]> git.sesse.net Git - ffmpeg/blob - libavcodec/vc2enc.c
avfilter/vf_psnr: remove unnecessary check
[ffmpeg] / libavcodec / vc2enc.c
1 /*
2  * Copyright (C) 2016 Open Broadcast Systems Ltd.
3  * Author        2016 Rostislav Pehlivanov <atomnuker@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include "libavutil/pixdesc.h"
23 #include "libavutil/opt.h"
24 #include "dirac.h"
25 #include "put_bits.h"
26 #include "internal.h"
27 #include "version.h"
28
29 #include "vc2enc_dwt.h"
30 #include "diractab.h"
31
32 /* The limited size resolution of each slice forces us to do this */
33 #define SSIZE_ROUND(b) (FFALIGN((b), s->size_scaler) + 4 + s->prefix_bytes)
34
35 /* Decides the cutoff point in # of slices to distribute the leftover bytes */
36 #define SLICE_REDIST_TOTAL 150
37
38 typedef struct VC2BaseVideoFormat {
39     enum AVPixelFormat pix_fmt;
40     AVRational time_base;
41     int width, height, interlaced, level;
42     const char *name;
43 } VC2BaseVideoFormat;
44
45 static const VC2BaseVideoFormat base_video_fmts[] = {
46     { 0 }, /* Custom format, here just to make indexing equal to base_vf */
47     { AV_PIX_FMT_YUV420P,   { 1001, 15000 },  176,  120, 0, 1,     "QSIF525" },
48     { AV_PIX_FMT_YUV420P,   {    2,    25 },  176,  144, 0, 1,     "QCIF"    },
49     { AV_PIX_FMT_YUV420P,   { 1001, 15000 },  352,  240, 0, 1,     "SIF525"  },
50     { AV_PIX_FMT_YUV420P,   {    2,    25 },  352,  288, 0, 1,     "CIF"     },
51     { AV_PIX_FMT_YUV420P,   { 1001, 15000 },  704,  480, 0, 1,     "4SIF525" },
52     { AV_PIX_FMT_YUV420P,   {    2,    25 },  704,  576, 0, 1,     "4CIF"    },
53
54     { AV_PIX_FMT_YUV422P10, { 1001, 30000 },  720,  480, 1, 2,   "SD480I-60" },
55     { AV_PIX_FMT_YUV422P10, {    1,    25 },  720,  576, 1, 2,   "SD576I-50" },
56
57     { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1280,  720, 0, 3,  "HD720P-60"  },
58     { AV_PIX_FMT_YUV422P10, {    1,    50 }, 1280,  720, 0, 3,  "HD720P-50"  },
59     { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 1920, 1080, 1, 3,  "HD1080I-60" },
60     { AV_PIX_FMT_YUV422P10, {    1,    25 }, 1920, 1080, 1, 3,  "HD1080I-50" },
61     { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1920, 1080, 0, 3,  "HD1080P-60" },
62     { AV_PIX_FMT_YUV422P10, {    1,    50 }, 1920, 1080, 0, 3,  "HD1080P-50" },
63
64     { AV_PIX_FMT_YUV444P12, {    1,    24 }, 2048, 1080, 0, 4,        "DC2K" },
65     { AV_PIX_FMT_YUV444P12, {    1,    24 }, 4096, 2160, 0, 5,        "DC4K" },
66
67     { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 3840, 2160, 0, 6, "UHDTV 4K-60" },
68     { AV_PIX_FMT_YUV422P10, {    1,    50 }, 3840, 2160, 0, 6, "UHDTV 4K-50" },
69
70     { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 7680, 4320, 0, 7, "UHDTV 8K-60" },
71     { AV_PIX_FMT_YUV422P10, {    1,    50 }, 7680, 4320, 0, 7, "UHDTV 8K-50" },
72
73     { AV_PIX_FMT_YUV422P10, { 1001, 24000 }, 1920, 1080, 0, 3,  "HD1080P-24" },
74     { AV_PIX_FMT_YUV422P10, { 1001, 30000 },  720,  486, 1, 2,  "SD Pro486"  },
75 };
76 static const int base_video_fmts_len = FF_ARRAY_ELEMS(base_video_fmts);
77
78 enum VC2_QM {
79     VC2_QM_DEF = 0,
80     VC2_QM_COL,
81     VC2_QM_FLAT,
82
83     VC2_QM_NB
84 };
85
86 typedef struct SubBand {
87     dwtcoef *buf;
88     ptrdiff_t stride;
89     int width;
90     int height;
91 } SubBand;
92
93 typedef struct Plane {
94     SubBand band[MAX_DWT_LEVELS][4];
95     dwtcoef *coef_buf;
96     int width;
97     int height;
98     int dwt_width;
99     int dwt_height;
100     ptrdiff_t coef_stride;
101 } Plane;
102
103 typedef struct SliceArgs {
104     PutBitContext pb;
105     int cache[DIRAC_MAX_QUANT_INDEX];
106     void *ctx;
107     int x;
108     int y;
109     int quant_idx;
110     int bits_ceil;
111     int bits_floor;
112     int bytes;
113 } SliceArgs;
114
115 typedef struct TransformArgs {
116     void *ctx;
117     Plane *plane;
118     void *idata;
119     ptrdiff_t istride;
120     int field;
121     VC2TransformContext t;
122 } TransformArgs;
123
124 typedef struct VC2EncContext {
125     AVClass *av_class;
126     PutBitContext pb;
127     Plane plane[3];
128     AVCodecContext *avctx;
129     DiracVersionInfo ver;
130
131     SliceArgs *slice_args;
132     TransformArgs transform_args[3];
133
134     /* For conversion from unsigned pixel values to signed */
135     int diff_offset;
136     int bpp;
137     int bpp_idx;
138
139     /* Picture number */
140     uint32_t picture_number;
141
142     /* Base video format */
143     int base_vf;
144     int level;
145     int profile;
146
147     /* Quantization matrix */
148     uint8_t quant[MAX_DWT_LEVELS][4];
149     int custom_quant_matrix;
150
151     /* Division LUT */
152     uint32_t qmagic_lut[116][2];
153
154     int num_x; /* #slices horizontally */
155     int num_y; /* #slices vertically */
156     int prefix_bytes;
157     int size_scaler;
158     int chroma_x_shift;
159     int chroma_y_shift;
160
161     /* Rate control stuff */
162     int frame_max_bytes;
163     int slice_max_bytes;
164     int slice_min_bytes;
165     int q_ceil;
166     int q_avg;
167
168     /* Options */
169     double tolerance;
170     int wavelet_idx;
171     int wavelet_depth;
172     int strict_compliance;
173     int slice_height;
174     int slice_width;
175     int interlaced;
176     enum VC2_QM quant_matrix;
177
178     /* Parse code state */
179     uint32_t next_parse_offset;
180     enum DiracParseCodes last_parse_code;
181 } VC2EncContext;
182
183 static av_always_inline void put_vc2_ue_uint(PutBitContext *pb, uint32_t val)
184 {
185     int i;
186     int pbits = 0, bits = 0, topbit = 1, maxval = 1;
187
188     if (!val++) {
189         put_bits(pb, 1, 1);
190         return;
191     }
192
193     while (val > maxval) {
194         topbit <<= 1;
195         maxval <<= 1;
196         maxval |=  1;
197     }
198
199     bits = ff_log2(topbit);
200
201     for (i = 0; i < bits; i++) {
202         topbit >>= 1;
203         pbits <<= 2;
204         if (val & topbit)
205             pbits |= 0x1;
206     }
207
208     put_bits(pb, bits*2 + 1, (pbits << 1) | 1);
209 }
210
211 static av_always_inline int count_vc2_ue_uint(uint32_t val)
212 {
213     int topbit = 1, maxval = 1;
214
215     if (!val++)
216         return 1;
217
218     while (val > maxval) {
219         topbit <<= 1;
220         maxval <<= 1;
221         maxval |=  1;
222     }
223
224     return ff_log2(topbit)*2 + 1;
225 }
226
227 /* VC-2 10.4 - parse_info() */
228 static void encode_parse_info(VC2EncContext *s, enum DiracParseCodes pcode)
229 {
230     uint32_t cur_pos, dist;
231
232     align_put_bits(&s->pb);
233
234     cur_pos = put_bits_count(&s->pb) >> 3;
235
236     /* Magic string */
237     ff_put_string(&s->pb, "BBCD", 0);
238
239     /* Parse code */
240     put_bits(&s->pb, 8, pcode);
241
242     /* Next parse offset */
243     dist = cur_pos - s->next_parse_offset;
244     AV_WB32(s->pb.buf + s->next_parse_offset + 5, dist);
245     s->next_parse_offset = cur_pos;
246     put_bits32(&s->pb, pcode == DIRAC_PCODE_END_SEQ ? 13 : 0);
247
248     /* Last parse offset */
249     put_bits32(&s->pb, s->last_parse_code == DIRAC_PCODE_END_SEQ ? 13 : dist);
250
251     s->last_parse_code = pcode;
252 }
253
254 /* VC-2 11.1 - parse_parameters()
255  * The level dictates what the decoder should expect in terms of resolution
256  * and allows it to quickly reject whatever it can't support. Remember,
257  * this codec kinda targets cheapo FPGAs without much memory. Unfortunately
258  * it also limits us greatly in our choice of formats, hence the flag to disable
259  * strict_compliance */
260 static void encode_parse_params(VC2EncContext *s)
261 {
262     put_vc2_ue_uint(&s->pb, s->ver.major); /* VC-2 demands this to be 2 */
263     put_vc2_ue_uint(&s->pb, s->ver.minor); /* ^^ and this to be 0       */
264     put_vc2_ue_uint(&s->pb, s->profile);   /* 3 to signal HQ profile    */
265     put_vc2_ue_uint(&s->pb, s->level);     /* 3 - 1080/720, 6 - 4K      */
266 }
267
268 /* VC-2 11.3 - frame_size() */
269 static void encode_frame_size(VC2EncContext *s)
270 {
271     put_bits(&s->pb, 1, !s->strict_compliance);
272     if (!s->strict_compliance) {
273         AVCodecContext *avctx = s->avctx;
274         put_vc2_ue_uint(&s->pb, avctx->width);
275         put_vc2_ue_uint(&s->pb, avctx->height);
276     }
277 }
278
279 /* VC-2 11.3.3 - color_diff_sampling_format() */
280 static void encode_sample_fmt(VC2EncContext *s)
281 {
282     put_bits(&s->pb, 1, !s->strict_compliance);
283     if (!s->strict_compliance) {
284         int idx;
285         if (s->chroma_x_shift == 1 && s->chroma_y_shift == 0)
286             idx = 1; /* 422 */
287         else if (s->chroma_x_shift == 1 && s->chroma_y_shift == 1)
288             idx = 2; /* 420 */
289         else
290             idx = 0; /* 444 */
291         put_vc2_ue_uint(&s->pb, idx);
292     }
293 }
294
295 /* VC-2 11.3.4 - scan_format() */
296 static void encode_scan_format(VC2EncContext *s)
297 {
298     put_bits(&s->pb, 1, !s->strict_compliance);
299     if (!s->strict_compliance)
300         put_vc2_ue_uint(&s->pb, s->interlaced);
301 }
302
303 /* VC-2 11.3.5 - frame_rate() */
304 static void encode_frame_rate(VC2EncContext *s)
305 {
306     put_bits(&s->pb, 1, !s->strict_compliance);
307     if (!s->strict_compliance) {
308         AVCodecContext *avctx = s->avctx;
309         put_vc2_ue_uint(&s->pb, 0);
310         put_vc2_ue_uint(&s->pb, avctx->time_base.den);
311         put_vc2_ue_uint(&s->pb, avctx->time_base.num);
312     }
313 }
314
315 /* VC-2 11.3.6 - aspect_ratio() */
316 static void encode_aspect_ratio(VC2EncContext *s)
317 {
318     put_bits(&s->pb, 1, !s->strict_compliance);
319     if (!s->strict_compliance) {
320         AVCodecContext *avctx = s->avctx;
321         put_vc2_ue_uint(&s->pb, 0);
322         put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.num);
323         put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.den);
324     }
325 }
326
327 /* VC-2 11.3.7 - clean_area() */
328 static void encode_clean_area(VC2EncContext *s)
329 {
330     put_bits(&s->pb, 1, 0);
331 }
332
333 /* VC-2 11.3.8 - signal_range() */
334 static void encode_signal_range(VC2EncContext *s)
335 {
336     put_bits(&s->pb, 1, !s->strict_compliance);
337     if (!s->strict_compliance)
338         put_vc2_ue_uint(&s->pb, s->bpp_idx);
339 }
340
341 /* VC-2 11.3.9 - color_spec() */
342 static void encode_color_spec(VC2EncContext *s)
343 {
344     AVCodecContext *avctx = s->avctx;
345     put_bits(&s->pb, 1, !s->strict_compliance);
346     if (!s->strict_compliance) {
347         int val;
348         put_vc2_ue_uint(&s->pb, 0);
349
350         /* primaries */
351         put_bits(&s->pb, 1, 1);
352         if (avctx->color_primaries == AVCOL_PRI_BT470BG)
353             val = 2;
354         else if (avctx->color_primaries == AVCOL_PRI_SMPTE170M)
355             val = 1;
356         else if (avctx->color_primaries == AVCOL_PRI_SMPTE240M)
357             val = 1;
358         else
359             val = 0;
360         put_vc2_ue_uint(&s->pb, val);
361
362         /* color matrix */
363         put_bits(&s->pb, 1, 1);
364         if (avctx->colorspace == AVCOL_SPC_RGB)
365             val = 3;
366         else if (avctx->colorspace == AVCOL_SPC_YCOCG)
367             val = 2;
368         else if (avctx->colorspace == AVCOL_SPC_BT470BG)
369             val = 1;
370         else
371             val = 0;
372         put_vc2_ue_uint(&s->pb, val);
373
374         /* transfer function */
375         put_bits(&s->pb, 1, 1);
376         if (avctx->color_trc == AVCOL_TRC_LINEAR)
377             val = 2;
378         else if (avctx->color_trc == AVCOL_TRC_BT1361_ECG)
379             val = 1;
380         else
381             val = 0;
382         put_vc2_ue_uint(&s->pb, val);
383     }
384 }
385
386 /* VC-2 11.3 - source_parameters() */
387 static void encode_source_params(VC2EncContext *s)
388 {
389     encode_frame_size(s);
390     encode_sample_fmt(s);
391     encode_scan_format(s);
392     encode_frame_rate(s);
393     encode_aspect_ratio(s);
394     encode_clean_area(s);
395     encode_signal_range(s);
396     encode_color_spec(s);
397 }
398
399 /* VC-2 11 - sequence_header() */
400 static void encode_seq_header(VC2EncContext *s)
401 {
402     align_put_bits(&s->pb);
403     encode_parse_params(s);
404     put_vc2_ue_uint(&s->pb, s->base_vf);
405     encode_source_params(s);
406     put_vc2_ue_uint(&s->pb, s->interlaced); /* Frames or fields coding */
407 }
408
409 /* VC-2 12.1 - picture_header() */
410 static void encode_picture_header(VC2EncContext *s)
411 {
412     align_put_bits(&s->pb);
413     put_bits32(&s->pb, s->picture_number++);
414 }
415
416 /* VC-2 12.3.4.1 - slice_parameters() */
417 static void encode_slice_params(VC2EncContext *s)
418 {
419     put_vc2_ue_uint(&s->pb, s->num_x);
420     put_vc2_ue_uint(&s->pb, s->num_y);
421     put_vc2_ue_uint(&s->pb, s->prefix_bytes);
422     put_vc2_ue_uint(&s->pb, s->size_scaler);
423 }
424
425 /* 1st idx = LL, second - vertical, third - horizontal, fourth - total */
426 static const uint8_t vc2_qm_col_tab[][4] = {
427     {20,  9, 15,  4},
428     { 0,  6,  6,  4},
429     { 0,  3,  3,  5},
430     { 0,  3,  5,  1},
431     { 0, 11, 10, 11}
432 };
433
434 static const uint8_t vc2_qm_flat_tab[][4] = {
435     { 0,  0,  0,  0},
436     { 0,  0,  0,  0},
437     { 0,  0,  0,  0},
438     { 0,  0,  0,  0},
439     { 0,  0,  0,  0}
440 };
441
442 static void init_quant_matrix(VC2EncContext *s)
443 {
444     int level, orientation;
445
446     if (s->wavelet_depth <= 4 && s->quant_matrix == VC2_QM_DEF) {
447         s->custom_quant_matrix = 0;
448         for (level = 0; level < s->wavelet_depth; level++) {
449             s->quant[level][0] = ff_dirac_default_qmat[s->wavelet_idx][level][0];
450             s->quant[level][1] = ff_dirac_default_qmat[s->wavelet_idx][level][1];
451             s->quant[level][2] = ff_dirac_default_qmat[s->wavelet_idx][level][2];
452             s->quant[level][3] = ff_dirac_default_qmat[s->wavelet_idx][level][3];
453         }
454         return;
455     }
456
457     s->custom_quant_matrix = 1;
458
459     if (s->quant_matrix == VC2_QM_DEF) {
460         for (level = 0; level < s->wavelet_depth; level++) {
461             for (orientation = 0; orientation < 4; orientation++) {
462                 if (level <= 3)
463                     s->quant[level][orientation] = ff_dirac_default_qmat[s->wavelet_idx][level][orientation];
464                 else
465                     s->quant[level][orientation] = vc2_qm_col_tab[level][orientation];
466             }
467         }
468     } else if (s->quant_matrix == VC2_QM_COL) {
469         for (level = 0; level < s->wavelet_depth; level++) {
470             for (orientation = 0; orientation < 4; orientation++) {
471                 s->quant[level][orientation] = vc2_qm_col_tab[level][orientation];
472             }
473         }
474     } else {
475         for (level = 0; level < s->wavelet_depth; level++) {
476             for (orientation = 0; orientation < 4; orientation++) {
477                 s->quant[level][orientation] = vc2_qm_flat_tab[level][orientation];
478             }
479         }
480     }
481 }
482
483 /* VC-2 12.3.4.2 - quant_matrix() */
484 static void encode_quant_matrix(VC2EncContext *s)
485 {
486     int level;
487     put_bits(&s->pb, 1, s->custom_quant_matrix);
488     if (s->custom_quant_matrix) {
489         put_vc2_ue_uint(&s->pb, s->quant[0][0]);
490         for (level = 0; level < s->wavelet_depth; level++) {
491             put_vc2_ue_uint(&s->pb, s->quant[level][1]);
492             put_vc2_ue_uint(&s->pb, s->quant[level][2]);
493             put_vc2_ue_uint(&s->pb, s->quant[level][3]);
494         }
495     }
496 }
497
498 /* VC-2 12.3 - transform_parameters() */
499 static void encode_transform_params(VC2EncContext *s)
500 {
501     put_vc2_ue_uint(&s->pb, s->wavelet_idx);
502     put_vc2_ue_uint(&s->pb, s->wavelet_depth);
503
504     encode_slice_params(s);
505     encode_quant_matrix(s);
506 }
507
508 /* VC-2 12.2 - wavelet_transform() */
509 static void encode_wavelet_transform(VC2EncContext *s)
510 {
511     encode_transform_params(s);
512     align_put_bits(&s->pb);
513 }
514
515 /* VC-2 12 - picture_parse() */
516 static void encode_picture_start(VC2EncContext *s)
517 {
518     align_put_bits(&s->pb);
519     encode_picture_header(s);
520     align_put_bits(&s->pb);
521     encode_wavelet_transform(s);
522 }
523
524 #define QUANT(c, mul, add, shift) (((mul) * (c) + (add)) >> (shift))
525
526 /* VC-2 13.5.5.2 - slice_band() */
527 static void encode_subband(VC2EncContext *s, PutBitContext *pb, int sx, int sy,
528                            SubBand *b, int quant)
529 {
530     int x, y;
531
532     const int left   = b->width  * (sx+0) / s->num_x;
533     const int right  = b->width  * (sx+1) / s->num_x;
534     const int top    = b->height * (sy+0) / s->num_y;
535     const int bottom = b->height * (sy+1) / s->num_y;
536
537     dwtcoef *coeff = b->buf + top * b->stride;
538     const uint64_t q_m = ((uint64_t)(s->qmagic_lut[quant][0])) << 2;
539     const uint64_t q_a = s->qmagic_lut[quant][1];
540     const int q_s = av_log2(ff_dirac_qscale_tab[quant]) + 32;
541
542     for (y = top; y < bottom; y++) {
543         for (x = left; x < right; x++) {
544             uint32_t c_abs = QUANT(FFABS(coeff[x]), q_m, q_a, q_s);
545             put_vc2_ue_uint(pb, c_abs);
546             if (c_abs)
547                 put_bits(pb, 1, coeff[x] < 0);
548         }
549         coeff += b->stride;
550     }
551 }
552
553 static int count_hq_slice(SliceArgs *slice, int quant_idx)
554 {
555     int x, y;
556     uint8_t quants[MAX_DWT_LEVELS][4];
557     int bits = 0, p, level, orientation;
558     VC2EncContext *s = slice->ctx;
559
560     if (slice->cache[quant_idx])
561         return slice->cache[quant_idx];
562
563     bits += 8*s->prefix_bytes;
564     bits += 8; /* quant_idx */
565
566     for (level = 0; level < s->wavelet_depth; level++)
567         for (orientation = !!level; orientation < 4; orientation++)
568             quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0);
569
570     for (p = 0; p < 3; p++) {
571         int bytes_start, bytes_len, pad_s, pad_c;
572         bytes_start = bits >> 3;
573         bits += 8;
574         for (level = 0; level < s->wavelet_depth; level++) {
575             for (orientation = !!level; orientation < 4; orientation++) {
576                 SubBand *b = &s->plane[p].band[level][orientation];
577
578                 const int q_idx = quants[level][orientation];
579                 const uint64_t q_m = ((uint64_t)s->qmagic_lut[q_idx][0]) << 2;
580                 const uint64_t q_a = s->qmagic_lut[q_idx][1];
581                 const int q_s = av_log2(ff_dirac_qscale_tab[q_idx]) + 32;
582
583                 const int left   = b->width  * slice->x    / s->num_x;
584                 const int right  = b->width  *(slice->x+1) / s->num_x;
585                 const int top    = b->height * slice->y    / s->num_y;
586                 const int bottom = b->height *(slice->y+1) / s->num_y;
587
588                 dwtcoef *buf = b->buf + top * b->stride;
589
590                 for (y = top; y < bottom; y++) {
591                     for (x = left; x < right; x++) {
592                         uint32_t c_abs = QUANT(FFABS(buf[x]), q_m, q_a, q_s);
593                         bits += count_vc2_ue_uint(c_abs);
594                         bits += !!c_abs;
595                     }
596                     buf += b->stride;
597                 }
598             }
599         }
600         bits += FFALIGN(bits, 8) - bits;
601         bytes_len = (bits >> 3) - bytes_start - 1;
602         pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler;
603         pad_c = (pad_s*s->size_scaler) - bytes_len;
604         bits += pad_c*8;
605     }
606
607     slice->cache[quant_idx] = bits;
608
609     return bits;
610 }
611
612 /* Approaches the best possible quantizer asymptotically, its kinda exaustive
613  * but we have a LUT to get the coefficient size in bits. Guaranteed to never
614  * overshoot, which is apparently very important when streaming */
615 static int rate_control(AVCodecContext *avctx, void *arg)
616 {
617     SliceArgs *slice_dat = arg;
618     VC2EncContext *s = slice_dat->ctx;
619     const int top = slice_dat->bits_ceil;
620     const int bottom = slice_dat->bits_floor;
621     int quant_buf[2] = {-1, -1};
622     int quant = slice_dat->quant_idx, step = 1;
623     int bits_last, bits = count_hq_slice(slice_dat, quant);
624     while ((bits > top) || (bits < bottom)) {
625         const int signed_step = bits > top ? +step : -step;
626         quant  = av_clip(quant + signed_step, 0, s->q_ceil-1);
627         bits   = count_hq_slice(slice_dat, quant);
628         if (quant_buf[1] == quant) {
629             quant = FFMAX(quant_buf[0], quant);
630             bits  = quant == quant_buf[0] ? bits_last : bits;
631             break;
632         }
633         step         = av_clip(step/2, 1, (s->q_ceil-1)/2);
634         quant_buf[1] = quant_buf[0];
635         quant_buf[0] = quant;
636         bits_last    = bits;
637     }
638     slice_dat->quant_idx = av_clip(quant, 0, s->q_ceil-1);
639     slice_dat->bytes = SSIZE_ROUND(bits >> 3);
640     return 0;
641 }
642
643 static int calc_slice_sizes(VC2EncContext *s)
644 {
645     int i, j, slice_x, slice_y, bytes_left = 0;
646     int bytes_top[SLICE_REDIST_TOTAL] = {0};
647     int64_t total_bytes_needed = 0;
648     int slice_redist_range = FFMIN(SLICE_REDIST_TOTAL, s->num_x*s->num_y);
649     SliceArgs *enc_args = s->slice_args;
650     SliceArgs *top_loc[SLICE_REDIST_TOTAL] = {NULL};
651
652     init_quant_matrix(s);
653
654     for (slice_y = 0; slice_y < s->num_y; slice_y++) {
655         for (slice_x = 0; slice_x < s->num_x; slice_x++) {
656             SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
657             args->ctx = s;
658             args->x   = slice_x;
659             args->y   = slice_y;
660             args->bits_ceil  = s->slice_max_bytes << 3;
661             args->bits_floor = s->slice_min_bytes << 3;
662             memset(args->cache, 0, s->q_ceil*sizeof(*args->cache));
663         }
664     }
665
666     /* First pass - determine baseline slice sizes w.r.t. max_slice_size */
667     s->avctx->execute(s->avctx, rate_control, enc_args, NULL, s->num_x*s->num_y,
668                       sizeof(SliceArgs));
669
670     for (i = 0; i < s->num_x*s->num_y; i++) {
671         SliceArgs *args = &enc_args[i];
672         bytes_left += args->bytes;
673         for (j = 0; j < slice_redist_range; j++) {
674             if (args->bytes > bytes_top[j]) {
675                 bytes_top[j] = args->bytes;
676                 top_loc[j]   = args;
677                 break;
678             }
679         }
680     }
681
682     bytes_left = s->frame_max_bytes - bytes_left;
683
684     /* Second pass - distribute leftover bytes */
685     while (bytes_left > 0) {
686         int distributed = 0;
687         for (i = 0; i < slice_redist_range; i++) {
688             SliceArgs *args;
689             int bits, bytes, diff, prev_bytes, new_idx;
690             if (bytes_left <= 0)
691                 break;
692             if (!top_loc[i] || !top_loc[i]->quant_idx)
693                 break;
694             args = top_loc[i];
695             prev_bytes = args->bytes;
696             new_idx = FFMAX(args->quant_idx - 1, 0);
697             bits  = count_hq_slice(args, new_idx);
698             bytes = SSIZE_ROUND(bits >> 3);
699             diff  = bytes - prev_bytes;
700             if ((bytes_left - diff) > 0) {
701                 args->quant_idx = new_idx;
702                 args->bytes = bytes;
703                 bytes_left -= diff;
704                 distributed++;
705             }
706         }
707         if (!distributed)
708             break;
709     }
710
711     for (i = 0; i < s->num_x*s->num_y; i++) {
712         SliceArgs *args = &enc_args[i];
713         total_bytes_needed += args->bytes;
714         s->q_avg = (s->q_avg + args->quant_idx)/2;
715     }
716
717     return total_bytes_needed;
718 }
719
720 /* VC-2 13.5.3 - hq_slice */
721 static int encode_hq_slice(AVCodecContext *avctx, void *arg)
722 {
723     SliceArgs *slice_dat = arg;
724     VC2EncContext *s = slice_dat->ctx;
725     PutBitContext *pb = &slice_dat->pb;
726     const int slice_x = slice_dat->x;
727     const int slice_y = slice_dat->y;
728     const int quant_idx = slice_dat->quant_idx;
729     const int slice_bytes_max = slice_dat->bytes;
730     uint8_t quants[MAX_DWT_LEVELS][4];
731     int p, level, orientation;
732
733     /* The reference decoder ignores it, and its typical length is 0 */
734     memset(put_bits_ptr(pb), 0, s->prefix_bytes);
735     skip_put_bytes(pb, s->prefix_bytes);
736
737     put_bits(pb, 8, quant_idx);
738
739     /* Slice quantization (slice_quantizers() in the specs) */
740     for (level = 0; level < s->wavelet_depth; level++)
741         for (orientation = !!level; orientation < 4; orientation++)
742             quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0);
743
744     /* Luma + 2 Chroma planes */
745     for (p = 0; p < 3; p++) {
746         int bytes_start, bytes_len, pad_s, pad_c;
747         bytes_start = put_bits_count(pb) >> 3;
748         put_bits(pb, 8, 0);
749         for (level = 0; level < s->wavelet_depth; level++) {
750             for (orientation = !!level; orientation < 4; orientation++) {
751                 encode_subband(s, pb, slice_x, slice_y,
752                                &s->plane[p].band[level][orientation],
753                                quants[level][orientation]);
754             }
755         }
756         align_put_bits(pb);
757         bytes_len = (put_bits_count(pb) >> 3) - bytes_start - 1;
758         if (p == 2) {
759             int len_diff = slice_bytes_max - (put_bits_count(pb) >> 3);
760             pad_s = FFALIGN((bytes_len + len_diff), s->size_scaler)/s->size_scaler;
761             pad_c = (pad_s*s->size_scaler) - bytes_len;
762         } else {
763             pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler;
764             pad_c = (pad_s*s->size_scaler) - bytes_len;
765         }
766         pb->buf[bytes_start] = pad_s;
767         flush_put_bits(pb);
768         /* vc2-reference uses that padding that decodes to '0' coeffs */
769         memset(put_bits_ptr(pb), 0xFF, pad_c);
770         skip_put_bytes(pb, pad_c);
771     }
772
773     return 0;
774 }
775
776 /* VC-2 13.5.1 - low_delay_transform_data() */
777 static int encode_slices(VC2EncContext *s)
778 {
779     uint8_t *buf;
780     int slice_x, slice_y, skip = 0;
781     SliceArgs *enc_args = s->slice_args;
782
783     flush_put_bits(&s->pb);
784     buf = put_bits_ptr(&s->pb);
785
786     for (slice_y = 0; slice_y < s->num_y; slice_y++) {
787         for (slice_x = 0; slice_x < s->num_x; slice_x++) {
788             SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x];
789             init_put_bits(&args->pb, buf + skip, args->bytes+s->prefix_bytes);
790             skip += args->bytes;
791         }
792     }
793
794     s->avctx->execute(s->avctx, encode_hq_slice, enc_args, NULL, s->num_x*s->num_y,
795                       sizeof(SliceArgs));
796
797     skip_put_bytes(&s->pb, skip);
798
799     return 0;
800 }
801
802 /*
803  * Transform basics for a 3 level transform
804  * |---------------------------------------------------------------------|
805  * |  LL-0  | HL-0  |                 |                                  |
806  * |--------|-------|      HL-1       |                                  |
807  * |  LH-0  | HH-0  |                 |                                  |
808  * |----------------|-----------------|              HL-2                |
809  * |                |                 |                                  |
810  * |     LH-1       |      HH-1       |                                  |
811  * |                |                 |                                  |
812  * |----------------------------------|----------------------------------|
813  * |                                  |                                  |
814  * |                                  |                                  |
815  * |                                  |                                  |
816  * |              LH-2                |              HH-2                |
817  * |                                  |                                  |
818  * |                                  |                                  |
819  * |                                  |                                  |
820  * |---------------------------------------------------------------------|
821  *
822  * DWT transforms are generally applied by splitting the image in two vertically
823  * and applying a low pass transform on the left part and a corresponding high
824  * pass transform on the right hand side. This is known as the horizontal filter
825  * stage.
826  * After that, the same operation is performed except the image is divided
827  * horizontally, with the high pass on the lower and the low pass on the higher
828  * side.
829  * Therefore, you're left with 4 subdivisions - known as  low-low, low-high,
830  * high-low and high-high. They're referred to as orientations in the decoder
831  * and encoder.
832  *
833  * The LL (low-low) area contains the original image downsampled by the amount
834  * of levels. The rest of the areas can be thought as the details needed
835  * to restore the image perfectly to its original size.
836  */
837 static int dwt_plane(AVCodecContext *avctx, void *arg)
838 {
839     TransformArgs *transform_dat = arg;
840     VC2EncContext *s = transform_dat->ctx;
841     const void *frame_data = transform_dat->idata;
842     const ptrdiff_t linesize = transform_dat->istride;
843     const int field = transform_dat->field;
844     const Plane *p = transform_dat->plane;
845     VC2TransformContext *t = &transform_dat->t;
846     dwtcoef *buf = p->coef_buf;
847     const int idx = s->wavelet_idx;
848     const int skip = 1 + s->interlaced;
849
850     int x, y, level, offset;
851     ptrdiff_t pix_stride = linesize >> (s->bpp - 1);
852
853     if (field == 1) {
854         offset = 0;
855         pix_stride <<= 1;
856     } else if (field == 2) {
857         offset = pix_stride;
858         pix_stride <<= 1;
859     } else {
860         offset = 0;
861     }
862
863     if (s->bpp == 1) {
864         const uint8_t *pix = (const uint8_t *)frame_data + offset;
865         for (y = 0; y < p->height*skip; y+=skip) {
866             for (x = 0; x < p->width; x++) {
867                 buf[x] = pix[x] - s->diff_offset;
868             }
869             memset(&buf[x], 0, (p->coef_stride - p->width)*sizeof(dwtcoef));
870             buf += p->coef_stride;
871             pix += pix_stride;
872         }
873     } else {
874         const uint16_t *pix = (const uint16_t *)frame_data + offset;
875         for (y = 0; y < p->height*skip; y+=skip) {
876             for (x = 0; x < p->width; x++) {
877                 buf[x] = pix[x] - s->diff_offset;
878             }
879             memset(&buf[x], 0, (p->coef_stride - p->width)*sizeof(dwtcoef));
880             buf += p->coef_stride;
881             pix += pix_stride;
882         }
883     }
884
885     memset(buf, 0, p->coef_stride * (p->dwt_height - p->height) * sizeof(dwtcoef));
886
887     for (level = s->wavelet_depth-1; level >= 0; level--) {
888         const SubBand *b = &p->band[level][0];
889         t->vc2_subband_dwt[idx](t, p->coef_buf, p->coef_stride,
890                                 b->width, b->height);
891     }
892
893     return 0;
894 }
895
896 static int encode_frame(VC2EncContext *s, AVPacket *avpkt, const AVFrame *frame,
897                         const char *aux_data, const int header_size, int field)
898 {
899     int i, ret;
900     int64_t max_frame_bytes;
901
902      /* Threaded DWT transform */
903     for (i = 0; i < 3; i++) {
904         s->transform_args[i].ctx   = s;
905         s->transform_args[i].field = field;
906         s->transform_args[i].plane = &s->plane[i];
907         s->transform_args[i].idata = frame->data[i];
908         s->transform_args[i].istride = frame->linesize[i];
909     }
910     s->avctx->execute(s->avctx, dwt_plane, s->transform_args, NULL, 3,
911                       sizeof(TransformArgs));
912
913     /* Calculate per-slice quantizers and sizes */
914     max_frame_bytes = header_size + calc_slice_sizes(s);
915
916     if (field < 2) {
917         ret = ff_alloc_packet2(s->avctx, avpkt,
918                                max_frame_bytes << s->interlaced,
919                                max_frame_bytes << s->interlaced);
920         if (ret) {
921             av_log(s->avctx, AV_LOG_ERROR, "Error getting output packet.\n");
922             return ret;
923         }
924         init_put_bits(&s->pb, avpkt->data, avpkt->size);
925     }
926
927     /* Sequence header */
928     encode_parse_info(s, DIRAC_PCODE_SEQ_HEADER);
929     encode_seq_header(s);
930
931     /* Encoder version */
932     if (aux_data) {
933         encode_parse_info(s, DIRAC_PCODE_AUX);
934         ff_put_string(&s->pb, aux_data, 1);
935     }
936
937     /* Picture header */
938     encode_parse_info(s, DIRAC_PCODE_PICTURE_HQ);
939     encode_picture_start(s);
940
941     /* Encode slices */
942     encode_slices(s);
943
944     /* End sequence */
945     encode_parse_info(s, DIRAC_PCODE_END_SEQ);
946
947     return 0;
948 }
949
950 static av_cold int vc2_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
951                                       const AVFrame *frame, int *got_packet)
952 {
953     int ret = 0;
954     int slice_ceil, sig_size = 256;
955     VC2EncContext *s = avctx->priv_data;
956     const int bitexact = avctx->flags & AV_CODEC_FLAG_BITEXACT;
957     const char *aux_data = bitexact ? "Lavc" : LIBAVCODEC_IDENT;
958     const int aux_data_size = bitexact ? sizeof("Lavc") : sizeof(LIBAVCODEC_IDENT);
959     const int header_size = 100 + aux_data_size;
960     int64_t r_bitrate = avctx->bit_rate >> (s->interlaced);
961
962     s->avctx = avctx;
963     s->size_scaler = 2;
964     s->prefix_bytes = 0;
965     s->last_parse_code = 0;
966     s->next_parse_offset = 0;
967
968     /* Rate control */
969     s->frame_max_bytes = (av_rescale(r_bitrate, s->avctx->time_base.num,
970                                      s->avctx->time_base.den) >> 3) - header_size;
971     s->slice_max_bytes = slice_ceil = av_rescale(s->frame_max_bytes, 1, s->num_x*s->num_y);
972
973     /* Find an appropriate size scaler */
974     while (sig_size > 255) {
975         int r_size = SSIZE_ROUND(s->slice_max_bytes);
976         if (r_size > slice_ceil) {
977             s->slice_max_bytes -= r_size - slice_ceil;
978             r_size = SSIZE_ROUND(s->slice_max_bytes);
979         }
980         sig_size = r_size/s->size_scaler; /* Signalled slize size */
981         s->size_scaler <<= 1;
982     }
983
984     s->slice_min_bytes = s->slice_max_bytes - s->slice_max_bytes*(s->tolerance/100.0f);
985
986     ret = encode_frame(s, avpkt, frame, aux_data, header_size, s->interlaced);
987     if (ret)
988         return ret;
989     if (s->interlaced) {
990         ret = encode_frame(s, avpkt, frame, aux_data, header_size, 2);
991         if (ret)
992             return ret;
993     }
994
995     flush_put_bits(&s->pb);
996     av_shrink_packet(avpkt, put_bytes_output(&s->pb));
997
998     *got_packet = 1;
999
1000     return 0;
1001 }
1002
1003 static av_cold int vc2_encode_end(AVCodecContext *avctx)
1004 {
1005     int i;
1006     VC2EncContext *s = avctx->priv_data;
1007
1008     av_log(avctx, AV_LOG_INFO, "Qavg: %i\n", s->q_avg);
1009
1010     for (i = 0; i < 3; i++) {
1011         ff_vc2enc_free_transforms(&s->transform_args[i].t);
1012         av_freep(&s->plane[i].coef_buf);
1013     }
1014
1015     av_freep(&s->slice_args);
1016
1017     return 0;
1018 }
1019
1020 static av_cold int vc2_encode_init(AVCodecContext *avctx)
1021 {
1022     Plane *p;
1023     SubBand *b;
1024     int i, level, o, shift, ret;
1025     const AVPixFmtDescriptor *fmt = av_pix_fmt_desc_get(avctx->pix_fmt);
1026     const int depth = fmt->comp[0].depth;
1027     VC2EncContext *s = avctx->priv_data;
1028
1029     s->picture_number = 0;
1030
1031     /* Total allowed quantization range */
1032     s->q_ceil    = DIRAC_MAX_QUANT_INDEX;
1033
1034     s->ver.major = 2;
1035     s->ver.minor = 0;
1036     s->profile   = 3;
1037     s->level     = 3;
1038
1039     s->base_vf   = -1;
1040     s->strict_compliance = 1;
1041
1042     s->q_avg = 0;
1043     s->slice_max_bytes = 0;
1044     s->slice_min_bytes = 0;
1045
1046     /* Mark unknown as progressive */
1047     s->interlaced = !((avctx->field_order == AV_FIELD_UNKNOWN) ||
1048                       (avctx->field_order == AV_FIELD_PROGRESSIVE));
1049
1050     for (i = 0; i < base_video_fmts_len; i++) {
1051         const VC2BaseVideoFormat *fmt = &base_video_fmts[i];
1052         if (avctx->pix_fmt != fmt->pix_fmt)
1053             continue;
1054         if (avctx->time_base.num != fmt->time_base.num)
1055             continue;
1056         if (avctx->time_base.den != fmt->time_base.den)
1057             continue;
1058         if (avctx->width != fmt->width)
1059             continue;
1060         if (avctx->height != fmt->height)
1061             continue;
1062         if (s->interlaced != fmt->interlaced)
1063             continue;
1064         s->base_vf = i;
1065         s->level   = base_video_fmts[i].level;
1066         break;
1067     }
1068
1069     if (s->interlaced)
1070         av_log(avctx, AV_LOG_WARNING, "Interlacing enabled!\n");
1071
1072     if ((s->slice_width  & (s->slice_width  - 1)) ||
1073         (s->slice_height & (s->slice_height - 1))) {
1074         av_log(avctx, AV_LOG_ERROR, "Slice size is not a power of two!\n");
1075         return AVERROR_UNKNOWN;
1076     }
1077
1078     if ((s->slice_width > avctx->width) ||
1079         (s->slice_height > avctx->height)) {
1080         av_log(avctx, AV_LOG_ERROR, "Slice size is bigger than the image!\n");
1081         return AVERROR_UNKNOWN;
1082     }
1083
1084     if (s->base_vf <= 0) {
1085         if (avctx->strict_std_compliance < FF_COMPLIANCE_STRICT) {
1086             s->strict_compliance = s->base_vf = 0;
1087             av_log(avctx, AV_LOG_WARNING, "Format does not strictly comply with VC2 specs\n");
1088         } else {
1089             av_log(avctx, AV_LOG_WARNING, "Given format does not strictly comply with "
1090                    "the specifications, decrease strictness to use it.\n");
1091             return AVERROR_UNKNOWN;
1092         }
1093     } else {
1094         av_log(avctx, AV_LOG_INFO, "Selected base video format = %i (%s)\n",
1095                s->base_vf, base_video_fmts[s->base_vf].name);
1096     }
1097
1098     /* Chroma subsampling */
1099     ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
1100     if (ret)
1101         return ret;
1102
1103     /* Bit depth and color range index */
1104     if (depth == 8 && avctx->color_range == AVCOL_RANGE_JPEG) {
1105         s->bpp = 1;
1106         s->bpp_idx = 1;
1107         s->diff_offset = 128;
1108     } else if (depth == 8 && (avctx->color_range == AVCOL_RANGE_MPEG ||
1109                avctx->color_range == AVCOL_RANGE_UNSPECIFIED)) {
1110         s->bpp = 1;
1111         s->bpp_idx = 2;
1112         s->diff_offset = 128;
1113     } else if (depth == 10) {
1114         s->bpp = 2;
1115         s->bpp_idx = 3;
1116         s->diff_offset = 512;
1117     } else {
1118         s->bpp = 2;
1119         s->bpp_idx = 4;
1120         s->diff_offset = 2048;
1121     }
1122
1123     /* Planes initialization */
1124     for (i = 0; i < 3; i++) {
1125         int w, h;
1126         p = &s->plane[i];
1127         p->width      = avctx->width  >> (i ? s->chroma_x_shift : 0);
1128         p->height     = avctx->height >> (i ? s->chroma_y_shift : 0);
1129         if (s->interlaced)
1130             p->height >>= 1;
1131         p->dwt_width  = w = FFALIGN(p->width,  (1 << s->wavelet_depth));
1132         p->dwt_height = h = FFALIGN(p->height, (1 << s->wavelet_depth));
1133         p->coef_stride = FFALIGN(p->dwt_width, 32);
1134         p->coef_buf = av_mallocz(p->coef_stride*p->dwt_height*sizeof(dwtcoef));
1135         if (!p->coef_buf)
1136             goto alloc_fail;
1137         for (level = s->wavelet_depth-1; level >= 0; level--) {
1138             w = w >> 1;
1139             h = h >> 1;
1140             for (o = 0; o < 4; o++) {
1141                 b = &p->band[level][o];
1142                 b->width  = w;
1143                 b->height = h;
1144                 b->stride = p->coef_stride;
1145                 shift = (o > 1)*b->height*b->stride + (o & 1)*b->width;
1146                 b->buf = p->coef_buf + shift;
1147             }
1148         }
1149
1150         /* DWT init */
1151         if (ff_vc2enc_init_transforms(&s->transform_args[i].t,
1152                                       s->plane[i].coef_stride,
1153                                       s->plane[i].dwt_height,
1154                                       s->slice_width, s->slice_height))
1155             goto alloc_fail;
1156     }
1157
1158     /* Slices */
1159     s->num_x = s->plane[0].dwt_width/s->slice_width;
1160     s->num_y = s->plane[0].dwt_height/s->slice_height;
1161
1162     s->slice_args = av_calloc(s->num_x*s->num_y, sizeof(SliceArgs));
1163     if (!s->slice_args)
1164         goto alloc_fail;
1165
1166     for (i = 0; i < 116; i++) {
1167         const uint64_t qf = ff_dirac_qscale_tab[i];
1168         const uint32_t m = av_log2(qf);
1169         const uint32_t t = (1ULL << (m + 32)) / qf;
1170         const uint32_t r = (t*qf + qf) & UINT32_MAX;
1171         if (!(qf & (qf - 1))) {
1172             s->qmagic_lut[i][0] = 0xFFFFFFFF;
1173             s->qmagic_lut[i][1] = 0xFFFFFFFF;
1174         } else if (r <= 1 << m) {
1175             s->qmagic_lut[i][0] = t + 1;
1176             s->qmagic_lut[i][1] = 0;
1177         } else {
1178             s->qmagic_lut[i][0] = t;
1179             s->qmagic_lut[i][1] = t;
1180         }
1181     }
1182
1183     return 0;
1184
1185 alloc_fail:
1186     vc2_encode_end(avctx);
1187     av_log(avctx, AV_LOG_ERROR, "Unable to allocate memory!\n");
1188     return AVERROR(ENOMEM);
1189 }
1190
1191 #define VC2ENC_FLAGS (AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
1192 static const AVOption vc2enc_options[] = {
1193     {"tolerance",     "Max undershoot in percent", offsetof(VC2EncContext, tolerance), AV_OPT_TYPE_DOUBLE, {.dbl = 5.0f}, 0.0f, 45.0f, VC2ENC_FLAGS, "tolerance"},
1194     {"slice_width",   "Slice width",  offsetof(VC2EncContext, slice_width), AV_OPT_TYPE_INT, {.i64 = 32}, 32, 1024, VC2ENC_FLAGS, "slice_width"},
1195     {"slice_height",  "Slice height", offsetof(VC2EncContext, slice_height), AV_OPT_TYPE_INT, {.i64 = 16}, 8, 1024, VC2ENC_FLAGS, "slice_height"},
1196     {"wavelet_depth", "Transform depth", offsetof(VC2EncContext, wavelet_depth), AV_OPT_TYPE_INT, {.i64 = 4}, 1, 5, VC2ENC_FLAGS, "wavelet_depth"},
1197     {"wavelet_type",  "Transform type",  offsetof(VC2EncContext, wavelet_idx), AV_OPT_TYPE_INT, {.i64 = VC2_TRANSFORM_9_7}, 0, VC2_TRANSFORMS_NB, VC2ENC_FLAGS, "wavelet_idx"},
1198         {"9_7",          "Deslauriers-Dubuc (9,7)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_9_7},    INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
1199         {"5_3",          "LeGall (5,3)",            0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_5_3},    INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
1200         {"haar",         "Haar (with shift)",       0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR_S}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
1201         {"haar_noshift", "Haar (without shift)",    0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR},   INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"},
1202     {"qm", "Custom quantization matrix", offsetof(VC2EncContext, quant_matrix), AV_OPT_TYPE_INT, {.i64 = VC2_QM_DEF}, 0, VC2_QM_NB, VC2ENC_FLAGS, "quant_matrix"},
1203         {"default",   "Default from the specifications", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_DEF}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
1204         {"color",     "Prevents low bitrate discoloration", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_COL}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
1205         {"flat",      "Optimize for PSNR", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_FLAT}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"},
1206     {NULL}
1207 };
1208
1209 static const AVClass vc2enc_class = {
1210     .class_name = "SMPTE VC-2 encoder",
1211     .category = AV_CLASS_CATEGORY_ENCODER,
1212     .option = vc2enc_options,
1213     .item_name = av_default_item_name,
1214     .version = LIBAVUTIL_VERSION_INT
1215 };
1216
1217 static const AVCodecDefault vc2enc_defaults[] = {
1218     { "b",              "600000000"   },
1219     { NULL },
1220 };
1221
1222 static const enum AVPixelFormat allowed_pix_fmts[] = {
1223     AV_PIX_FMT_YUV420P,   AV_PIX_FMT_YUV422P,   AV_PIX_FMT_YUV444P,
1224     AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
1225     AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
1226     AV_PIX_FMT_NONE
1227 };
1228
1229 const AVCodec ff_vc2_encoder = {
1230     .name           = "vc2",
1231     .long_name      = NULL_IF_CONFIG_SMALL("SMPTE VC-2"),
1232     .type           = AVMEDIA_TYPE_VIDEO,
1233     .id             = AV_CODEC_ID_DIRAC,
1234     .priv_data_size = sizeof(VC2EncContext),
1235     .init           = vc2_encode_init,
1236     .close          = vc2_encode_end,
1237     .capabilities   = AV_CODEC_CAP_SLICE_THREADS,
1238     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1239     .encode2        = vc2_encode_frame,
1240     .priv_class     = &vc2enc_class,
1241     .defaults       = vc2enc_defaults,
1242     .pix_fmts       = allowed_pix_fmts
1243 };