]> git.sesse.net Git - ffmpeg/blob - libavfilter/vf_nlmeans.c
avfilter/vf_identity: remove unnecessary check
[ffmpeg] / libavfilter / vf_nlmeans.c
1 /*
2  * Copyright (c) 2016 Clément Bœsch <u pkh me>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 /**
22  * @todo
23  * - better automatic defaults? see "Parameters" @ http://www.ipol.im/pub/art/2011/bcm_nlm/
24  * - temporal support (probably doesn't need any displacement according to
25  *   "Denoising image sequences does not require motion estimation")
26  * - Bayer pixel format support for at least raw photos? (DNG support would be
27  *   handy here)
28  * - FATE test (probably needs visual threshold test mechanism due to the use
29  *   of floats)
30  */
31
32 #include "libavutil/avassert.h"
33 #include "libavutil/opt.h"
34 #include "libavutil/pixdesc.h"
35 #include "avfilter.h"
36 #include "formats.h"
37 #include "internal.h"
38 #include "vf_nlmeans.h"
39 #include "video.h"
40
41 struct weighted_avg {
42     float total_weight;
43     float sum;
44 };
45
46 typedef struct NLMeansContext {
47     const AVClass *class;
48     int nb_planes;
49     int chroma_w, chroma_h;
50     double pdiff_scale;                         // invert of the filtering parameter (sigma*10) squared
51     double sigma;                               // denoising strength
52     int patch_size,    patch_hsize;             // patch size and half size
53     int patch_size_uv, patch_hsize_uv;          // patch size and half size for chroma planes
54     int research_size,    research_hsize;       // research size and half size
55     int research_size_uv, research_hsize_uv;    // research size and half size for chroma planes
56     uint32_t *ii_orig;                          // integral image
57     uint32_t *ii;                               // integral image starting after the 0-line and 0-column
58     int ii_w, ii_h;                             // width and height of the integral image
59     ptrdiff_t ii_lz_32;                         // linesize in 32-bit units of the integral image
60     struct weighted_avg *wa;                    // weighted average of every pixel
61     ptrdiff_t wa_linesize;                      // linesize for wa in struct size unit
62     float *weight_lut;                          // lookup table mapping (scaled) patch differences to their associated weights
63     uint32_t max_meaningful_diff;               // maximum difference considered (if the patch difference is too high we ignore the pixel)
64     NLMeansDSPContext dsp;
65 } NLMeansContext;
66
67 #define OFFSET(x) offsetof(NLMeansContext, x)
68 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
69 static const AVOption nlmeans_options[] = {
70     { "s",  "denoising strength", OFFSET(sigma), AV_OPT_TYPE_DOUBLE, { .dbl = 1.0 }, 1.0, 30.0, FLAGS },
71     { "p",  "patch size",                   OFFSET(patch_size),    AV_OPT_TYPE_INT, { .i64 = 3*2+1 }, 0, 99, FLAGS },
72     { "pc", "patch size for chroma planes", OFFSET(patch_size_uv), AV_OPT_TYPE_INT, { .i64 = 0 },     0, 99, FLAGS },
73     { "r",  "research window",                   OFFSET(research_size),    AV_OPT_TYPE_INT, { .i64 = 7*2+1 }, 0, 99, FLAGS },
74     { "rc", "research window for chroma planes", OFFSET(research_size_uv), AV_OPT_TYPE_INT, { .i64 = 0 },     0, 99, FLAGS },
75     { NULL }
76 };
77
78 AVFILTER_DEFINE_CLASS(nlmeans);
79
80 static int query_formats(AVFilterContext *ctx)
81 {
82     static const enum AVPixelFormat pix_fmts[] = {
83         AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
84         AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
85         AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
86         AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
87         AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
88         AV_PIX_FMT_YUVJ411P,
89         AV_PIX_FMT_GRAY8, AV_PIX_FMT_GBRP,
90         AV_PIX_FMT_NONE
91     };
92
93     AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
94     if (!fmts_list)
95         return AVERROR(ENOMEM);
96     return ff_set_common_formats(ctx, fmts_list);
97 }
98
99 /**
100  * Compute squared difference of the safe area (the zone where s1 and s2
101  * overlap). It is likely the largest integral zone, so it is interesting to do
102  * as little checks as possible; contrary to the unsafe version of this
103  * function, we do not need any clipping here.
104  *
105  * The line above dst and the column to its left are always readable.
106  */
107 static void compute_safe_ssd_integral_image_c(uint32_t *dst, ptrdiff_t dst_linesize_32,
108                                               const uint8_t *s1, ptrdiff_t linesize1,
109                                               const uint8_t *s2, ptrdiff_t linesize2,
110                                               int w, int h)
111 {
112     int x, y;
113     const uint32_t *dst_top = dst - dst_linesize_32;
114
115     /* SIMD-friendly assumptions allowed here */
116     av_assert2(!(w & 0xf) && w >= 16 && h >= 1);
117
118     for (y = 0; y < h; y++) {
119         for (x = 0; x < w; x += 4) {
120             const int d0 = s1[x    ] - s2[x    ];
121             const int d1 = s1[x + 1] - s2[x + 1];
122             const int d2 = s1[x + 2] - s2[x + 2];
123             const int d3 = s1[x + 3] - s2[x + 3];
124
125             dst[x    ] = dst_top[x    ] - dst_top[x - 1] + d0*d0;
126             dst[x + 1] = dst_top[x + 1] - dst_top[x    ] + d1*d1;
127             dst[x + 2] = dst_top[x + 2] - dst_top[x + 1] + d2*d2;
128             dst[x + 3] = dst_top[x + 3] - dst_top[x + 2] + d3*d3;
129
130             dst[x    ] += dst[x - 1];
131             dst[x + 1] += dst[x    ];
132             dst[x + 2] += dst[x + 1];
133             dst[x + 3] += dst[x + 2];
134         }
135         s1  += linesize1;
136         s2  += linesize2;
137         dst += dst_linesize_32;
138         dst_top += dst_linesize_32;
139     }
140 }
141
142 /**
143  * Compute squared difference of an unsafe area (the zone nor s1 nor s2 could
144  * be readable).
145  *
146  * On the other hand, the line above dst and the column to its left are always
147  * readable.
148  *
149  * There is little point in having this function SIMDified as it is likely too
150  * complex and only handle small portions of the image.
151  *
152  * @param dst               integral image
153  * @param dst_linesize_32   integral image linesize (in 32-bit integers unit)
154  * @param startx            integral starting x position
155  * @param starty            integral starting y position
156  * @param src               source plane buffer
157  * @param linesize          source plane linesize
158  * @param offx              source offsetting in x
159  * @param offy              source offsetting in y
160  * @paran r                 absolute maximum source offsetting
161  * @param sw                source width
162  * @param sh                source height
163  * @param w                 width to compute
164  * @param h                 height to compute
165  */
166 static inline void compute_unsafe_ssd_integral_image(uint32_t *dst, ptrdiff_t dst_linesize_32,
167                                                      int startx, int starty,
168                                                      const uint8_t *src, ptrdiff_t linesize,
169                                                      int offx, int offy, int r, int sw, int sh,
170                                                      int w, int h)
171 {
172     int x, y;
173
174     for (y = starty; y < starty + h; y++) {
175         uint32_t acc = dst[y*dst_linesize_32 + startx - 1] - dst[(y-1)*dst_linesize_32 + startx - 1];
176         const int s1y = av_clip(y -  r,         0, sh - 1);
177         const int s2y = av_clip(y - (r + offy), 0, sh - 1);
178
179         for (x = startx; x < startx + w; x++) {
180             const int s1x = av_clip(x -  r,         0, sw - 1);
181             const int s2x = av_clip(x - (r + offx), 0, sw - 1);
182             const uint8_t v1 = src[s1y*linesize + s1x];
183             const uint8_t v2 = src[s2y*linesize + s2x];
184             const int d = v1 - v2;
185             acc += d * d;
186             dst[y*dst_linesize_32 + x] = dst[(y-1)*dst_linesize_32 + x] + acc;
187         }
188     }
189 }
190
191 /*
192  * Compute the sum of squared difference integral image
193  * http://www.ipol.im/pub/art/2014/57/
194  * Integral Images for Block Matching - Gabriele Facciolo, Nicolas Limare, Enric Meinhardt-Llopis
195  *
196  * @param ii                integral image of dimension (w+e*2) x (h+e*2) with
197  *                          an additional zeroed top line and column already
198  *                          "applied" to the pointer value
199  * @param ii_linesize_32    integral image linesize (in 32-bit integers unit)
200  * @param src               source plane buffer
201  * @param linesize          source plane linesize
202  * @param offx              x-offsetting ranging in [-e;e]
203  * @param offy              y-offsetting ranging in [-e;e]
204  * @param w                 source width
205  * @param h                 source height
206  * @param e                 research padding edge
207  */
208 static void compute_ssd_integral_image(const NLMeansDSPContext *dsp,
209                                        uint32_t *ii, ptrdiff_t ii_linesize_32,
210                                        const uint8_t *src, ptrdiff_t linesize, int offx, int offy,
211                                        int e, int w, int h)
212 {
213     // ii has a surrounding padding of thickness "e"
214     const int ii_w = w + e*2;
215     const int ii_h = h + e*2;
216
217     // we center the first source
218     const int s1x = e;
219     const int s1y = e;
220
221     // 2nd source is the frame with offsetting
222     const int s2x = e + offx;
223     const int s2y = e + offy;
224
225     // get the dimension of the overlapping rectangle where it is always safe
226     // to compare the 2 sources pixels
227     const int startx_safe = FFMAX(s1x, s2x);
228     const int starty_safe = FFMAX(s1y, s2y);
229     const int u_endx_safe = FFMIN(s1x + w, s2x + w); // unaligned
230     const int endy_safe   = FFMIN(s1y + h, s2y + h);
231
232     // deduce the safe area width and height
233     const int safe_pw = (u_endx_safe - startx_safe) & ~0xf;
234     const int safe_ph = endy_safe - starty_safe;
235
236     // adjusted end x position of the safe area after width of the safe area gets aligned
237     const int endx_safe = startx_safe + safe_pw;
238
239     // top part where only one of s1 and s2 is still readable, or none at all
240     compute_unsafe_ssd_integral_image(ii, ii_linesize_32,
241                                       0, 0,
242                                       src, linesize,
243                                       offx, offy, e, w, h,
244                                       ii_w, starty_safe);
245
246     // fill the left column integral required to compute the central
247     // overlapping one
248     compute_unsafe_ssd_integral_image(ii, ii_linesize_32,
249                                       0, starty_safe,
250                                       src, linesize,
251                                       offx, offy, e, w, h,
252                                       startx_safe, safe_ph);
253
254     // main and safe part of the integral
255     av_assert1(startx_safe - s1x >= 0); av_assert1(startx_safe - s1x < w);
256     av_assert1(starty_safe - s1y >= 0); av_assert1(starty_safe - s1y < h);
257     av_assert1(startx_safe - s2x >= 0); av_assert1(startx_safe - s2x < w);
258     av_assert1(starty_safe - s2y >= 0); av_assert1(starty_safe - s2y < h);
259     if (safe_pw && safe_ph)
260         dsp->compute_safe_ssd_integral_image(ii + starty_safe*ii_linesize_32 + startx_safe, ii_linesize_32,
261                                              src + (starty_safe - s1y) * linesize + (startx_safe - s1x), linesize,
262                                              src + (starty_safe - s2y) * linesize + (startx_safe - s2x), linesize,
263                                              safe_pw, safe_ph);
264
265     // right part of the integral
266     compute_unsafe_ssd_integral_image(ii, ii_linesize_32,
267                                       endx_safe, starty_safe,
268                                       src, linesize,
269                                       offx, offy, e, w, h,
270                                       ii_w - endx_safe, safe_ph);
271
272     // bottom part where only one of s1 and s2 is still readable, or none at all
273     compute_unsafe_ssd_integral_image(ii, ii_linesize_32,
274                                       0, endy_safe,
275                                       src, linesize,
276                                       offx, offy, e, w, h,
277                                       ii_w, ii_h - endy_safe);
278 }
279
280 static int config_input(AVFilterLink *inlink)
281 {
282     AVFilterContext *ctx = inlink->dst;
283     NLMeansContext *s = ctx->priv;
284     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
285     const int e = FFMAX(s->research_hsize, s->research_hsize_uv)
286                 + FFMAX(s->patch_hsize,    s->patch_hsize_uv);
287
288     s->chroma_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
289     s->chroma_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
290     s->nb_planes = av_pix_fmt_count_planes(inlink->format);
291
292     /* Allocate the integral image with extra edges of thickness "e"
293      *
294      *   +_+-------------------------------+
295      *   |0|0000000000000000000000000000000|
296      *   +-x-------------------------------+
297      *   |0|\    ^                         |
298      *   |0| ii  | e                       |
299      *   |0|     v                         |
300      *   |0|   +-----------------------+   |
301      *   |0|   |                       |   |
302      *   |0|<->|                       |   |
303      *   |0| e |                       |   |
304      *   |0|   |                       |   |
305      *   |0|   +-----------------------+   |
306      *   |0|                               |
307      *   |0|                               |
308      *   |0|                               |
309      *   +-+-------------------------------+
310      */
311     s->ii_w = inlink->w + e*2;
312     s->ii_h = inlink->h + e*2;
313
314     // align to 4 the linesize, "+1" is for the space of the left 0-column
315     s->ii_lz_32 = FFALIGN(s->ii_w + 1, 4);
316
317     // "+1" is for the space of the top 0-line
318     s->ii_orig = av_mallocz_array(s->ii_h + 1, s->ii_lz_32 * sizeof(*s->ii_orig));
319     if (!s->ii_orig)
320         return AVERROR(ENOMEM);
321
322     // skip top 0-line and left 0-column
323     s->ii = s->ii_orig + s->ii_lz_32 + 1;
324
325     // allocate weighted average for every pixel
326     s->wa_linesize = inlink->w;
327     s->wa = av_malloc_array(s->wa_linesize, inlink->h * sizeof(*s->wa));
328     if (!s->wa)
329         return AVERROR(ENOMEM);
330
331     return 0;
332 }
333
334 struct thread_data {
335     const uint8_t *src;
336     ptrdiff_t src_linesize;
337     int startx, starty;
338     int endx, endy;
339     const uint32_t *ii_start;
340     int p;
341 };
342
343 static int nlmeans_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
344 {
345     int x, y;
346     NLMeansContext *s = ctx->priv;
347     const struct thread_data *td = arg;
348     const ptrdiff_t src_linesize = td->src_linesize;
349     const int process_h = td->endy - td->starty;
350     const int slice_start = (process_h *  jobnr   ) / nb_jobs;
351     const int slice_end   = (process_h * (jobnr+1)) / nb_jobs;
352     const int starty = td->starty + slice_start;
353     const int endy   = td->starty + slice_end;
354     const int p = td->p;
355     const uint32_t *ii = td->ii_start + (starty - p - 1) * s->ii_lz_32 - p - 1;
356     const int dist_b = 2*p + 1;
357     const int dist_d = dist_b * s->ii_lz_32;
358     const int dist_e = dist_d + dist_b;
359
360     for (y = starty; y < endy; y++) {
361         const uint8_t *src = td->src + y*src_linesize;
362         struct weighted_avg *wa = s->wa + y*s->wa_linesize;
363         for (x = td->startx; x < td->endx; x++) {
364             /*
365              * M is a discrete map where every entry contains the sum of all the entries
366              * in the rectangle from the top-left origin of M to its coordinate. In the
367              * following schema, "i" contains the sum of the whole map:
368              *
369              * M = +----------+-----------------+----+
370              *     |          |                 |    |
371              *     |          |                 |    |
372              *     |         a|                b|   c|
373              *     +----------+-----------------+----+
374              *     |          |                 |    |
375              *     |          |                 |    |
376              *     |          |        X        |    |
377              *     |          |                 |    |
378              *     |         d|                e|   f|
379              *     +----------+-----------------+----+
380              *     |          |                 |    |
381              *     |         g|                h|   i|
382              *     +----------+-----------------+----+
383              *
384              * The sum of the X box can be calculated with:
385              *    X = e-d-b+a
386              *
387              * See https://en.wikipedia.org/wiki/Summed_area_table
388              *
389              * The compute*_ssd functions compute the integral image M where every entry
390              * contains the sum of the squared difference of every corresponding pixels of
391              * two input planes of the same size as M.
392              */
393             const uint32_t a = ii[x];
394             const uint32_t b = ii[x + dist_b];
395             const uint32_t d = ii[x + dist_d];
396             const uint32_t e = ii[x + dist_e];
397             const uint32_t patch_diff_sq = e - d - b + a;
398
399             if (patch_diff_sq < s->max_meaningful_diff) {
400                 const float weight = s->weight_lut[patch_diff_sq]; // exp(-patch_diff_sq * s->pdiff_scale)
401                 wa[x].total_weight += weight;
402                 wa[x].sum += weight * src[x];
403             }
404         }
405         ii += s->ii_lz_32;
406     }
407     return 0;
408 }
409
410 static void weight_averages(uint8_t *dst, ptrdiff_t dst_linesize,
411                             const uint8_t *src, ptrdiff_t src_linesize,
412                             struct weighted_avg *wa, ptrdiff_t wa_linesize,
413                             int w, int h)
414 {
415     int x, y;
416
417     for (y = 0; y < h; y++) {
418         for (x = 0; x < w; x++) {
419             // Also weight the centered pixel
420             wa[x].total_weight += 1.f;
421             wa[x].sum += 1.f * src[x];
422             dst[x] = av_clip_uint8(wa[x].sum / wa[x].total_weight + 0.5f);
423         }
424         dst += dst_linesize;
425         src += src_linesize;
426         wa += wa_linesize;
427     }
428 }
429
430 static int nlmeans_plane(AVFilterContext *ctx, int w, int h, int p, int r,
431                          uint8_t *dst, ptrdiff_t dst_linesize,
432                          const uint8_t *src, ptrdiff_t src_linesize)
433 {
434     int offx, offy;
435     NLMeansContext *s = ctx->priv;
436     /* patches center points cover the whole research window so the patches
437      * themselves overflow the research window */
438     const int e = r + p;
439     /* focus an integral pointer on the centered image (s1) */
440     const uint32_t *centered_ii = s->ii + e*s->ii_lz_32 + e;
441
442     memset(s->wa, 0, s->wa_linesize * h * sizeof(*s->wa));
443
444     for (offy = -r; offy <= r; offy++) {
445         for (offx = -r; offx <= r; offx++) {
446             if (offx || offy) {
447                 struct thread_data td = {
448                     .src          = src + offy*src_linesize + offx,
449                     .src_linesize = src_linesize,
450                     .startx       = FFMAX(0, -offx),
451                     .starty       = FFMAX(0, -offy),
452                     .endx         = FFMIN(w, w - offx),
453                     .endy         = FFMIN(h, h - offy),
454                     .ii_start     = centered_ii + offy*s->ii_lz_32 + offx,
455                     .p            = p,
456                 };
457
458                 compute_ssd_integral_image(&s->dsp, s->ii, s->ii_lz_32,
459                                            src, src_linesize,
460                                            offx, offy, e, w, h);
461                 ctx->internal->execute(ctx, nlmeans_slice, &td, NULL,
462                                        FFMIN(td.endy - td.starty, ff_filter_get_nb_threads(ctx)));
463             }
464         }
465     }
466
467     weight_averages(dst, dst_linesize, src, src_linesize,
468                     s->wa, s->wa_linesize, w, h);
469
470     return 0;
471 }
472
473 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
474 {
475     int i;
476     AVFilterContext *ctx = inlink->dst;
477     NLMeansContext *s = ctx->priv;
478     AVFilterLink *outlink = ctx->outputs[0];
479
480     AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
481     if (!out) {
482         av_frame_free(&in);
483         return AVERROR(ENOMEM);
484     }
485     av_frame_copy_props(out, in);
486
487     for (i = 0; i < s->nb_planes; i++) {
488         const int w = i ? s->chroma_w          : inlink->w;
489         const int h = i ? s->chroma_h          : inlink->h;
490         const int p = i ? s->patch_hsize_uv    : s->patch_hsize;
491         const int r = i ? s->research_hsize_uv : s->research_hsize;
492         nlmeans_plane(ctx, w, h, p, r,
493                       out->data[i], out->linesize[i],
494                       in->data[i],  in->linesize[i]);
495     }
496
497     av_frame_free(&in);
498     return ff_filter_frame(outlink, out);
499 }
500
501 #define CHECK_ODD_FIELD(field, name) do {                       \
502     if (!(s->field & 1)) {                                      \
503         s->field |= 1;                                          \
504         av_log(ctx, AV_LOG_WARNING, name " size must be odd, "  \
505                "setting it to %d\n", s->field);                 \
506     }                                                           \
507 } while (0)
508
509 void ff_nlmeans_init(NLMeansDSPContext *dsp)
510 {
511     dsp->compute_safe_ssd_integral_image = compute_safe_ssd_integral_image_c;
512
513     if (ARCH_AARCH64)
514         ff_nlmeans_init_aarch64(dsp);
515 }
516
517 static av_cold int init(AVFilterContext *ctx)
518 {
519     int i;
520     NLMeansContext *s = ctx->priv;
521     const double h = s->sigma * 10.;
522
523     s->pdiff_scale = 1. / (h * h);
524     s->max_meaningful_diff = log(255.) / s->pdiff_scale;
525     s->weight_lut = av_calloc(s->max_meaningful_diff, sizeof(*s->weight_lut));
526     if (!s->weight_lut)
527         return AVERROR(ENOMEM);
528     for (i = 0; i < s->max_meaningful_diff; i++)
529         s->weight_lut[i] = exp(-i * s->pdiff_scale);
530
531     CHECK_ODD_FIELD(research_size,   "Luma research window");
532     CHECK_ODD_FIELD(patch_size,      "Luma patch");
533
534     if (!s->research_size_uv) s->research_size_uv = s->research_size;
535     if (!s->patch_size_uv)    s->patch_size_uv    = s->patch_size;
536
537     CHECK_ODD_FIELD(research_size_uv, "Chroma research window");
538     CHECK_ODD_FIELD(patch_size_uv,    "Chroma patch");
539
540     s->research_hsize    = s->research_size    / 2;
541     s->research_hsize_uv = s->research_size_uv / 2;
542     s->patch_hsize       = s->patch_size       / 2;
543     s->patch_hsize_uv    = s->patch_size_uv    / 2;
544
545     av_log(ctx, AV_LOG_INFO, "Research window: %dx%d / %dx%d, patch size: %dx%d / %dx%d\n",
546            s->research_size, s->research_size, s->research_size_uv, s->research_size_uv,
547            s->patch_size,    s->patch_size,    s->patch_size_uv,    s->patch_size_uv);
548
549     ff_nlmeans_init(&s->dsp);
550
551     return 0;
552 }
553
554 static av_cold void uninit(AVFilterContext *ctx)
555 {
556     NLMeansContext *s = ctx->priv;
557     av_freep(&s->weight_lut);
558     av_freep(&s->ii_orig);
559     av_freep(&s->wa);
560 }
561
562 static const AVFilterPad nlmeans_inputs[] = {
563     {
564         .name         = "default",
565         .type         = AVMEDIA_TYPE_VIDEO,
566         .config_props = config_input,
567         .filter_frame = filter_frame,
568     },
569     { NULL }
570 };
571
572 static const AVFilterPad nlmeans_outputs[] = {
573     {
574         .name = "default",
575         .type = AVMEDIA_TYPE_VIDEO,
576     },
577     { NULL }
578 };
579
580 const AVFilter ff_vf_nlmeans = {
581     .name          = "nlmeans",
582     .description   = NULL_IF_CONFIG_SMALL("Non-local means denoiser."),
583     .priv_size     = sizeof(NLMeansContext),
584     .init          = init,
585     .uninit        = uninit,
586     .query_formats = query_formats,
587     .inputs        = nlmeans_inputs,
588     .outputs       = nlmeans_outputs,
589     .priv_class    = &nlmeans_class,
590     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
591 };