]> git.sesse.net Git - ffmpeg/blob - libavcodec/aptxenc.c
avformat/dump: Remove remnants of codec timebase
[ffmpeg] / libavcodec / aptxenc.c
1 /*
2  * Audio Processing Technology codec for Bluetooth (aptX)
3  *
4  * Copyright (C) 2017  Aurelien Jacobs <aurel@gnuage.org>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22
23 #include "aptx.h"
24
25 /*
26  * Half-band QMF analysis filter realized with a polyphase FIR filter.
27  * Split into 2 subbands and downsample by 2.
28  * So for each pair of samples that goes in, one sample goes out,
29  * split into 2 separate subbands.
30  */
31 av_always_inline
32 static void aptx_qmf_polyphase_analysis(FilterSignal signal[NB_FILTERS],
33                                         const int32_t coeffs[NB_FILTERS][FILTER_TAPS],
34                                         int shift,
35                                         int32_t samples[NB_FILTERS],
36                                         int32_t *low_subband_output,
37                                         int32_t *high_subband_output)
38 {
39     int32_t subbands[NB_FILTERS];
40     int i;
41
42     for (i = 0; i < NB_FILTERS; i++) {
43         aptx_qmf_filter_signal_push(&signal[i], samples[NB_FILTERS-1-i]);
44         subbands[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift);
45     }
46
47     *low_subband_output  = av_clip_intp2(subbands[0] + subbands[1], 23);
48     *high_subband_output = av_clip_intp2(subbands[0] - subbands[1], 23);
49 }
50
51 /*
52  * Two stage QMF analysis tree.
53  * Split 4 input samples into 4 subbands and downsample by 4.
54  * So for each group of 4 samples that goes in, one sample goes out,
55  * split into 4 separate subbands.
56  */
57 static void aptx_qmf_tree_analysis(QMFAnalysis *qmf,
58                                    int32_t samples[4],
59                                    int32_t subband_samples[4])
60 {
61     int32_t intermediate_samples[4];
62     int i;
63
64     /* Split 4 input samples into 2 intermediate subbands downsampled to 2 samples */
65     for (i = 0; i < 2; i++)
66         aptx_qmf_polyphase_analysis(qmf->outer_filter_signal,
67                                     aptx_qmf_outer_coeffs, 23,
68                                     &samples[2*i],
69                                     &intermediate_samples[0+i],
70                                     &intermediate_samples[2+i]);
71
72     /* Split 2 intermediate subband samples into 4 final subbands downsampled to 1 sample */
73     for (i = 0; i < 2; i++)
74         aptx_qmf_polyphase_analysis(qmf->inner_filter_signal[i],
75                                     aptx_qmf_inner_coeffs, 23,
76                                     &intermediate_samples[2*i],
77                                     &subband_samples[2*i+0],
78                                     &subband_samples[2*i+1]);
79 }
80
81 av_always_inline
82 static int32_t aptx_bin_search(int32_t value, int32_t factor,
83                                const int32_t *intervals, int32_t nb_intervals)
84 {
85     int32_t idx = 0;
86     int i;
87
88     for (i = nb_intervals >> 1; i > 0; i >>= 1)
89         if (MUL64(factor, intervals[idx + i]) <= ((int64_t)value << 24))
90             idx += i;
91
92     return idx;
93 }
94
95 static void aptx_quantize_difference(Quantize *quantize,
96                                      int32_t sample_difference,
97                                      int32_t dither,
98                                      int32_t quantization_factor,
99                                      ConstTables *tables)
100 {
101     const int32_t *intervals = tables->quantize_intervals;
102     int32_t quantized_sample, dithered_sample, parity_change;
103     int32_t d, mean, interval, inv, sample_difference_abs;
104     int64_t error;
105
106     sample_difference_abs = FFABS(sample_difference);
107     sample_difference_abs = FFMIN(sample_difference_abs, (1 << 23) - 1);
108
109     quantized_sample = aptx_bin_search(sample_difference_abs >> 4,
110                                        quantization_factor,
111                                        intervals, tables->tables_size);
112
113     d = rshift32_clip24(MULH(dither, dither), 7) - (1 << 23);
114     d = rshift64(MUL64(d, tables->quantize_dither_factors[quantized_sample]), 23);
115
116     intervals += quantized_sample;
117     mean = (intervals[1] + intervals[0]) / 2;
118     interval = (intervals[1] - intervals[0]) * (-(sample_difference < 0) | 1);
119
120     dithered_sample = rshift64_clip24(MUL64(dither, interval) + ((int64_t)av_clip_intp2(mean + d, 23) << 32), 32);
121     error = ((int64_t)sample_difference_abs << 20) - MUL64(dithered_sample, quantization_factor);
122     quantize->error = FFABS(rshift64(error, 23));
123
124     parity_change = quantized_sample;
125     if (error < 0)
126         quantized_sample--;
127     else
128         parity_change--;
129
130     inv = -(sample_difference < 0);
131     quantize->quantized_sample               = quantized_sample ^ inv;
132     quantize->quantized_sample_parity_change = parity_change    ^ inv;
133 }
134
135 static void aptx_encode_channel(Channel *channel, int32_t samples[4], int hd)
136 {
137     int32_t subband_samples[4];
138     int subband;
139     aptx_qmf_tree_analysis(&channel->qmf, samples, subband_samples);
140     ff_aptx_generate_dither(channel);
141     for (subband = 0; subband < NB_SUBBANDS; subband++) {
142         int32_t diff = av_clip_intp2(subband_samples[subband] - channel->prediction[subband].predicted_sample, 23);
143         aptx_quantize_difference(&channel->quantize[subband], diff,
144                                  channel->dither[subband],
145                                  channel->invert_quantize[subband].quantization_factor,
146                                  &ff_aptx_quant_tables[hd][subband]);
147     }
148 }
149
150 static void aptx_insert_sync(Channel channels[NB_CHANNELS], int32_t *idx)
151 {
152     if (aptx_check_parity(channels, idx)) {
153         int i;
154         Channel *c;
155         static const int map[] = { 1, 2, 0, 3 };
156         Quantize *min = &channels[NB_CHANNELS-1].quantize[map[0]];
157         for (c = &channels[NB_CHANNELS-1]; c >= channels; c--)
158             for (i = 0; i < NB_SUBBANDS; i++)
159                 if (c->quantize[map[i]].error < min->error)
160                     min = &c->quantize[map[i]];
161
162         /* Forcing the desired parity is done by offsetting by 1 the quantized
163          * sample from the subband featuring the smallest quantization error. */
164         min->quantized_sample = min->quantized_sample_parity_change;
165     }
166 }
167
168 static uint16_t aptx_pack_codeword(Channel *channel)
169 {
170     int32_t parity = aptx_quantized_parity(channel);
171     return (((channel->quantize[3].quantized_sample & 0x06) | parity) << 13)
172          | (((channel->quantize[2].quantized_sample & 0x03)         ) << 11)
173          | (((channel->quantize[1].quantized_sample & 0x0F)         ) <<  7)
174          | (((channel->quantize[0].quantized_sample & 0x7F)         ) <<  0);
175 }
176
177 static uint32_t aptxhd_pack_codeword(Channel *channel)
178 {
179     int32_t parity = aptx_quantized_parity(channel);
180     return (((channel->quantize[3].quantized_sample & 0x01E) | parity) << 19)
181          | (((channel->quantize[2].quantized_sample & 0x00F)         ) << 15)
182          | (((channel->quantize[1].quantized_sample & 0x03F)         ) <<  9)
183          | (((channel->quantize[0].quantized_sample & 0x1FF)         ) <<  0);
184 }
185
186 static void aptx_encode_samples(AptXContext *ctx,
187                                 int32_t samples[NB_CHANNELS][4],
188                                 uint8_t *output)
189 {
190     int channel;
191     for (channel = 0; channel < NB_CHANNELS; channel++)
192         aptx_encode_channel(&ctx->channels[channel], samples[channel], ctx->hd);
193
194     aptx_insert_sync(ctx->channels, &ctx->sync_idx);
195
196     for (channel = 0; channel < NB_CHANNELS; channel++) {
197         ff_aptx_invert_quantize_and_prediction(&ctx->channels[channel], ctx->hd);
198         if (ctx->hd)
199             AV_WB24(output + 3*channel,
200                     aptxhd_pack_codeword(&ctx->channels[channel]));
201         else
202             AV_WB16(output + 2*channel,
203                     aptx_pack_codeword(&ctx->channels[channel]));
204     }
205 }
206
207 static int aptx_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
208                              const AVFrame *frame, int *got_packet_ptr)
209 {
210     AptXContext *s = avctx->priv_data;
211     int pos, ipos, channel, sample, output_size, ret;
212
213     if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
214         return ret;
215
216     output_size = s->block_size * frame->nb_samples/4;
217     if ((ret = ff_alloc_packet2(avctx, avpkt, output_size, 0)) < 0)
218         return ret;
219
220     for (pos = 0, ipos = 0; pos < output_size; pos += s->block_size, ipos += 4) {
221         int32_t samples[NB_CHANNELS][4];
222
223         for (channel = 0; channel < NB_CHANNELS; channel++)
224             for (sample = 0; sample < 4; sample++)
225                 samples[channel][sample] = (int32_t)AV_RN32A(&frame->data[channel][4*(ipos+sample)]) >> 8;
226
227         aptx_encode_samples(s, samples, avpkt->data + pos);
228     }
229
230     ff_af_queue_remove(&s->afq, frame->nb_samples, &avpkt->pts, &avpkt->duration);
231     *got_packet_ptr = 1;
232     return 0;
233 }
234
235 static av_cold int aptx_close(AVCodecContext *avctx)
236 {
237     AptXContext *s = avctx->priv_data;
238     ff_af_queue_close(&s->afq);
239     return 0;
240 }
241
242 #if CONFIG_APTX_ENCODER
243 const AVCodec ff_aptx_encoder = {
244     .name                  = "aptx",
245     .long_name             = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"),
246     .type                  = AVMEDIA_TYPE_AUDIO,
247     .id                    = AV_CODEC_ID_APTX,
248     .priv_data_size        = sizeof(AptXContext),
249     .init                  = ff_aptx_init,
250     .encode2               = aptx_encode_frame,
251     .close                 = aptx_close,
252     .capabilities          = AV_CODEC_CAP_SMALL_LAST_FRAME,
253     .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
254     .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
255     .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
256                                                              AV_SAMPLE_FMT_NONE },
257     .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0},
258 };
259 #endif
260
261 #if CONFIG_APTX_HD_ENCODER
262 const AVCodec ff_aptx_hd_encoder = {
263     .name                  = "aptx_hd",
264     .long_name             = NULL_IF_CONFIG_SMALL("aptX HD (Audio Processing Technology for Bluetooth)"),
265     .type                  = AVMEDIA_TYPE_AUDIO,
266     .id                    = AV_CODEC_ID_APTX_HD,
267     .priv_data_size        = sizeof(AptXContext),
268     .init                  = ff_aptx_init,
269     .encode2               = aptx_encode_frame,
270     .close                 = aptx_close,
271     .capabilities          = AV_CODEC_CAP_SMALL_LAST_FRAME,
272     .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
273     .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
274     .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
275                                                              AV_SAMPLE_FMT_NONE },
276     .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0},
277 };
278 #endif