]> git.sesse.net Git - ffmpeg/blob - libavfilter/af_flanger.c
avfilter: Constify all AVFilters
[ffmpeg] / libavfilter / af_flanger.c
1 /*
2  * Copyright (c) 2006 Rob Sykes <robs@users.sourceforge.net>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 #include "libavutil/avstring.h"
22 #include "libavutil/opt.h"
23 #include "libavutil/samplefmt.h"
24 #include "avfilter.h"
25 #include "audio.h"
26 #include "internal.h"
27 #include "generate_wave_table.h"
28
29 #define INTERPOLATION_LINEAR    0
30 #define INTERPOLATION_QUADRATIC 1
31
32 typedef struct FlangerContext {
33     const AVClass *class;
34     double delay_min;
35     double delay_depth;
36     double feedback_gain;
37     double delay_gain;
38     double speed;
39     int wave_shape;
40     double channel_phase;
41     int interpolation;
42     double in_gain;
43     int max_samples;
44     uint8_t **delay_buffer;
45     int delay_buf_pos;
46     double *delay_last;
47     float *lfo;
48     int lfo_length;
49     int lfo_pos;
50 } FlangerContext;
51
52 #define OFFSET(x) offsetof(FlangerContext, x)
53 #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
54
55 static const AVOption flanger_options[] = {
56     { "delay", "base delay in milliseconds",        OFFSET(delay_min),   AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 30, A },
57     { "depth", "added swept delay in milliseconds", OFFSET(delay_depth), AV_OPT_TYPE_DOUBLE, {.dbl=2}, 0, 10, A },
58     { "regen", "percentage regeneration (delayed signal feedback)", OFFSET(feedback_gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -95, 95, A },
59     { "width", "percentage of delayed signal mixed with original", OFFSET(delay_gain), AV_OPT_TYPE_DOUBLE, {.dbl=71}, 0, 100, A },
60     { "speed", "sweeps per second (Hz)", OFFSET(speed), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0.1, 10, A },
61     { "shape", "swept wave shape", OFFSET(wave_shape), AV_OPT_TYPE_INT, {.i64=WAVE_SIN}, WAVE_SIN, WAVE_NB-1, A, "type" },
62     { "triangular",  NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_TRI}, 0, 0, A, "type" },
63     { "t",           NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_TRI}, 0, 0, A, "type" },
64     { "sinusoidal",  NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_SIN}, 0, 0, A, "type" },
65     { "s",           NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_SIN}, 0, 0, A, "type" },
66     { "phase", "swept wave percentage phase-shift for multi-channel", OFFSET(channel_phase), AV_OPT_TYPE_DOUBLE, {.dbl=25}, 0, 100, A },
67     { "interp", "delay-line interpolation", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, A, "itype" },
68     { "linear",     NULL, 0, AV_OPT_TYPE_CONST,  {.i64=INTERPOLATION_LINEAR},    0, 0, A, "itype" },
69     { "quadratic",  NULL, 0, AV_OPT_TYPE_CONST,  {.i64=INTERPOLATION_QUADRATIC}, 0, 0, A, "itype" },
70     { NULL }
71 };
72
73 AVFILTER_DEFINE_CLASS(flanger);
74
75 static av_cold int init(AVFilterContext *ctx)
76 {
77     FlangerContext *s = ctx->priv;
78
79     s->feedback_gain /= 100;
80     s->delay_gain    /= 100;
81     s->channel_phase /= 100;
82     s->delay_min     /= 1000;
83     s->delay_depth   /= 1000;
84     s->in_gain        = 1 / (1 + s->delay_gain);
85     s->delay_gain    /= 1 + s->delay_gain;
86     s->delay_gain    *= 1 - fabs(s->feedback_gain);
87
88     return 0;
89 }
90
91 static int query_formats(AVFilterContext *ctx)
92 {
93     AVFilterChannelLayouts *layouts;
94     AVFilterFormats *formats;
95     static const enum AVSampleFormat sample_fmts[] = {
96         AV_SAMPLE_FMT_DBLP, AV_SAMPLE_FMT_NONE
97     };
98     int ret;
99
100     layouts = ff_all_channel_counts();
101     if (!layouts)
102         return AVERROR(ENOMEM);
103     ret = ff_set_common_channel_layouts(ctx, layouts);
104     if (ret < 0)
105         return ret;
106
107     formats = ff_make_format_list(sample_fmts);
108     if (!formats)
109         return AVERROR(ENOMEM);
110     ret = ff_set_common_formats(ctx, formats);
111     if (ret < 0)
112         return ret;
113
114     formats = ff_all_samplerates();
115     if (!formats)
116         return AVERROR(ENOMEM);
117     return ff_set_common_samplerates(ctx, formats);
118 }
119
120 static int config_input(AVFilterLink *inlink)
121 {
122     AVFilterContext *ctx = inlink->dst;
123     FlangerContext *s = ctx->priv;
124
125     s->max_samples = (s->delay_min + s->delay_depth) * inlink->sample_rate + 2.5;
126     s->lfo_length  = inlink->sample_rate / s->speed;
127     s->delay_last  = av_calloc(inlink->channels, sizeof(*s->delay_last));
128     s->lfo         = av_calloc(s->lfo_length, sizeof(*s->lfo));
129     if (!s->lfo || !s->delay_last)
130         return AVERROR(ENOMEM);
131
132     ff_generate_wave_table(s->wave_shape, AV_SAMPLE_FMT_FLT, s->lfo, s->lfo_length,
133                            rint(s->delay_min * inlink->sample_rate),
134                            s->max_samples - 2., 3 * M_PI_2);
135
136     return av_samples_alloc_array_and_samples(&s->delay_buffer, NULL,
137                                               inlink->channels, s->max_samples,
138                                               inlink->format, 0);
139 }
140
141 static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
142 {
143     AVFilterContext *ctx = inlink->dst;
144     FlangerContext *s = ctx->priv;
145     AVFrame *out_frame;
146     int chan, i;
147
148     if (av_frame_is_writable(frame)) {
149         out_frame = frame;
150     } else {
151         out_frame = ff_get_audio_buffer(ctx->outputs[0], frame->nb_samples);
152         if (!out_frame) {
153             av_frame_free(&frame);
154             return AVERROR(ENOMEM);
155         }
156         av_frame_copy_props(out_frame, frame);
157     }
158
159     for (i = 0; i < frame->nb_samples; i++) {
160
161         s->delay_buf_pos = (s->delay_buf_pos + s->max_samples - 1) % s->max_samples;
162
163         for (chan = 0; chan < inlink->channels; chan++) {
164             double *src = (double *)frame->extended_data[chan];
165             double *dst = (double *)out_frame->extended_data[chan];
166             double delayed_0, delayed_1;
167             double delayed;
168             double in, out;
169             int channel_phase = chan * s->lfo_length * s->channel_phase + .5;
170             double delay = s->lfo[(s->lfo_pos + channel_phase) % s->lfo_length];
171             int int_delay = (int)delay;
172             double frac_delay = modf(delay, &delay);
173             double *delay_buffer = (double *)s->delay_buffer[chan];
174
175             in = src[i];
176             delay_buffer[s->delay_buf_pos] = in + s->delay_last[chan] *
177                                                            s->feedback_gain;
178             delayed_0 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples];
179             delayed_1 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples];
180
181             if (s->interpolation == INTERPOLATION_LINEAR) {
182                 delayed = delayed_0 + (delayed_1 - delayed_0) * frac_delay;
183             } else {
184                 double a, b;
185                 double delayed_2 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples];
186                 delayed_2 -= delayed_0;
187                 delayed_1 -= delayed_0;
188                 a = delayed_2 * .5 - delayed_1;
189                 b = delayed_1 *  2 - delayed_2 *.5;
190                 delayed = delayed_0 + (a * frac_delay + b) * frac_delay;
191             }
192
193             s->delay_last[chan] = delayed;
194             out = in * s->in_gain + delayed * s->delay_gain;
195             dst[i] = out;
196         }
197         s->lfo_pos = (s->lfo_pos + 1) % s->lfo_length;
198     }
199
200     if (frame != out_frame)
201         av_frame_free(&frame);
202
203     return ff_filter_frame(ctx->outputs[0], out_frame);
204 }
205
206 static av_cold void uninit(AVFilterContext *ctx)
207 {
208     FlangerContext *s = ctx->priv;
209
210     av_freep(&s->lfo);
211     av_freep(&s->delay_last);
212
213     if (s->delay_buffer)
214         av_freep(&s->delay_buffer[0]);
215     av_freep(&s->delay_buffer);
216 }
217
218 static const AVFilterPad flanger_inputs[] = {
219     {
220         .name         = "default",
221         .type         = AVMEDIA_TYPE_AUDIO,
222         .config_props = config_input,
223         .filter_frame = filter_frame,
224     },
225     { NULL }
226 };
227
228 static const AVFilterPad flanger_outputs[] = {
229     {
230         .name          = "default",
231         .type          = AVMEDIA_TYPE_AUDIO,
232     },
233     { NULL }
234 };
235
236 const AVFilter ff_af_flanger = {
237     .name          = "flanger",
238     .description   = NULL_IF_CONFIG_SMALL("Apply a flanging effect to the audio."),
239     .query_formats = query_formats,
240     .priv_size     = sizeof(FlangerContext),
241     .priv_class    = &flanger_class,
242     .init          = init,
243     .uninit        = uninit,
244     .inputs        = flanger_inputs,
245     .outputs       = flanger_outputs,
246 };