accumulate 5 first samples
78             if (cnt <= 5)
79             {
80                 this->heights[cnt - 1] = args[sample];
81
82                 // In this initialization phase, actual_positions stores the weights of the
83                 // inital samples that are needed at the end of the initialization phase to
84                 // compute the correct initial positions of the markers.
85                 this->actual_positions[cnt - 1] = args[weight];
86
87                 // complete the initialization of heights and actual_positions by sorting
88                 if (cnt == 5)
89                 {
90                     // TODO: we need to sort the initial samples (in heights) in ascending order and
91                     // sort their weights (in actual_positions) the same way. The following lines do
92                     // it, but there must be a better and more efficient way of doing this.
93                     typename array_type::iterator it_begin, it_end, it_min;
94
95                     it_begin = this->heights.begin();
96                     it_end   = this->heights.end();
97
98                     std::size_t pos = 0;
99
100                     while (it_begin != it_end)
101                     {
102                         it_min = std::min_element(it_begin, it_end);
103                         std::size_t d = std::distance(it_begin, it_min);
104                         std::swap(*it_begin, *it_min);
105                         std::swap(this->actual_positions[pos], this->actual_positions[pos + d]);
106                         ++it_begin;
107                         ++pos;
108                     }
109
110                     // calculate correct initial actual positions
111                     for (std::size_t i = 1; i < 5; ++i)
112                     {
113                         this->actual_positions[i] += this->actual_positions[i - 1];
114                     }
115                 }
116             }
117             else
118             {
119                 std::size_t sample_cell = 1; // k
120
121                 // find cell k such that heights[k-1] <= args[sample] < heights[k] and adjust extreme values
122                 if (args[sample] < this->heights[0])
123                 {
124                     this->heights[0] = args[sample];
125                     this->actual_positions[0] = args[weight];
126                     sample_cell = 1;
127                 }
128                 else if (this->heights[4] <= args[sample])
129                 {
130                     this->heights[4] = args[sample];
131                     sample_cell = 4;
132                 }
133                 else
134                 {
135                     typedef typename array_type::iterator iterator;
136                     iterator it = std::upper_bound(
137                         this->heights.begin()
138                       , this->heights.end()
139                       , args[sample]
140                     );
141
142                     sample_cell = std::distance(this->heights.begin(), it);
143                 }
144
145                 // increment positions of markers above sample_cell
146                 for (std::size_t i = sample_cell; i < 5; ++i)
147                 {
148                     this->actual_positions[i] += args[weight];
149                 }
150
151                 // update desired positions for all markers
152                 this->desired_positions[0] = this->actual_positions[0];
153                 this->desired_positions[1] = (sum_of_weights(args) - this->actual_positions[0])
154                                            * this->p/2. + this->actual_positions[0];
155                 this->desired_positions[2] = (sum_of_weights(args) - this->actual_positions[0])
156                                            * this->p + this->actual_positions[0];
157                 this->desired_positions[3] = (sum_of_weights(args) - this->actual_positions[0])
158                                            * (1. + this->p)/2. + this->actual_positions[0];
159                 this->desired_positions[4] = sum_of_weights(args);
160
161                 // adjust height and actual positions of markers 1 to 3 if necessary
162                 for (std::size_t i = 1; i <= 3; ++i)
163                 {
164                     // offset to desired positions
165                     float_type d = this->desired_positions[i] - this->actual_positions[i];
166
167                     // offset to next position
168                     float_type dp = this->actual_positions[i + 1] - this->actual_positions[i];
169
170                     // offset to previous position
171                     float_type dm = this->actual_positions[i - 1] - this->actual_positions[i];
172
173                     // height ds
174                     float_type hp = (this->heights[i + 1] - this->heights[i]) / dp;
175                     float_type hm = (this->heights[i - 1] - this->heights[i]) / dm;
176
177                     if ( ( d >= 1. && dp > 1. ) || ( d <= -1. && dm < -1. ) )
178                     {
179                         short sign_d = static_cast<short>(d / std::abs(d));
180
181                         // try adjusting heights[i] using p-squared formula
182                         float_type h = this->heights[i] + sign_d / (dp - dm) * ( (sign_d - dm) * hp + (dp - sign_d) * hm );
183
184                         if ( this->heights[i - 1] < h && h < this->heights[i + 1] )
185                         {
186                             this->heights[i] = h;
187                         }
188                         else
189                         {
190                             // use linear formula
191                             if (d>0)
192                             {
193                                 this->heights[i] += hp;
194                             }
195                             if (d<0)
196                             {
197                                 this->heights[i] -= hm;
198                             }
199                         }
200                         this->actual_positions[i] += sign_d;
201                     }
202                 }
203             }
204         }
205
206         result_type result(dont_care) const
207         {
208             return this->heights[2];
209         }
210
211     private:
212         float_type p;                    // the quantile probability p
213         array_type heights;              // q_i
214         array_type actual_positions;     // n_i
215         array_type desired_positions;    // n'_i
216     };
217
218 } // namespace impl
219
220 ///////////////////////////////////////////////////////////////////////////////
221 // tag::weighted_p_square_quantile
222 //
223 namespace tag
224 {
225     struct weighted_p_square_quantile
226       : depends_on<count, sum_of_weights>
227     {
228         typedef accumulators::impl::weighted_p_square_quantile_impl<mpl::_1, mpl::_2, regular> impl;
229     };
230     struct weighted_p_square_quantile_for_median
231       : depends_on<count, sum_of_weights>
232     {
233         typedef accumulators::impl::weighted_p_square_quantile_impl<mpl::_1, mpl::_2, for_median> impl;
234     };
235 }
236
237 ///////////////////////////////////////////////////////////////////////////////
238 // extract::weighted_p_square_quantile
239 // extract::weighted_p_square_quantile_for_median
240 //
241 namespace extract
242 {
243     extractor<tag::weighted_p_square_quantile> const weighted_p_square_quantile = {};
244     extractor<tag::weighted_p_square_quantile_for_median> const weighted_p_square_quantile_for_median = {};
245
246     BOOST_ACCUMULATORS_IGNORE_GLOBAL(weighted_p_square_quantile)
247     BOOST_ACCUMULATORS_IGNORE_GLOBAL(weighted_p_square_quantile_for_median)
248 }
249
250 using extract::weighted_p_square_quantile;
251 using extract::weighted_p_square_quantile_for_median;
252
253 }} // namespace boost::accumulators
254
255 #endif