]> git.sesse.net Git - ffmpeg/blob - libavcodec/opus.c
configure: add -lvulkan to libglslang's lib flags
[ffmpeg] / libavcodec / opus.c
1 /*
2  * Copyright (c) 2012 Andrew D'Addesio
3  * Copyright (c) 2013-2014 Mozilla Corporation
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * Opus decoder/parser shared code
25  */
26
27 #include <stdint.h>
28
29 #include "libavutil/error.h"
30 #include "libavutil/ffmath.h"
31
32 #include "opus_celt.h"
33 #include "opustab.h"
34 #include "internal.h"
35 #include "vorbis.h"
36
37 static const uint16_t opus_frame_duration[32] = {
38     480, 960, 1920, 2880,
39     480, 960, 1920, 2880,
40     480, 960, 1920, 2880,
41     480, 960,
42     480, 960,
43     120, 240,  480,  960,
44     120, 240,  480,  960,
45     120, 240,  480,  960,
46     120, 240,  480,  960,
47 };
48
49 /**
50  * Read a 1- or 2-byte frame length
51  */
52 static inline int xiph_lacing_16bit(const uint8_t **ptr, const uint8_t *end)
53 {
54     int val;
55
56     if (*ptr >= end)
57         return AVERROR_INVALIDDATA;
58     val = *(*ptr)++;
59     if (val >= 252) {
60         if (*ptr >= end)
61             return AVERROR_INVALIDDATA;
62         val += 4 * *(*ptr)++;
63     }
64     return val;
65 }
66
67 /**
68  * Read a multi-byte length (used for code 3 packet padding size)
69  */
70 static inline int xiph_lacing_full(const uint8_t **ptr, const uint8_t *end)
71 {
72     int val = 0;
73     int next;
74
75     while (1) {
76         if (*ptr >= end || val > INT_MAX - 254)
77             return AVERROR_INVALIDDATA;
78         next = *(*ptr)++;
79         val += next;
80         if (next < 255)
81             break;
82         else
83             val--;
84     }
85     return val;
86 }
87
88 /**
89  * Parse Opus packet info from raw packet data
90  */
91 int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size,
92                          int self_delimiting)
93 {
94     const uint8_t *ptr = buf;
95     const uint8_t *end = buf + buf_size;
96     int padding = 0;
97     int frame_bytes, i;
98
99     if (buf_size < 1)
100         goto fail;
101
102     /* TOC byte */
103     i = *ptr++;
104     pkt->code   = (i     ) & 0x3;
105     pkt->stereo = (i >> 2) & 0x1;
106     pkt->config = (i >> 3) & 0x1F;
107
108     /* code 2 and code 3 packets have at least 1 byte after the TOC */
109     if (pkt->code >= 2 && buf_size < 2)
110         goto fail;
111
112     switch (pkt->code) {
113     case 0:
114         /* 1 frame */
115         pkt->frame_count = 1;
116         pkt->vbr         = 0;
117
118         if (self_delimiting) {
119             int len = xiph_lacing_16bit(&ptr, end);
120             if (len < 0 || len > end - ptr)
121                 goto fail;
122             end      = ptr + len;
123             buf_size = end - buf;
124         }
125
126         frame_bytes = end - ptr;
127         if (frame_bytes > MAX_FRAME_SIZE)
128             goto fail;
129         pkt->frame_offset[0] = ptr - buf;
130         pkt->frame_size[0]   = frame_bytes;
131         break;
132     case 1:
133         /* 2 frames, equal size */
134         pkt->frame_count = 2;
135         pkt->vbr         = 0;
136
137         if (self_delimiting) {
138             int len = xiph_lacing_16bit(&ptr, end);
139             if (len < 0 || 2 * len > end - ptr)
140                 goto fail;
141             end      = ptr + 2 * len;
142             buf_size = end - buf;
143         }
144
145         frame_bytes = end - ptr;
146         if (frame_bytes & 1 || frame_bytes >> 1 > MAX_FRAME_SIZE)
147             goto fail;
148         pkt->frame_offset[0] = ptr - buf;
149         pkt->frame_size[0]   = frame_bytes >> 1;
150         pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
151         pkt->frame_size[1]   = frame_bytes >> 1;
152         break;
153     case 2:
154         /* 2 frames, different sizes */
155         pkt->frame_count = 2;
156         pkt->vbr         = 1;
157
158         /* read 1st frame size */
159         frame_bytes = xiph_lacing_16bit(&ptr, end);
160         if (frame_bytes < 0)
161             goto fail;
162
163         if (self_delimiting) {
164             int len = xiph_lacing_16bit(&ptr, end);
165             if (len < 0 || len + frame_bytes > end - ptr)
166                 goto fail;
167             end      = ptr + frame_bytes + len;
168             buf_size = end - buf;
169         }
170
171         pkt->frame_offset[0] = ptr - buf;
172         pkt->frame_size[0]   = frame_bytes;
173
174         /* calculate 2nd frame size */
175         frame_bytes = end - ptr - pkt->frame_size[0];
176         if (frame_bytes < 0 || frame_bytes > MAX_FRAME_SIZE)
177             goto fail;
178         pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
179         pkt->frame_size[1]   = frame_bytes;
180         break;
181     case 3:
182         /* 1 to 48 frames, can be different sizes */
183         i = *ptr++;
184         pkt->frame_count = (i     ) & 0x3F;
185         padding          = (i >> 6) & 0x01;
186         pkt->vbr         = (i >> 7) & 0x01;
187
188         if (pkt->frame_count == 0 || pkt->frame_count > MAX_FRAMES)
189             goto fail;
190
191         /* read padding size */
192         if (padding) {
193             padding = xiph_lacing_full(&ptr, end);
194             if (padding < 0)
195                 goto fail;
196         }
197
198         /* read frame sizes */
199         if (pkt->vbr) {
200             /* for VBR, all frames except the final one have their size coded
201                in the bitstream. the last frame size is implicit. */
202             int total_bytes = 0;
203             for (i = 0; i < pkt->frame_count - 1; i++) {
204                 frame_bytes = xiph_lacing_16bit(&ptr, end);
205                 if (frame_bytes < 0)
206                     goto fail;
207                 pkt->frame_size[i] = frame_bytes;
208                 total_bytes += frame_bytes;
209             }
210
211             if (self_delimiting) {
212                 int len = xiph_lacing_16bit(&ptr, end);
213                 if (len < 0 || len + total_bytes + padding > end - ptr)
214                     goto fail;
215                 end      = ptr + total_bytes + len + padding;
216                 buf_size = end - buf;
217             }
218
219             frame_bytes = end - ptr - padding;
220             if (total_bytes > frame_bytes)
221                 goto fail;
222             pkt->frame_offset[0] = ptr - buf;
223             for (i = 1; i < pkt->frame_count; i++)
224                 pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
225             pkt->frame_size[pkt->frame_count-1] = frame_bytes - total_bytes;
226         } else {
227             /* for CBR, the remaining packet bytes are divided evenly between
228                the frames */
229             if (self_delimiting) {
230                 frame_bytes = xiph_lacing_16bit(&ptr, end);
231                 if (frame_bytes < 0 || pkt->frame_count * frame_bytes + padding > end - ptr)
232                     goto fail;
233                 end      = ptr + pkt->frame_count * frame_bytes + padding;
234                 buf_size = end - buf;
235             } else {
236                 frame_bytes = end - ptr - padding;
237                 if (frame_bytes % pkt->frame_count ||
238                     frame_bytes / pkt->frame_count > MAX_FRAME_SIZE)
239                     goto fail;
240                 frame_bytes /= pkt->frame_count;
241             }
242
243             pkt->frame_offset[0] = ptr - buf;
244             pkt->frame_size[0]   = frame_bytes;
245             for (i = 1; i < pkt->frame_count; i++) {
246                 pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
247                 pkt->frame_size[i]   = frame_bytes;
248             }
249         }
250     }
251
252     pkt->packet_size = buf_size;
253     pkt->data_size   = pkt->packet_size - padding;
254
255     /* total packet duration cannot be larger than 120ms */
256     pkt->frame_duration = opus_frame_duration[pkt->config];
257     if (pkt->frame_duration * pkt->frame_count > MAX_PACKET_DUR)
258         goto fail;
259
260     /* set mode and bandwidth */
261     if (pkt->config < 12) {
262         pkt->mode = OPUS_MODE_SILK;
263         pkt->bandwidth = pkt->config >> 2;
264     } else if (pkt->config < 16) {
265         pkt->mode = OPUS_MODE_HYBRID;
266         pkt->bandwidth = OPUS_BANDWIDTH_SUPERWIDEBAND + (pkt->config >= 14);
267     } else {
268         pkt->mode = OPUS_MODE_CELT;
269         pkt->bandwidth = (pkt->config - 16) >> 2;
270         /* skip medium band */
271         if (pkt->bandwidth)
272             pkt->bandwidth++;
273     }
274
275     return 0;
276
277 fail:
278     memset(pkt, 0, sizeof(*pkt));
279     return AVERROR_INVALIDDATA;
280 }
281
282 static int channel_reorder_vorbis(int nb_channels, int channel_idx)
283 {
284     return ff_vorbis_channel_layout_offsets[nb_channels - 1][channel_idx];
285 }
286
287 static int channel_reorder_unknown(int nb_channels, int channel_idx)
288 {
289     return channel_idx;
290 }
291
292 av_cold int ff_opus_parse_extradata(AVCodecContext *avctx,
293                                     OpusContext *s)
294 {
295     static const uint8_t default_channel_map[2] = { 0, 1 };
296
297     int (*channel_reorder)(int, int) = channel_reorder_unknown;
298
299     const uint8_t *extradata, *channel_map;
300     int extradata_size;
301     int version, channels, map_type, streams, stereo_streams, i, j;
302     uint64_t layout;
303
304     if (!avctx->extradata) {
305         if (avctx->channels > 2) {
306             av_log(avctx, AV_LOG_ERROR,
307                    "Multichannel configuration without extradata.\n");
308             return AVERROR(EINVAL);
309         }
310         extradata      = opus_default_extradata;
311         extradata_size = sizeof(opus_default_extradata);
312     } else {
313         extradata = avctx->extradata;
314         extradata_size = avctx->extradata_size;
315     }
316
317     if (extradata_size < 19) {
318         av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
319                extradata_size);
320         return AVERROR_INVALIDDATA;
321     }
322
323     version = extradata[8];
324     if (version > 15) {
325         avpriv_request_sample(avctx, "Extradata version %d", version);
326         return AVERROR_PATCHWELCOME;
327     }
328
329     avctx->delay = AV_RL16(extradata + 10);
330     if (avctx->internal)
331         avctx->internal->skip_samples = avctx->delay;
332
333     channels = avctx->extradata ? extradata[9] : (avctx->channels == 1) ? 1 : 2;
334     if (!channels) {
335         av_log(avctx, AV_LOG_ERROR, "Zero channel count specified in the extradata\n");
336         return AVERROR_INVALIDDATA;
337     }
338
339     s->gain_i = AV_RL16(extradata + 16);
340     if (s->gain_i)
341         s->gain = ff_exp10(s->gain_i / (20.0 * 256));
342
343     map_type = extradata[18];
344     if (!map_type) {
345         if (channels > 2) {
346             av_log(avctx, AV_LOG_ERROR,
347                    "Channel mapping 0 is only specified for up to 2 channels\n");
348             return AVERROR_INVALIDDATA;
349         }
350         layout         = (channels == 1) ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
351         streams        = 1;
352         stereo_streams = channels - 1;
353         channel_map    = default_channel_map;
354     } else if (map_type == 1 || map_type == 2 || map_type == 255) {
355         if (extradata_size < 21 + channels) {
356             av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
357                    extradata_size);
358             return AVERROR_INVALIDDATA;
359         }
360
361         streams        = extradata[19];
362         stereo_streams = extradata[20];
363         if (!streams || stereo_streams > streams ||
364             streams + stereo_streams > 255) {
365             av_log(avctx, AV_LOG_ERROR,
366                    "Invalid stream/stereo stream count: %d/%d\n", streams, stereo_streams);
367             return AVERROR_INVALIDDATA;
368         }
369
370         if (map_type == 1) {
371             if (channels > 8) {
372                 av_log(avctx, AV_LOG_ERROR,
373                        "Channel mapping 1 is only specified for up to 8 channels\n");
374                 return AVERROR_INVALIDDATA;
375             }
376             layout = ff_vorbis_channel_layouts[channels - 1];
377             channel_reorder = channel_reorder_vorbis;
378         } else if (map_type == 2) {
379             int ambisonic_order = ff_sqrt(channels) - 1;
380             if (channels != ((ambisonic_order + 1) * (ambisonic_order + 1)) &&
381                 channels != ((ambisonic_order + 1) * (ambisonic_order + 1) + 2)) {
382                 av_log(avctx, AV_LOG_ERROR,
383                        "Channel mapping 2 is only specified for channel counts"
384                        " which can be written as (n + 1)^2 or (n + 1)^2 + 2"
385                        " for nonnegative integer n\n");
386                 return AVERROR_INVALIDDATA;
387             }
388             if (channels > 227) {
389                 av_log(avctx, AV_LOG_ERROR, "Too many channels\n");
390                 return AVERROR_INVALIDDATA;
391             }
392             layout = 0;
393         } else
394             layout = 0;
395
396         channel_map = extradata + 21;
397     } else {
398         avpriv_request_sample(avctx, "Mapping type %d", map_type);
399         return AVERROR_PATCHWELCOME;
400     }
401
402     s->channel_maps = av_mallocz_array(channels, sizeof(*s->channel_maps));
403     if (!s->channel_maps)
404         return AVERROR(ENOMEM);
405
406     for (i = 0; i < channels; i++) {
407         ChannelMap *map = &s->channel_maps[i];
408         uint8_t     idx = channel_map[channel_reorder(channels, i)];
409
410         if (idx == 255) {
411             map->silence = 1;
412             continue;
413         } else if (idx >= streams + stereo_streams) {
414             av_log(avctx, AV_LOG_ERROR,
415                    "Invalid channel map for output channel %d: %d\n", i, idx);
416             av_freep(&s->channel_maps);
417             return AVERROR_INVALIDDATA;
418         }
419
420         /* check that we did not see this index yet */
421         map->copy = 0;
422         for (j = 0; j < i; j++)
423             if (channel_map[channel_reorder(channels, j)] == idx) {
424                 map->copy     = 1;
425                 map->copy_idx = j;
426                 break;
427             }
428
429         if (idx < 2 * stereo_streams) {
430             map->stream_idx  = idx / 2;
431             map->channel_idx = idx & 1;
432         } else {
433             map->stream_idx  = idx - stereo_streams;
434             map->channel_idx = 0;
435         }
436     }
437
438     avctx->channels       = channels;
439     avctx->channel_layout = layout;
440     s->nb_streams         = streams;
441     s->nb_stereo_streams  = stereo_streams;
442
443     return 0;
444 }
445
446 void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
447 {
448     float lowband_scratch[8 * 22];
449     float norm1[2 * 8 * 100];
450     float *norm2 = norm1 + 8 * 100;
451
452     int totalbits = (f->framebits << 3) - f->anticollapse_needed;
453
454     int update_lowband = 1;
455     int lowband_offset = 0;
456
457     int i, j;
458
459     for (i = f->start_band; i < f->end_band; i++) {
460         uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
461         int band_offset = ff_celt_freq_bands[i] << f->size;
462         int band_size   = ff_celt_freq_range[i] << f->size;
463         float *X = f->block[0].coeffs + band_offset;
464         float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
465         float *norm_loc1, *norm_loc2;
466
467         int consumed = opus_rc_tell_frac(rc);
468         int effective_lowband = -1;
469         int b = 0;
470
471         /* Compute how many bits we want to allocate to this band */
472         if (i != f->start_band)
473             f->remaining -= consumed;
474         f->remaining2 = totalbits - consumed - 1;
475         if (i <= f->coded_bands - 1) {
476             int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
477             b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
478         }
479
480         if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] ||
481             i == f->start_band + 1) && (update_lowband || lowband_offset == 0))
482             lowband_offset = i;
483
484         if (i == f->start_band + 1) {
485             /* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into
486             the second to ensure the second band never has to use the LCG. */
487             int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size;
488
489             memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float));
490
491             if (f->channels == 2)
492                 memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float));
493         }
494
495         /* Get a conservative estimate of the collapse_mask's for the bands we're
496            going to be folding from. */
497         if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
498                                     f->blocks > 1 || f->tf_change[i] < 0)) {
499             int foldstart, foldend;
500
501             /* This ensures we never repeat spectral content within one band */
502             effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
503                                       ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
504             foldstart = lowband_offset;
505             while (ff_celt_freq_bands[--foldstart] > effective_lowband);
506             foldend = lowband_offset - 1;
507             while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]);
508
509             cm[0] = cm[1] = 0;
510             for (j = foldstart; j < foldend; j++) {
511                 cm[0] |= f->block[0].collapse_masks[j];
512                 cm[1] |= f->block[f->channels - 1].collapse_masks[j];
513             }
514         }
515
516         if (f->dual_stereo && i == f->intensity_stereo) {
517             /* Switch off dual stereo to do intensity */
518             f->dual_stereo = 0;
519             for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
520                 norm1[j] = (norm1[j] + norm2[j]) / 2;
521         }
522
523         norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL;
524         norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL;
525
526         if (f->dual_stereo) {
527             cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1,
528                                        f->blocks, norm_loc1, f->size,
529                                        norm1 + band_offset, 0, 1.0f,
530                                        lowband_scratch, cm[0]);
531
532             cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1,
533                                        f->blocks, norm_loc2, f->size,
534                                        norm2 + band_offset, 0, 1.0f,
535                                        lowband_scratch, cm[1]);
536         } else {
537             cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X,    Y, band_size, b >> 0,
538                                        f->blocks, norm_loc1, f->size,
539                                        norm1 + band_offset, 0, 1.0f,
540                                        lowband_scratch, cm[0] | cm[1]);
541             cm[1] = cm[0];
542         }
543
544         f->block[0].collapse_masks[i]               = (uint8_t)cm[0];
545         f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
546         f->remaining += f->pulses[i] + consumed;
547
548         /* Update the folding position only as long as we have 1 bit/sample depth */
549         update_lowband = (b > band_size << 3);
550     }
551 }
552
553 #define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2)
554
555 void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
556 {
557     int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
558     int skip_startband      = f->start_band;
559     int skip_bit            = 0;
560     int intensitystereo_bit = 0;
561     int dualstereo_bit      = 0;
562     int dynalloc            = 6;
563     int extrabits           = 0;
564
565     int boost[CELT_MAX_BANDS] = { 0 };
566     int trim_offset[CELT_MAX_BANDS];
567     int threshold[CELT_MAX_BANDS];
568     int bits1[CELT_MAX_BANDS];
569     int bits2[CELT_MAX_BANDS];
570
571     /* Spread */
572     if (opus_rc_tell(rc) + 4 <= f->framebits) {
573         if (encode)
574             ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
575         else
576             f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
577     } else {
578         f->spread = CELT_SPREAD_NORMAL;
579     }
580
581     /* Initialize static allocation caps */
582     for (i = 0; i < CELT_MAX_BANDS; i++)
583         f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]);
584
585     /* Band boosts */
586     tbits_8ths = f->framebits << 3;
587     for (i = f->start_band; i < f->end_band; i++) {
588         int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
589         int b_dynalloc = dynalloc;
590         int boost_amount = f->alloc_boost[i];
591         quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
592
593         while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) {
594             int is_boost;
595             if (encode) {
596                 is_boost = boost_amount--;
597                 ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
598             } else {
599                 is_boost = ff_opus_rc_dec_log(rc, b_dynalloc);
600             }
601
602             if (!is_boost)
603                 break;
604
605             boost[i]   += quanta;
606             tbits_8ths -= quanta;
607
608             b_dynalloc = 1;
609         }
610
611         if (boost[i])
612             dynalloc = FFMAX(dynalloc - 1, 2);
613     }
614
615     /* Allocation trim */
616     if (!encode)
617         f->alloc_trim = 5;
618     if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
619         if (encode)
620             ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
621         else
622             f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
623
624     /* Anti-collapse bit reservation */
625     tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
626     f->anticollapse_needed = 0;
627     if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
628         f->anticollapse_needed = 1 << 3;
629     tbits_8ths -= f->anticollapse_needed;
630
631     /* Band skip bit reservation */
632     if (tbits_8ths >= 1 << 3)
633         skip_bit = 1 << 3;
634     tbits_8ths -= skip_bit;
635
636     /* Intensity/dual stereo bit reservation */
637     if (f->channels == 2) {
638         intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
639         if (intensitystereo_bit <= tbits_8ths) {
640             tbits_8ths -= intensitystereo_bit;
641             if (tbits_8ths >= 1 << 3) {
642                 dualstereo_bit = 1 << 3;
643                 tbits_8ths -= 1 << 3;
644             }
645         } else {
646             intensitystereo_bit = 0;
647         }
648     }
649
650     /* Trim offsets */
651     for (i = f->start_band; i < f->end_band; i++) {
652         int trim     = f->alloc_trim - 5 - f->size;
653         int band     = ff_celt_freq_range[i] * (f->end_band - i - 1);
654         int duration = f->size + 3;
655         int scale    = duration + f->channels - 1;
656
657         /* PVQ minimum allocation threshold, below this value the band is
658          * skipped */
659         threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
660                              f->channels << 3);
661
662         trim_offset[i] = trim * (band << scale) >> 6;
663
664         if (ff_celt_freq_range[i] << f->size == 1)
665             trim_offset[i] -= f->channels << 3;
666     }
667
668     /* Bisection */
669     low  = 1;
670     high = CELT_VECTORS - 1;
671     while (low <= high) {
672         int center = (low + high) >> 1;
673         done = total = 0;
674
675         for (i = f->end_band - 1; i >= f->start_band; i--) {
676             bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]);
677
678             if (bandbits)
679                 bandbits = FFMAX(bandbits + trim_offset[i], 0);
680             bandbits += boost[i];
681
682             if (bandbits >= threshold[i] || done) {
683                 done = 1;
684                 total += FFMIN(bandbits, f->caps[i]);
685             } else if (bandbits >= f->channels << 3) {
686                 total += f->channels << 3;
687             }
688         }
689
690         if (total > tbits_8ths)
691             high = center - 1;
692         else
693             low = center + 1;
694     }
695     high = low--;
696
697     /* Bisection */
698     for (i = f->start_band; i < f->end_band; i++) {
699         bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]);
700         bits2[i] = high >= CELT_VECTORS ? f->caps[i] :
701                    NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]);
702
703         if (bits1[i])
704             bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0);
705         if (bits2[i])
706             bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0);
707
708         if (low)
709             bits1[i] += boost[i];
710         bits2[i] += boost[i];
711
712         if (boost[i])
713             skip_startband = i;
714         bits2[i] = FFMAX(bits2[i] - bits1[i], 0);
715     }
716
717     /* Bisection */
718     low  = 0;
719     high = 1 << CELT_ALLOC_STEPS;
720     for (i = 0; i < CELT_ALLOC_STEPS; i++) {
721         int center = (low + high) >> 1;
722         done = total = 0;
723
724         for (j = f->end_band - 1; j >= f->start_band; j--) {
725             bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
726
727             if (bandbits >= threshold[j] || done) {
728                 done = 1;
729                 total += FFMIN(bandbits, f->caps[j]);
730             } else if (bandbits >= f->channels << 3)
731                 total += f->channels << 3;
732         }
733         if (total > tbits_8ths)
734             high = center;
735         else
736             low = center;
737     }
738
739     /* Bisection */
740     done = total = 0;
741     for (i = f->end_band - 1; i >= f->start_band; i--) {
742         bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
743
744         if (bandbits >= threshold[i] || done)
745             done = 1;
746         else
747             bandbits = (bandbits >= f->channels << 3) ?
748             f->channels << 3 : 0;
749
750         bandbits     = FFMIN(bandbits, f->caps[i]);
751         f->pulses[i] = bandbits;
752         total      += bandbits;
753     }
754
755     /* Band skipping */
756     for (f->coded_bands = f->end_band; ; f->coded_bands--) {
757         int allocation;
758         j = f->coded_bands - 1;
759
760         if (j == skip_startband) {
761             /* all remaining bands are not skipped */
762             tbits_8ths += skip_bit;
763             break;
764         }
765
766         /* determine the number of bits available for coding "do not skip" markers */
767         remaining   = tbits_8ths - total;
768         bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
769         remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
770         allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j];
771         allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0);
772
773         /* a "do not skip" marker is only coded if the allocation is
774          * above the chosen threshold */
775         if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
776             int do_not_skip;
777             if (encode) {
778                 do_not_skip = f->coded_bands <= f->skip_band_floor;
779                 ff_opus_rc_enc_log(rc, do_not_skip, 1);
780             } else {
781                 do_not_skip = ff_opus_rc_dec_log(rc, 1);
782             }
783
784             if (do_not_skip)
785                 break;
786
787             total      += 1 << 3;
788             allocation -= 1 << 3;
789         }
790
791         /* the band is skipped, so reclaim its bits */
792         total -= f->pulses[j];
793         if (intensitystereo_bit) {
794             total -= intensitystereo_bit;
795             intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
796             total += intensitystereo_bit;
797         }
798
799         total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
800     }
801
802     /* IS start band */
803     if (encode) {
804         if (intensitystereo_bit) {
805             f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
806             ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
807         }
808     } else {
809         f->intensity_stereo = f->dual_stereo = 0;
810         if (intensitystereo_bit)
811             f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
812     }
813
814     /* DS flag */
815     if (f->intensity_stereo <= f->start_band)
816         tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
817     else if (dualstereo_bit)
818         if (encode)
819             ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
820         else
821             f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
822
823     /* Supply the remaining bits in this frame to lower bands */
824     remaining = tbits_8ths - total;
825     bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
826     remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
827     for (i = f->start_band; i < f->coded_bands; i++) {
828         const int bits = FFMIN(remaining, ff_celt_freq_range[i]);
829         f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
830         remaining    -= bits;
831     }
832
833     /* Finally determine the allocation */
834     for (i = f->start_band; i < f->coded_bands; i++) {
835         int N = ff_celt_freq_range[i] << f->size;
836         int prev_extra = extrabits;
837         f->pulses[i] += extrabits;
838
839         if (N > 1) {
840             int dof;        /* degrees of freedom */
841             int temp;       /* dof * channels * log(dof) */
842             int fine_bits;
843             int max_bits;
844             int offset;     /* fine energy quantization offset, i.e.
845                              * extra bits assigned over the standard
846                              * totalbits/dof */
847
848             extrabits = FFMAX(f->pulses[i] - f->caps[i], 0);
849             f->pulses[i] -= extrabits;
850
851             /* intensity stereo makes use of an extra degree of freedom */
852             dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
853             temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
854             offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
855             if (N == 2) /* dof=2 is the only case that doesn't fit the model */
856                 offset += dof << 1;
857
858             /* grant an additional bias for the first and second pulses */
859             if (f->pulses[i] + offset < 2 * (dof << 3))
860                 offset += temp >> 2;
861             else if (f->pulses[i] + offset < 3 * (dof << 3))
862                 offset += temp >> 3;
863
864             fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
865             max_bits  = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
866             max_bits  = FFMAX(max_bits, 0);
867             f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
868
869             /* If fine_bits was rounded down or capped,
870              * give priority for the final fine energy pass */
871             f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
872
873             /* the remaining bits are assigned to PVQ */
874             f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
875         } else {
876             /* all bits go to fine energy except for the sign bit */
877             extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0);
878             f->pulses[i] -= extrabits;
879             f->fine_bits[i] = 0;
880             f->fine_priority[i] = 1;
881         }
882
883         /* hand back a limited number of extra fine energy bits to this band */
884         if (extrabits > 0) {
885             int fineextra = FFMIN(extrabits >> (f->channels + 2),
886                                   CELT_MAX_FINE_BITS - f->fine_bits[i]);
887             f->fine_bits[i] += fineextra;
888
889             fineextra <<= f->channels + 2;
890             f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
891             extrabits -= fineextra;
892         }
893     }
894     f->remaining = extrabits;
895
896     /* skipped bands dedicate all of their bits for fine energy */
897     for (; i < f->end_band; i++) {
898         f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3;
899         f->pulses[i]        = 0;
900         f->fine_priority[i] = f->fine_bits[i] < 1;
901     }
902 }