]> git.sesse.net Git - ffmpeg/blob - libavcodec/aacps.c
avformat/dump: Remove remnants of codec timebase
[ffmpeg] / libavcodec / aacps.c
1 /*
2  * MPEG-4 Parametric Stereo decoding functions
3  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  *
21  * Note: Rounding-to-nearest used unless otherwise stated
22  *
23  */
24
25 #include <stdint.h>
26 #include "libavutil/common.h"
27 #include "libavutil/mathematics.h"
28 #include "libavutil/mem_internal.h"
29 #include "avcodec.h"
30 #include "aacps.h"
31 #if USE_FIXED
32 #include "aacps_fixed_tablegen.h"
33 #else
34 #include "libavutil/internal.h"
35 #include "aacps_tablegen.h"
36 #endif /* USE_FIXED */
37
38 static const INTFLOAT g1_Q2[] = {
39     Q31(0.0f),  Q31(0.01899487526049f), Q31(0.0f), Q31(-0.07293139167538f),
40     Q31(0.0f),  Q31(0.30596630545168f), Q31(0.5f)
41 };
42
43 static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
44 {
45     int i;
46     for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
47         opd_hist[i] = 0;
48         ipd_hist[i] = 0;
49     }
50 }
51
52 /** Split one subband into 2 subsubbands with a symmetric real filter.
53  * The filter must have its non-center even coefficients equal to zero. */
54 static void hybrid2_re(INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], const INTFLOAT filter[8], int len, int reverse)
55 {
56     int i, j;
57     for (i = 0; i < len; i++, in++) {
58         INT64FLOAT re_in = AAC_MUL31(filter[6], in[6][0]); //real inphase
59         INT64FLOAT re_op = 0.0f;                          //real out of phase
60         INT64FLOAT im_in = AAC_MUL31(filter[6], in[6][1]); //imag inphase
61         INT64FLOAT im_op = 0.0f;                          //imag out of phase
62         for (j = 0; j < 6; j += 2) {
63             re_op += (INT64FLOAT)filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
64             im_op += (INT64FLOAT)filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
65         }
66
67 #if USE_FIXED
68         re_op = (re_op + 0x40000000) >> 31;
69         im_op = (im_op + 0x40000000) >> 31;
70 #endif /* USE_FIXED */
71
72         out[ reverse][i][0] = (INTFLOAT)(re_in + re_op);
73         out[ reverse][i][1] = (INTFLOAT)(im_in + im_op);
74         out[!reverse][i][0] = (INTFLOAT)(re_in - re_op);
75         out[!reverse][i][1] = (INTFLOAT)(im_in - im_op);
76     }
77 }
78
79 /** Split one subband into 6 subsubbands with a complex filter */
80 static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
81                        TABLE_CONST INTFLOAT (*filter)[8][2], int len)
82 {
83     int i;
84     int N = 8;
85     LOCAL_ALIGNED_16(INTFLOAT, temp, [8], [2]);
86
87     for (i = 0; i < len; i++, in++) {
88         dsp->hybrid_analysis(temp, in, (const INTFLOAT (*)[8][2]) filter, 1, N);
89         out[0][i][0] = temp[6][0];
90         out[0][i][1] = temp[6][1];
91         out[1][i][0] = temp[7][0];
92         out[1][i][1] = temp[7][1];
93         out[2][i][0] = temp[0][0];
94         out[2][i][1] = temp[0][1];
95         out[3][i][0] = temp[1][0];
96         out[3][i][1] = temp[1][1];
97         out[4][i][0] = temp[2][0] + temp[5][0];
98         out[4][i][1] = temp[2][1] + temp[5][1];
99         out[5][i][0] = temp[3][0] + temp[4][0];
100         out[5][i][1] = temp[3][1] + temp[4][1];
101     }
102 }
103
104 static void hybrid4_8_12_cx(PSDSPContext *dsp,
105                             INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
106                             TABLE_CONST INTFLOAT (*filter)[8][2], int N, int len)
107 {
108     int i;
109
110     for (i = 0; i < len; i++, in++) {
111         dsp->hybrid_analysis(out[0] + i, in, (const INTFLOAT (*)[8][2]) filter, 32, N);
112     }
113 }
114
115 static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2],
116                             INTFLOAT in[5][44][2], INTFLOAT L[2][38][64],
117                             int is34, int len)
118 {
119     int i, j;
120     for (i = 0; i < 5; i++) {
121         for (j = 0; j < 38; j++) {
122             in[i][j+6][0] = L[0][j][i];
123             in[i][j+6][1] = L[1][j][i];
124         }
125     }
126     if (is34) {
127         hybrid4_8_12_cx(dsp, in[0], out,    f34_0_12, 12, len);
128         hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8,   8, len);
129         hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4,   4, len);
130         hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4,   4, len);
131         hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4,   4, len);
132         dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
133     } else {
134         hybrid6_cx(dsp, in[0], out, f20_0_8, len);
135         hybrid2_re(in[1], out+6, g1_Q2, len, 1);
136         hybrid2_re(in[2], out+8, g1_Q2, len, 0);
137         dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
138     }
139     //update in_buf
140     for (i = 0; i < 5; i++) {
141         memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
142     }
143 }
144
145 static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64],
146                              INTFLOAT in[91][32][2], int is34, int len)
147 {
148     int i, n;
149     if (is34) {
150         for (n = 0; n < len; n++) {
151             memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
152             memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
153             for (i = 0; i < 12; i++) {
154                 out[0][n][0] += (UINTFLOAT)in[   i][n][0];
155                 out[1][n][0] += (UINTFLOAT)in[   i][n][1];
156             }
157             for (i = 0; i < 8; i++) {
158                 out[0][n][1] += (UINTFLOAT)in[12+i][n][0];
159                 out[1][n][1] += (UINTFLOAT)in[12+i][n][1];
160             }
161             for (i = 0; i < 4; i++) {
162                 out[0][n][2] += (UINTFLOAT)in[20+i][n][0];
163                 out[1][n][2] += (UINTFLOAT)in[20+i][n][1];
164                 out[0][n][3] += (UINTFLOAT)in[24+i][n][0];
165                 out[1][n][3] += (UINTFLOAT)in[24+i][n][1];
166                 out[0][n][4] += (UINTFLOAT)in[28+i][n][0];
167                 out[1][n][4] += (UINTFLOAT)in[28+i][n][1];
168             }
169         }
170         dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
171     } else {
172         for (n = 0; n < len; n++) {
173             out[0][n][0] = (UINTFLOAT)in[0][n][0] + in[1][n][0] + in[2][n][0] +
174                            (UINTFLOAT)in[3][n][0] + in[4][n][0] + in[5][n][0];
175             out[1][n][0] = (UINTFLOAT)in[0][n][1] + in[1][n][1] + in[2][n][1] +
176                            (UINTFLOAT)in[3][n][1] + in[4][n][1] + in[5][n][1];
177             out[0][n][1] = (UINTFLOAT)in[6][n][0] + in[7][n][0];
178             out[1][n][1] = (UINTFLOAT)in[6][n][1] + in[7][n][1];
179             out[0][n][2] = (UINTFLOAT)in[8][n][0] + in[9][n][0];
180             out[1][n][2] = (UINTFLOAT)in[8][n][1] + in[9][n][1];
181         }
182         dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
183     }
184 }
185
186 /// All-pass filter decay slope
187 #define DECAY_SLOPE      Q30(0.05f)
188 /// Number of frequency bands that can be addressed by the parameter index, b(k)
189 static const int   NR_PAR_BANDS[]      = { 20, 34 };
190 static const int   NR_IPDOPD_BANDS[]   = { 11, 17 };
191 /// Number of frequency bands that can be addressed by the sub subband index, k
192 static const int   NR_BANDS[]          = { 71, 91 };
193 /// Start frequency band for the all-pass filter decay slope
194 static const int   DECAY_CUTOFF[]      = { 10, 32 };
195 /// Number of all-pass filer bands
196 static const int   NR_ALLPASS_BANDS[]  = { 30, 50 };
197 /// First stereo band using the short one sample delay
198 static const int   SHORT_DELAY_BAND[]  = { 42, 62 };
199
200 /** Table 8.46 */
201 static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
202 {
203     int b;
204     if (full)
205         b = 9;
206     else {
207         b = 4;
208         par_mapped[10] = 0;
209     }
210     for (; b >= 0; b--) {
211         par_mapped[2*b+1] = par_mapped[2*b] = par[b];
212     }
213 }
214
215 static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
216 {
217     par_mapped[ 0] = (2*par[ 0] +   par[ 1]) / 3;
218     par_mapped[ 1] = (  par[ 1] + 2*par[ 2]) / 3;
219     par_mapped[ 2] = (2*par[ 3] +   par[ 4]) / 3;
220     par_mapped[ 3] = (  par[ 4] + 2*par[ 5]) / 3;
221     par_mapped[ 4] = (  par[ 6] +   par[ 7]) / 2;
222     par_mapped[ 5] = (  par[ 8] +   par[ 9]) / 2;
223     par_mapped[ 6] =    par[10];
224     par_mapped[ 7] =    par[11];
225     par_mapped[ 8] = (  par[12] +   par[13]) / 2;
226     par_mapped[ 9] = (  par[14] +   par[15]) / 2;
227     par_mapped[10] =    par[16];
228     if (full) {
229         par_mapped[11] =    par[17];
230         par_mapped[12] =    par[18];
231         par_mapped[13] =    par[19];
232         par_mapped[14] = (  par[20] +   par[21]) / 2;
233         par_mapped[15] = (  par[22] +   par[23]) / 2;
234         par_mapped[16] = (  par[24] +   par[25]) / 2;
235         par_mapped[17] = (  par[26] +   par[27]) / 2;
236         par_mapped[18] = (  par[28] +   par[29] +   par[30] +   par[31]) / 4;
237         par_mapped[19] = (  par[32] +   par[33]) / 2;
238     }
239 }
240
241 static void map_val_34_to_20(INTFLOAT par[PS_MAX_NR_IIDICC])
242 {
243 #if USE_FIXED
244     par[ 0] = (int)(((int64_t)(par[ 0] + (unsigned)(par[ 1]>>1)) * 1431655765 + \
245                       0x40000000) >> 31);
246     par[ 1] = (int)(((int64_t)((par[ 1]>>1) + (unsigned)par[ 2]) * 1431655765 + \
247                       0x40000000) >> 31);
248     par[ 2] = (int)(((int64_t)(par[ 3] + (unsigned)(par[ 4]>>1)) * 1431655765 + \
249                       0x40000000) >> 31);
250     par[ 3] = (int)(((int64_t)((par[ 4]>>1) + (unsigned)par[ 5]) * 1431655765 + \
251                       0x40000000) >> 31);
252 #else
253     par[ 0] = (2*par[ 0] +   par[ 1]) * 0.33333333f;
254     par[ 1] = (  par[ 1] + 2*par[ 2]) * 0.33333333f;
255     par[ 2] = (2*par[ 3] +   par[ 4]) * 0.33333333f;
256     par[ 3] = (  par[ 4] + 2*par[ 5]) * 0.33333333f;
257 #endif /* USE_FIXED */
258     par[ 4] = AAC_HALF_SUM(par[ 6], par[ 7]);
259     par[ 5] = AAC_HALF_SUM(par[ 8], par[ 9]);
260     par[ 6] =    par[10];
261     par[ 7] =    par[11];
262     par[ 8] = AAC_HALF_SUM(par[12], par[13]);
263     par[ 9] = AAC_HALF_SUM(par[14], par[15]);
264     par[10] =    par[16];
265     par[11] =    par[17];
266     par[12] =    par[18];
267     par[13] =    par[19];
268     par[14] = AAC_HALF_SUM(par[20], par[21]);
269     par[15] = AAC_HALF_SUM(par[22], par[23]);
270     par[16] = AAC_HALF_SUM(par[24], par[25]);
271     par[17] = AAC_HALF_SUM(par[26], par[27]);
272 #if USE_FIXED
273     par[18] = (((par[28]+2)>>2) + ((par[29]+2)>>2) + ((par[30]+2)>>2) + ((par[31]+2)>>2));
274 #else
275     par[18] = (  par[28] +   par[29] +   par[30] +   par[31]) * 0.25f;
276 #endif /* USE_FIXED */
277     par[19] = AAC_HALF_SUM(par[32], par[33]);
278 }
279
280 static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
281 {
282     if (full) {
283         par_mapped[33] = par[9];
284         par_mapped[32] = par[9];
285         par_mapped[31] = par[9];
286         par_mapped[30] = par[9];
287         par_mapped[29] = par[9];
288         par_mapped[28] = par[9];
289         par_mapped[27] = par[8];
290         par_mapped[26] = par[8];
291         par_mapped[25] = par[8];
292         par_mapped[24] = par[8];
293         par_mapped[23] = par[7];
294         par_mapped[22] = par[7];
295         par_mapped[21] = par[7];
296         par_mapped[20] = par[7];
297         par_mapped[19] = par[6];
298         par_mapped[18] = par[6];
299         par_mapped[17] = par[5];
300         par_mapped[16] = par[5];
301     } else {
302         par_mapped[16] =      0;
303     }
304     par_mapped[15] = par[4];
305     par_mapped[14] = par[4];
306     par_mapped[13] = par[4];
307     par_mapped[12] = par[4];
308     par_mapped[11] = par[3];
309     par_mapped[10] = par[3];
310     par_mapped[ 9] = par[2];
311     par_mapped[ 8] = par[2];
312     par_mapped[ 7] = par[2];
313     par_mapped[ 6] = par[2];
314     par_mapped[ 5] = par[1];
315     par_mapped[ 4] = par[1];
316     par_mapped[ 3] = par[1];
317     par_mapped[ 2] = par[0];
318     par_mapped[ 1] = par[0];
319     par_mapped[ 0] = par[0];
320 }
321
322 static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
323 {
324     if (full) {
325         par_mapped[33] =  par[19];
326         par_mapped[32] =  par[19];
327         par_mapped[31] =  par[18];
328         par_mapped[30] =  par[18];
329         par_mapped[29] =  par[18];
330         par_mapped[28] =  par[18];
331         par_mapped[27] =  par[17];
332         par_mapped[26] =  par[17];
333         par_mapped[25] =  par[16];
334         par_mapped[24] =  par[16];
335         par_mapped[23] =  par[15];
336         par_mapped[22] =  par[15];
337         par_mapped[21] =  par[14];
338         par_mapped[20] =  par[14];
339         par_mapped[19] =  par[13];
340         par_mapped[18] =  par[12];
341         par_mapped[17] =  par[11];
342     }
343     par_mapped[16] =  par[10];
344     par_mapped[15] =  par[ 9];
345     par_mapped[14] =  par[ 9];
346     par_mapped[13] =  par[ 8];
347     par_mapped[12] =  par[ 8];
348     par_mapped[11] =  par[ 7];
349     par_mapped[10] =  par[ 6];
350     par_mapped[ 9] =  par[ 5];
351     par_mapped[ 8] =  par[ 5];
352     par_mapped[ 7] =  par[ 4];
353     par_mapped[ 6] =  par[ 4];
354     par_mapped[ 5] =  par[ 3];
355     par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
356     par_mapped[ 3] =  par[ 2];
357     par_mapped[ 2] =  par[ 1];
358     par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
359     par_mapped[ 0] =  par[ 0];
360 }
361
362 static void map_val_20_to_34(INTFLOAT par[PS_MAX_NR_IIDICC])
363 {
364     par[33] =  par[19];
365     par[32] =  par[19];
366     par[31] =  par[18];
367     par[30] =  par[18];
368     par[29] =  par[18];
369     par[28] =  par[18];
370     par[27] =  par[17];
371     par[26] =  par[17];
372     par[25] =  par[16];
373     par[24] =  par[16];
374     par[23] =  par[15];
375     par[22] =  par[15];
376     par[21] =  par[14];
377     par[20] =  par[14];
378     par[19] =  par[13];
379     par[18] =  par[12];
380     par[17] =  par[11];
381     par[16] =  par[10];
382     par[15] =  par[ 9];
383     par[14] =  par[ 9];
384     par[13] =  par[ 8];
385     par[12] =  par[ 8];
386     par[11] =  par[ 7];
387     par[10] =  par[ 6];
388     par[ 9] =  par[ 5];
389     par[ 8] =  par[ 5];
390     par[ 7] =  par[ 4];
391     par[ 6] =  par[ 4];
392     par[ 5] =  par[ 3];
393     par[ 4] = AAC_HALF_SUM(par[ 2], par[ 3]);
394     par[ 3] =  par[ 2];
395     par[ 2] =  par[ 1];
396     par[ 1] = AAC_HALF_SUM(par[ 0], par[ 1]);
397 }
398
399 static void decorrelation(PSContext *ps, INTFLOAT (*out)[32][2], const INTFLOAT (*s)[32][2], int is34)
400 {
401     LOCAL_ALIGNED_16(INTFLOAT, power, [34], [PS_QMF_TIME_SLOTS]);
402     LOCAL_ALIGNED_16(INTFLOAT, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
403     INTFLOAT *peak_decay_nrg = ps->peak_decay_nrg;
404     INTFLOAT *power_smooth = ps->power_smooth;
405     INTFLOAT *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
406     INTFLOAT (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
407     INTFLOAT (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
408 #if !USE_FIXED
409     const float transient_impact  = 1.5f;
410     const float a_smooth          = 0.25f; ///< Smoothing coefficient
411 #endif /* USE_FIXED */
412     const int8_t *const k_to_i = is34 ? ff_k_to_i_34 : ff_k_to_i_20;
413     int i, k, m, n;
414     int n0 = 0, nL = 32;
415     const INTFLOAT peak_decay_factor = Q31(0.76592833836465f);
416
417     memset(power, 0, 34 * sizeof(*power));
418
419     if (is34 != ps->common.is34bands_old) {
420         memset(ps->peak_decay_nrg,         0, sizeof(ps->peak_decay_nrg));
421         memset(ps->power_smooth,           0, sizeof(ps->power_smooth));
422         memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
423         memset(ps->delay,                  0, sizeof(ps->delay));
424         memset(ps->ap_delay,               0, sizeof(ps->ap_delay));
425     }
426
427     for (k = 0; k < NR_BANDS[is34]; k++) {
428         int i = k_to_i[k];
429         ps->dsp.add_squares(power[i], s[k], nL - n0);
430     }
431
432     //Transient detection
433 #if USE_FIXED
434     for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
435         for (n = n0; n < nL; n++) {
436             int decayed_peak;
437             decayed_peak = (int)(((int64_t)peak_decay_factor * \
438                                            peak_decay_nrg[i] + 0x40000000) >> 31);
439             peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
440             power_smooth[i] += (power[i][n] + 2LL - power_smooth[i]) >> 2;
441             peak_decay_diff_smooth[i] += (peak_decay_nrg[i] + 2LL - power[i][n] - \
442                                           peak_decay_diff_smooth[i]) >> 2;
443
444             if (peak_decay_diff_smooth[i]) {
445                 transient_gain[i][n] = FFMIN(power_smooth[i]*43691LL / peak_decay_diff_smooth[i], 1<<16);
446             } else
447                 transient_gain[i][n] = 1 << 16;
448         }
449     }
450 #else
451     for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
452         for (n = n0; n < nL; n++) {
453             float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
454             float denom;
455             peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
456             power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
457             peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
458             denom = transient_impact * peak_decay_diff_smooth[i];
459             transient_gain[i][n]   = (denom > power_smooth[i]) ?
460                                          power_smooth[i] / denom : 1.0f;
461         }
462     }
463
464 #endif /* USE_FIXED */
465     //Decorrelation and transient reduction
466     //                         PS_AP_LINKS - 1
467     //                               -----
468     //                                | |  Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
469     //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
470     //                                | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
471     //                               m = 0
472     //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
473     for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
474         int b = k_to_i[k];
475 #if USE_FIXED
476         int g_decay_slope;
477
478         if (k - DECAY_CUTOFF[is34] <= 0) {
479           g_decay_slope = 1 << 30;
480         }
481         else if (k - DECAY_CUTOFF[is34] >= 20) {
482           g_decay_slope = 0;
483         }
484         else {
485           g_decay_slope = (1 << 30) - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
486         }
487 #else
488         float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
489         g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
490 #endif /* USE_FIXED */
491         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
492         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
493         for (m = 0; m < PS_AP_LINKS; m++) {
494             memcpy(ap_delay[k][m],   ap_delay[k][m]+numQMFSlots,           5*sizeof(ap_delay[k][m][0]));
495         }
496         ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
497                             phi_fract[is34][k],
498                             (const INTFLOAT (*)[2]) Q_fract_allpass[is34][k],
499                             transient_gain[b], g_decay_slope, nL - n0);
500     }
501     for (; k < SHORT_DELAY_BAND[is34]; k++) {
502         int i = k_to_i[k];
503         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
504         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
505         //H = delay 14
506         ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
507                                 transient_gain[i], nL - n0);
508     }
509     for (; k < NR_BANDS[is34]; k++) {
510         int i = k_to_i[k];
511         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
512         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
513         //H = delay 1
514         ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
515                                 transient_gain[i], nL - n0);
516     }
517 }
518
519 static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
520                     int8_t           (*par)[PS_MAX_NR_IIDICC],
521                     int num_par, int num_env, int full)
522 {
523     int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
524     int e;
525     if (num_par == 20 || num_par == 11) {
526         for (e = 0; e < num_env; e++) {
527             map_idx_20_to_34(par_mapped[e], par[e], full);
528         }
529     } else if (num_par == 10 || num_par == 5) {
530         for (e = 0; e < num_env; e++) {
531             map_idx_10_to_34(par_mapped[e], par[e], full);
532         }
533     } else {
534         *p_par_mapped = par;
535     }
536 }
537
538 static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
539                     int8_t           (*par)[PS_MAX_NR_IIDICC],
540                     int num_par, int num_env, int full)
541 {
542     int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
543     int e;
544     if (num_par == 34 || num_par == 17) {
545         for (e = 0; e < num_env; e++) {
546             map_idx_34_to_20(par_mapped[e], par[e], full);
547         }
548     } else if (num_par == 10 || num_par == 5) {
549         for (e = 0; e < num_env; e++) {
550             map_idx_10_to_20(par_mapped[e], par[e], full);
551         }
552     } else {
553         *p_par_mapped = par;
554     }
555 }
556
557 static void stereo_processing(PSContext *ps, INTFLOAT (*l)[32][2], INTFLOAT (*r)[32][2], int is34)
558 {
559     int e, b, k;
560
561     PSCommonContext *const ps2 = &ps->common;
562     INTFLOAT (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
563     INTFLOAT (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
564     INTFLOAT (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
565     INTFLOAT (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
566     int8_t *opd_hist = ps->opd_hist;
567     int8_t *ipd_hist = ps->ipd_hist;
568     int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
569     int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
570     int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
571     int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
572     int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
573     int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
574     int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
575     int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
576     const int8_t *const k_to_i = is34 ? ff_k_to_i_34 : ff_k_to_i_20;
577     TABLE_CONST INTFLOAT (*H_LUT)[8][4] = (PS_BASELINE || ps2->icc_mode < 3) ? HA : HB;
578
579     //Remapping
580     if (ps2->num_env_old) {
581         memcpy(H11[0][0], H11[0][ps2->num_env_old], sizeof(H11[0][0]));
582         memcpy(H11[1][0], H11[1][ps2->num_env_old], sizeof(H11[1][0]));
583         memcpy(H12[0][0], H12[0][ps2->num_env_old], sizeof(H12[0][0]));
584         memcpy(H12[1][0], H12[1][ps2->num_env_old], sizeof(H12[1][0]));
585         memcpy(H21[0][0], H21[0][ps2->num_env_old], sizeof(H21[0][0]));
586         memcpy(H21[1][0], H21[1][ps2->num_env_old], sizeof(H21[1][0]));
587         memcpy(H22[0][0], H22[0][ps2->num_env_old], sizeof(H22[0][0]));
588         memcpy(H22[1][0], H22[1][ps2->num_env_old], sizeof(H22[1][0]));
589     }
590
591     if (is34) {
592         remap34(&iid_mapped, ps2->iid_par, ps2->nr_iid_par, ps2->num_env, 1);
593         remap34(&icc_mapped, ps2->icc_par, ps2->nr_icc_par, ps2->num_env, 1);
594         if (ps2->enable_ipdopd) {
595             remap34(&ipd_mapped, ps2->ipd_par, ps2->nr_ipdopd_par, ps2->num_env, 0);
596             remap34(&opd_mapped, ps2->opd_par, ps2->nr_ipdopd_par, ps2->num_env, 0);
597         }
598         if (!ps2->is34bands_old) {
599             map_val_20_to_34(H11[0][0]);
600             map_val_20_to_34(H11[1][0]);
601             map_val_20_to_34(H12[0][0]);
602             map_val_20_to_34(H12[1][0]);
603             map_val_20_to_34(H21[0][0]);
604             map_val_20_to_34(H21[1][0]);
605             map_val_20_to_34(H22[0][0]);
606             map_val_20_to_34(H22[1][0]);
607             ipdopd_reset(ipd_hist, opd_hist);
608         }
609     } else {
610         remap20(&iid_mapped, ps2->iid_par, ps2->nr_iid_par, ps2->num_env, 1);
611         remap20(&icc_mapped, ps2->icc_par, ps2->nr_icc_par, ps2->num_env, 1);
612         if (ps2->enable_ipdopd) {
613             remap20(&ipd_mapped, ps2->ipd_par, ps2->nr_ipdopd_par, ps2->num_env, 0);
614             remap20(&opd_mapped, ps2->opd_par, ps2->nr_ipdopd_par, ps2->num_env, 0);
615         }
616         if (ps2->is34bands_old) {
617             map_val_34_to_20(H11[0][0]);
618             map_val_34_to_20(H11[1][0]);
619             map_val_34_to_20(H12[0][0]);
620             map_val_34_to_20(H12[1][0]);
621             map_val_34_to_20(H21[0][0]);
622             map_val_34_to_20(H21[1][0]);
623             map_val_34_to_20(H22[0][0]);
624             map_val_34_to_20(H22[1][0]);
625             ipdopd_reset(ipd_hist, opd_hist);
626         }
627     }
628
629     //Mixing
630     for (e = 0; e < ps2->num_env; e++) {
631         for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
632             INTFLOAT h11, h12, h21, h22;
633             h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][0];
634             h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][1];
635             h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][2];
636             h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][3];
637
638             if (!PS_BASELINE && ps2->enable_ipdopd && b < NR_IPDOPD_BANDS[is34]) {
639                 //The spec say says to only run this smoother when enable_ipdopd
640                 //is set but the reference decoder appears to run it constantly
641                 INTFLOAT h11i, h12i, h21i, h22i;
642                 INTFLOAT ipd_adj_re, ipd_adj_im;
643                 int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
644                 int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
645                 INTFLOAT opd_re = pd_re_smooth[opd_idx];
646                 INTFLOAT opd_im = pd_im_smooth[opd_idx];
647                 INTFLOAT ipd_re = pd_re_smooth[ipd_idx];
648                 INTFLOAT ipd_im = pd_im_smooth[ipd_idx];
649                 opd_hist[b] = opd_idx & 0x3F;
650                 ipd_hist[b] = ipd_idx & 0x3F;
651
652                 ipd_adj_re = AAC_MADD30(opd_re, ipd_re, opd_im, ipd_im);
653                 ipd_adj_im = AAC_MSUB30(opd_im, ipd_re, opd_re, ipd_im);
654                 h11i = AAC_MUL30(h11,  opd_im);
655                 h11  = AAC_MUL30(h11,  opd_re);
656                 h12i = AAC_MUL30(h12,  ipd_adj_im);
657                 h12  = AAC_MUL30(h12,  ipd_adj_re);
658                 h21i = AAC_MUL30(h21,  opd_im);
659                 h21  = AAC_MUL30(h21,  opd_re);
660                 h22i = AAC_MUL30(h22,  ipd_adj_im);
661                 h22  = AAC_MUL30(h22,  ipd_adj_re);
662                 H11[1][e+1][b] = h11i;
663                 H12[1][e+1][b] = h12i;
664                 H21[1][e+1][b] = h21i;
665                 H22[1][e+1][b] = h22i;
666             }
667             H11[0][e+1][b] = h11;
668             H12[0][e+1][b] = h12;
669             H21[0][e+1][b] = h21;
670             H22[0][e+1][b] = h22;
671         }
672         for (k = 0; k < NR_BANDS[is34]; k++) {
673             LOCAL_ALIGNED_16(INTFLOAT, h, [2], [4]);
674             LOCAL_ALIGNED_16(INTFLOAT, h_step, [2], [4]);
675             int start = ps2->border_position[e];
676             int stop  = ps2->border_position[e+1];
677             INTFLOAT width = Q30(1.f) / ((stop - start) ? (stop - start) : 1);
678 #if USE_FIXED
679             width = FFMIN(2U*width, INT_MAX);
680 #endif
681             b = k_to_i[k];
682             h[0][0] = H11[0][e][b];
683             h[0][1] = H12[0][e][b];
684             h[0][2] = H21[0][e][b];
685             h[0][3] = H22[0][e][b];
686             if (!PS_BASELINE && ps2->enable_ipdopd) {
687             //Is this necessary? ps_04_new seems unchanged
688             if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
689                 h[1][0] = -H11[1][e][b];
690                 h[1][1] = -H12[1][e][b];
691                 h[1][2] = -H21[1][e][b];
692                 h[1][3] = -H22[1][e][b];
693             } else {
694                 h[1][0] = H11[1][e][b];
695                 h[1][1] = H12[1][e][b];
696                 h[1][2] = H21[1][e][b];
697                 h[1][3] = H22[1][e][b];
698             }
699             }
700             //Interpolation
701             h_step[0][0] = AAC_MSUB31_V3(H11[0][e+1][b], h[0][0], width);
702             h_step[0][1] = AAC_MSUB31_V3(H12[0][e+1][b], h[0][1], width);
703             h_step[0][2] = AAC_MSUB31_V3(H21[0][e+1][b], h[0][2], width);
704             h_step[0][3] = AAC_MSUB31_V3(H22[0][e+1][b], h[0][3], width);
705             if (!PS_BASELINE && ps2->enable_ipdopd) {
706                 h_step[1][0] = AAC_MSUB31_V3(H11[1][e+1][b], h[1][0], width);
707                 h_step[1][1] = AAC_MSUB31_V3(H12[1][e+1][b], h[1][1], width);
708                 h_step[1][2] = AAC_MSUB31_V3(H21[1][e+1][b], h[1][2], width);
709                 h_step[1][3] = AAC_MSUB31_V3(H22[1][e+1][b], h[1][3], width);
710             }
711             if (stop - start)
712                 ps->dsp.stereo_interpolate[!PS_BASELINE && ps2->enable_ipdopd](
713                     l[k] + 1 + start, r[k] + 1 + start,
714                     h, h_step, stop - start);
715         }
716     }
717 }
718
719 int AAC_RENAME(ff_ps_apply)(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
720 {
721     INTFLOAT (*Lbuf)[32][2] = ps->Lbuf;
722     INTFLOAT (*Rbuf)[32][2] = ps->Rbuf;
723     const int len = 32;
724     int is34 = ps->common.is34bands;
725
726     top += NR_BANDS[is34] - 64;
727     memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
728     if (top < NR_ALLPASS_BANDS[is34])
729         memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
730
731     hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
732     decorrelation(ps, Rbuf, (const INTFLOAT (*)[32][2]) Lbuf, is34);
733     stereo_processing(ps, Lbuf, Rbuf, is34);
734     hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
735     hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
736
737     return 0;
738 }
739
740 av_cold void AAC_RENAME(ff_ps_init)(void) {
741     ps_tableinit();
742     ff_ps_init_common();
743 }
744
745 av_cold void AAC_RENAME(ff_ps_ctx_init)(PSContext *ps)
746 {
747     AAC_RENAME(ff_psdsp_init)(&ps->dsp);
748 }