]> git.sesse.net Git - ffmpeg/blob - libavcodec/rv40.c
avfilter/vf_psnr: remove unnecessary check
[ffmpeg] / libavcodec / rv40.c
1 /*
2  * RV40 decoder
3  * Copyright (c) 2007 Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * RV40 decoder
25  */
26
27 #include "config.h"
28
29 #include "libavutil/imgutils.h"
30
31 #include "avcodec.h"
32 #include "mpegutils.h"
33 #include "mpegvideo.h"
34 #include "golomb.h"
35
36 #include "rv34.h"
37 #include "rv40vlc2.h"
38 #include "rv40data.h"
39
40 static VLC aic_top_vlc;
41 static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
42 static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
43
44 static av_cold void rv40_init_table(VLC *vlc, unsigned *offset, int nb_bits,
45                                     int nb_codes, const uint8_t (*tab)[2])
46 {
47     static VLC_TYPE vlc_buf[11776][2];
48
49     vlc->table           = &vlc_buf[*offset];
50     vlc->table_allocated = 1 << nb_bits;
51     *offset             += 1 << nb_bits;
52
53     ff_init_vlc_from_lengths(vlc, nb_bits, nb_codes,
54                              &tab[0][1], 2, &tab[0][0], 2, 1,
55                              0, INIT_VLC_USE_NEW_STATIC, NULL);
56 }
57
58 /**
59  * Initialize all tables.
60  */
61 static av_cold void rv40_init_tables(void)
62 {
63     int i, offset = 0;
64     static VLC_TYPE aic_mode2_table[11814][2];
65
66     rv40_init_table(&aic_top_vlc, &offset, AIC_TOP_BITS, AIC_TOP_SIZE,
67                     rv40_aic_top_vlc_tab);
68     for(i = 0; i < AIC_MODE1_NUM; i++){
69         // Every tenth VLC table is empty
70         if((i % 10) == 9) continue;
71         rv40_init_table(&aic_mode1_vlc[i], &offset, AIC_MODE1_BITS,
72                         AIC_MODE1_SIZE, aic_mode1_vlc_tabs[i]);
73     }
74     for (unsigned i = 0, offset = 0; i < AIC_MODE2_NUM; i++){
75         uint16_t syms[AIC_MODE2_SIZE];
76
77         for (int j = 0; j < AIC_MODE2_SIZE; j++) {
78             int first  = aic_mode2_vlc_syms[i][j] >> 4;
79             int second = aic_mode2_vlc_syms[i][j] & 0xF;
80             if (HAVE_BIGENDIAN)
81                 syms[j] = (first << 8) | second;
82             else
83                 syms[j] = first | (second << 8);
84         }
85         aic_mode2_vlc[i].table           = &aic_mode2_table[offset];
86         aic_mode2_vlc[i].table_allocated = FF_ARRAY_ELEMS(aic_mode2_table) - offset;
87         ff_init_vlc_from_lengths(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
88                                  aic_mode2_vlc_bits[i], 1,
89                                  syms, 2, 2, 0, INIT_VLC_STATIC_OVERLONG, NULL);
90         offset += aic_mode2_vlc[i].table_size;
91     }
92     for(i = 0; i < NUM_PTYPE_VLCS; i++){
93         rv40_init_table(&ptype_vlc[i], &offset, PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
94                         ptype_vlc_tabs[i]);
95     }
96     for(i = 0; i < NUM_BTYPE_VLCS; i++){
97         rv40_init_table(&btype_vlc[i], &offset, BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
98                         btype_vlc_tabs[i]);
99     }
100 }
101
102 /**
103  * Get stored dimension from bitstream.
104  *
105  * If the width/height is the standard one then it's coded as a 3-bit index.
106  * Otherwise it is coded as escaped 8-bit portions.
107  */
108 static int get_dimension(GetBitContext *gb, const int *dim)
109 {
110     int t   = get_bits(gb, 3);
111     int val = dim[t];
112     if(val < 0)
113         val = dim[get_bits1(gb) - val];
114     if(!val){
115         do{
116             if (get_bits_left(gb) < 8)
117                 return AVERROR_INVALIDDATA;
118             t = get_bits(gb, 8);
119             val += t << 2;
120         }while(t == 0xFF);
121     }
122     return val;
123 }
124
125 /**
126  * Get encoded picture size - usually this is called from rv40_parse_slice_header.
127  */
128 static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
129 {
130     *w = get_dimension(gb, rv40_standard_widths);
131     *h = get_dimension(gb, rv40_standard_heights);
132 }
133
134 static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
135 {
136     int mb_bits;
137     int w = r->s.width, h = r->s.height;
138     int mb_size;
139     int ret;
140
141     memset(si, 0, sizeof(SliceInfo));
142     if(get_bits1(gb))
143         return AVERROR_INVALIDDATA;
144     si->type = get_bits(gb, 2);
145     if(si->type == 1) si->type = 0;
146     si->quant = get_bits(gb, 5);
147     if(get_bits(gb, 2))
148         return AVERROR_INVALIDDATA;
149     si->vlc_set = get_bits(gb, 2);
150     skip_bits1(gb);
151     si->pts = get_bits(gb, 13);
152     if(!si->type || !get_bits1(gb))
153         rv40_parse_picture_size(gb, &w, &h);
154     if ((ret = av_image_check_size(w, h, 0, r->s.avctx)) < 0)
155         return ret;
156     si->width  = w;
157     si->height = h;
158     mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
159     mb_bits = ff_rv34_get_start_offset(gb, mb_size);
160     si->start = get_bits(gb, mb_bits);
161
162     return 0;
163 }
164
165 /**
166  * Decode 4x4 intra types array.
167  */
168 static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
169 {
170     MpegEncContext *s = &r->s;
171     int i, j, k, v;
172     int A, B, C;
173     int pattern;
174     int8_t *ptr;
175
176     for(i = 0; i < 4; i++, dst += r->intra_types_stride){
177         if(!i && s->first_slice_line){
178             pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
179             dst[0] = (pattern >> 2) & 2;
180             dst[1] = (pattern >> 1) & 2;
181             dst[2] =  pattern       & 2;
182             dst[3] = (pattern << 1) & 2;
183             continue;
184         }
185         ptr = dst;
186         for(j = 0; j < 4; j++){
187             /* Coefficients are read using VLC chosen by the prediction pattern
188              * The first one (used for retrieving a pair of coefficients) is
189              * constructed from the top, top right and left coefficients
190              * The second one (used for retrieving only one coefficient) is
191              * top + 10 * left.
192              */
193             A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
194             B = ptr[-r->intra_types_stride];
195             C = ptr[-1];
196             pattern = A + B * (1 << 4) + C * (1 << 8);
197             for(k = 0; k < MODE2_PATTERNS_NUM; k++)
198                 if(pattern == rv40_aic_table_index[k])
199                     break;
200             if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
201                 AV_WN16(ptr, get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2));
202                 ptr += 2;
203                 j++;
204             }else{
205                 if(B != -1 && C != -1)
206                     v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
207                 else{ // tricky decoding
208                     v = 0;
209                     switch(C){
210                     case -1: // code 0 -> 1, 1 -> 0
211                         if(B < 2)
212                             v = get_bits1(gb) ^ 1;
213                         break;
214                     case  0:
215                     case  2: // code 0 -> 2, 1 -> 0
216                         v = (get_bits1(gb) ^ 1) << 1;
217                         break;
218                     }
219                 }
220                 *ptr++ = v;
221             }
222         }
223     }
224     return 0;
225 }
226
227 /**
228  * Decode macroblock information.
229  */
230 static int rv40_decode_mb_info(RV34DecContext *r)
231 {
232     MpegEncContext *s = &r->s;
233     GetBitContext *gb = &s->gb;
234     int q, i;
235     int prev_type = 0;
236     int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
237
238     if(!r->s.mb_skip_run) {
239         r->s.mb_skip_run = get_interleaved_ue_golomb(gb) + 1;
240         if(r->s.mb_skip_run > (unsigned)s->mb_num)
241             return -1;
242     }
243
244     if(--r->s.mb_skip_run)
245          return RV34_MB_SKIP;
246
247     if(r->avail_cache[6-4]){
248         int blocks[RV34_MB_TYPES] = {0};
249         int count = 0;
250         if(r->avail_cache[6-1])
251             blocks[r->mb_type[mb_pos - 1]]++;
252         blocks[r->mb_type[mb_pos - s->mb_stride]]++;
253         if(r->avail_cache[6-2])
254             blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
255         if(r->avail_cache[6-5])
256             blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
257         for(i = 0; i < RV34_MB_TYPES; i++){
258             if(blocks[i] > count){
259                 count = blocks[i];
260                 prev_type = i;
261                 if(count>1)
262                     break;
263             }
264         }
265     } else if (r->avail_cache[6-1])
266         prev_type = r->mb_type[mb_pos - 1];
267
268     if(s->pict_type == AV_PICTURE_TYPE_P){
269         prev_type = block_num_to_ptype_vlc_num[prev_type];
270         q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
271         if(q < PBTYPE_ESCAPE)
272             return q;
273         q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
274         av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
275     }else{
276         prev_type = block_num_to_btype_vlc_num[prev_type];
277         q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
278         if(q < PBTYPE_ESCAPE)
279             return q;
280         q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
281         av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
282     }
283     return 0;
284 }
285
286 enum RV40BlockPos{
287     POS_CUR,
288     POS_TOP,
289     POS_LEFT,
290     POS_BOTTOM,
291 };
292
293 #define MASK_CUR          0x0001
294 #define MASK_RIGHT        0x0008
295 #define MASK_BOTTOM       0x0010
296 #define MASK_TOP          0x1000
297 #define MASK_Y_TOP_ROW    0x000F
298 #define MASK_Y_LAST_ROW   0xF000
299 #define MASK_Y_LEFT_COL   0x1111
300 #define MASK_Y_RIGHT_COL  0x8888
301 #define MASK_C_TOP_ROW    0x0003
302 #define MASK_C_LAST_ROW   0x000C
303 #define MASK_C_LEFT_COL   0x0005
304 #define MASK_C_RIGHT_COL  0x000A
305
306 static const int neighbour_offs_x[4] = { 0,  0, -1, 0 };
307 static const int neighbour_offs_y[4] = { 0, -1,  0, 1 };
308
309 static void rv40_adaptive_loop_filter(RV34DSPContext *rdsp,
310                                       uint8_t *src, int stride, int dmode,
311                                       int lim_q1, int lim_p1,
312                                       int alpha, int beta, int beta2,
313                                       int chroma, int edge, int dir)
314 {
315     int filter_p1, filter_q1;
316     int strong;
317     int lims;
318
319     strong = rdsp->rv40_loop_filter_strength[dir](src, stride, beta, beta2,
320                                                   edge, &filter_p1, &filter_q1);
321
322     lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
323
324     if (strong) {
325         rdsp->rv40_strong_loop_filter[dir](src, stride, alpha,
326                                            lims, dmode, chroma);
327     } else if (filter_p1 & filter_q1) {
328         rdsp->rv40_weak_loop_filter[dir](src, stride, 1, 1, alpha, beta,
329                                          lims, lim_q1, lim_p1);
330     } else if (filter_p1 | filter_q1) {
331         rdsp->rv40_weak_loop_filter[dir](src, stride, filter_p1, filter_q1,
332                                          alpha, beta, lims >> 1, lim_q1 >> 1,
333                                          lim_p1 >> 1);
334     }
335 }
336
337 /**
338  * RV40 loop filtering function
339  */
340 static void rv40_loop_filter(RV34DecContext *r, int row)
341 {
342     MpegEncContext *s = &r->s;
343     int mb_pos, mb_x;
344     int i, j, k;
345     uint8_t *Y, *C;
346     int alpha, beta, betaY, betaC;
347     int q;
348     int mbtype[4];   ///< current macroblock and its neighbours types
349     /**
350      * flags indicating that macroblock can be filtered with strong filter
351      * it is set only for intra coded MB and MB with DCs coded separately
352      */
353     int mb_strong[4];
354     int clip[4];     ///< MB filter clipping value calculated from filtering strength
355     /**
356      * coded block patterns for luma part of current macroblock and its neighbours
357      * Format:
358      * LSB corresponds to the top left block,
359      * each nibble represents one row of subblocks.
360      */
361     int cbp[4];
362     /**
363      * coded block patterns for chroma part of current macroblock and its neighbours
364      * Format is the same as for luma with two subblocks in a row.
365      */
366     int uvcbp[4][2];
367     /**
368      * This mask represents the pattern of luma subblocks that should be filtered
369      * in addition to the coded ones because they lie at the edge of
370      * 8x8 block with different enough motion vectors
371      */
372     unsigned mvmasks[4];
373
374     mb_pos = row * s->mb_stride;
375     for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
376         int mbtype = s->current_picture_ptr->mb_type[mb_pos];
377         if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
378             r->cbp_luma  [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
379         if(IS_INTRA(mbtype))
380             r->cbp_chroma[mb_pos] = 0xFF;
381     }
382     mb_pos = row * s->mb_stride;
383     for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
384         int y_h_deblock, y_v_deblock;
385         int c_v_deblock[2], c_h_deblock[2];
386         int clip_left;
387         int avail[4];
388         unsigned y_to_deblock;
389         int c_to_deblock[2];
390
391         q = s->current_picture_ptr->qscale_table[mb_pos];
392         alpha = rv40_alpha_tab[q];
393         beta  = rv40_beta_tab [q];
394         betaY = betaC = beta * 3;
395         if(s->width * s->height <= 176*144)
396             betaY += beta;
397
398         avail[0] = 1;
399         avail[1] = row;
400         avail[2] = mb_x;
401         avail[3] = row < s->mb_height - 1;
402         for(i = 0; i < 4; i++){
403             if(avail[i]){
404                 int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
405                 mvmasks[i] = r->deblock_coefs[pos];
406                 mbtype [i] = s->current_picture_ptr->mb_type[pos];
407                 cbp    [i] = r->cbp_luma[pos];
408                 uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
409                 uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
410             }else{
411                 mvmasks[i] = 0;
412                 mbtype [i] = mbtype[0];
413                 cbp    [i] = 0;
414                 uvcbp[i][0] = uvcbp[i][1] = 0;
415             }
416             mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
417             clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
418         }
419         y_to_deblock =  mvmasks[POS_CUR]
420                      | (mvmasks[POS_BOTTOM] << 16);
421         /* This pattern contains bits signalling that horizontal edges of
422          * the current block can be filtered.
423          * That happens when either of adjacent subblocks is coded or lies on
424          * the edge of 8x8 blocks with motion vectors differing by more than
425          * 3/4 pel in any component (any edge orientation for some reason).
426          */
427         y_h_deblock =   y_to_deblock
428                     | ((cbp[POS_CUR]                           <<  4) & ~MASK_Y_TOP_ROW)
429                     | ((cbp[POS_TOP]        & MASK_Y_LAST_ROW) >> 12);
430         /* This pattern contains bits signalling that vertical edges of
431          * the current block can be filtered.
432          * That happens when either of adjacent subblocks is coded or lies on
433          * the edge of 8x8 blocks with motion vectors differing by more than
434          * 3/4 pel in any component (any edge orientation for some reason).
435          */
436         y_v_deblock =   y_to_deblock
437                     | ((cbp[POS_CUR]                      << 1) & ~MASK_Y_LEFT_COL)
438                     | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
439         if(!mb_x)
440             y_v_deblock &= ~MASK_Y_LEFT_COL;
441         if(!row)
442             y_h_deblock &= ~MASK_Y_TOP_ROW;
443         if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
444             y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
445         /* Calculating chroma patterns is similar and easier since there is
446          * no motion vector pattern for them.
447          */
448         for(i = 0; i < 2; i++){
449             c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
450             c_v_deblock[i] =   c_to_deblock[i]
451                            | ((uvcbp[POS_CUR] [i]                       << 1) & ~MASK_C_LEFT_COL)
452                            | ((uvcbp[POS_LEFT][i]   & MASK_C_RIGHT_COL) >> 1);
453             c_h_deblock[i] =   c_to_deblock[i]
454                            | ((uvcbp[POS_TOP][i]    & MASK_C_LAST_ROW)  >> 2)
455                            |  (uvcbp[POS_CUR][i]                        << 2);
456             if(!mb_x)
457                 c_v_deblock[i] &= ~MASK_C_LEFT_COL;
458             if(!row)
459                 c_h_deblock[i] &= ~MASK_C_TOP_ROW;
460             if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
461                 c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
462         }
463
464         for(j = 0; j < 16; j += 4){
465             Y = s->current_picture_ptr->f->data[0] + mb_x*16 + (row*16 + j) * s->linesize;
466             for(i = 0; i < 4; i++, Y += 4){
467                 int ij = i + j;
468                 int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
469                 int dither = j ? ij : i*4;
470
471                 // if bottom block is coded then we can filter its top edge
472                 // (or bottom edge of this block, which is the same)
473                 if(y_h_deblock & (MASK_BOTTOM << ij)){
474                     rv40_adaptive_loop_filter(&r->rdsp, Y+4*s->linesize,
475                                               s->linesize, dither,
476                                               y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
477                                               clip_cur, alpha, beta, betaY,
478                                               0, 0, 0);
479                 }
480                 // filter left block edge in ordinary mode (with low filtering strength)
481                 if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
482                     if(!i)
483                         clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
484                     else
485                         clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
486                     rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
487                                               clip_cur,
488                                               clip_left,
489                                               alpha, beta, betaY, 0, 0, 1);
490                 }
491                 // filter top edge of the current macroblock when filtering strength is high
492                 if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
493                     rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
494                                        clip_cur,
495                                        mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
496                                        alpha, beta, betaY, 0, 1, 0);
497                 }
498                 // filter left block edge in edge mode (with high filtering strength)
499                 if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
500                     clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
501                     rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
502                                        clip_cur,
503                                        clip_left,
504                                        alpha, beta, betaY, 0, 1, 1);
505                 }
506             }
507         }
508         for(k = 0; k < 2; k++){
509             for(j = 0; j < 2; j++){
510                 C = s->current_picture_ptr->f->data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
511                 for(i = 0; i < 2; i++, C += 4){
512                     int ij = i + j*2;
513                     int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
514                     if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
515                         int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
516                         rv40_adaptive_loop_filter(&r->rdsp, C+4*s->uvlinesize, s->uvlinesize, i*8,
517                                            clip_bot,
518                                            clip_cur,
519                                            alpha, beta, betaC, 1, 0, 0);
520                     }
521                     if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
522                         if(!i)
523                             clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
524                         else
525                             clip_left = c_to_deblock[k]    & (MASK_CUR << (ij-1))  ? clip[POS_CUR]  : 0;
526                         rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
527                                            clip_cur,
528                                            clip_left,
529                                            alpha, beta, betaC, 1, 0, 1);
530                     }
531                     if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
532                         int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
533                         rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, i*8,
534                                            clip_cur,
535                                            clip_top,
536                                            alpha, beta, betaC, 1, 1, 0);
537                     }
538                     if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
539                         clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
540                         rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
541                                            clip_cur,
542                                            clip_left,
543                                            alpha, beta, betaC, 1, 1, 1);
544                     }
545                 }
546             }
547         }
548     }
549 }
550
551 /**
552  * Initialize decoder.
553  */
554 static av_cold int rv40_decode_init(AVCodecContext *avctx)
555 {
556     RV34DecContext *r = avctx->priv_data;
557     int ret;
558
559     r->rv30 = 0;
560     if ((ret = ff_rv34_decode_init(avctx)) < 0)
561         return ret;
562     if(!aic_top_vlc.bits)
563         rv40_init_tables();
564     r->parse_slice_header = rv40_parse_slice_header;
565     r->decode_intra_types = rv40_decode_intra_types;
566     r->decode_mb_info     = rv40_decode_mb_info;
567     r->loop_filter        = rv40_loop_filter;
568     r->luma_dc_quant_i = rv40_luma_dc_quant[0];
569     r->luma_dc_quant_p = rv40_luma_dc_quant[1];
570     ff_rv40dsp_init(&r->rdsp);
571     return 0;
572 }
573
574 const AVCodec ff_rv40_decoder = {
575     .name                  = "rv40",
576     .long_name             = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
577     .type                  = AVMEDIA_TYPE_VIDEO,
578     .id                    = AV_CODEC_ID_RV40,
579     .priv_data_size        = sizeof(RV34DecContext),
580     .init                  = rv40_decode_init,
581     .close                 = ff_rv34_decode_end,
582     .decode                = ff_rv34_decode_frame,
583     .capabilities          = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
584                              AV_CODEC_CAP_FRAME_THREADS,
585     .flush                 = ff_mpeg_flush,
586     .pix_fmts              = (const enum AVPixelFormat[]) {
587         AV_PIX_FMT_YUV420P,
588         AV_PIX_FMT_NONE
589     },
590     .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_update_thread_context),
591     .caps_internal         = FF_CODEC_CAP_ALLOCATE_PROGRESS,
592 };