]> git.sesse.net Git - ffmpeg/blob - libavutil/spherical.h
avutil/mem: Also poison new av_realloc-allocated blocks
[ffmpeg] / libavutil / spherical.h
1 /*
2  * Copyright (c) 2016 Vittorio Giovara <vittorio.giovara@gmail.com>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 /**
22  * @file
23  * Spherical video
24  */
25
26 #ifndef AVUTIL_SPHERICAL_H
27 #define AVUTIL_SPHERICAL_H
28
29 #include <stddef.h>
30 #include <stdint.h>
31
32 /**
33  * @addtogroup lavu_video
34  * @{
35  *
36  * @defgroup lavu_video_spherical Spherical video mapping
37  * @{
38  */
39
40 /**
41  * @addtogroup lavu_video_spherical
42  * A spherical video file contains surfaces that need to be mapped onto a
43  * sphere. Depending on how the frame was converted, a different distortion
44  * transformation or surface recomposition function needs to be applied before
45  * the video should be mapped and displayed.
46  */
47
48 /**
49  * Projection of the video surface(s) on a sphere.
50  */
51 enum AVSphericalProjection {
52     /**
53      * Video represents a sphere mapped on a flat surface using
54      * equirectangular projection.
55      */
56     AV_SPHERICAL_EQUIRECTANGULAR,
57
58     /**
59      * Video frame is split into 6 faces of a cube, and arranged on a
60      * 3x2 layout. Faces are oriented upwards for the front, left, right,
61      * and back faces. The up face is oriented so the top of the face is
62      * forwards and the down face is oriented so the top of the face is
63      * to the back.
64      */
65     AV_SPHERICAL_CUBEMAP,
66
67     /**
68      * Video represents a portion of a sphere mapped on a flat surface
69      * using equirectangular projection. The @ref bounding fields indicate
70      * the position of the current video in a larger surface.
71      */
72     AV_SPHERICAL_EQUIRECTANGULAR_TILE,
73 };
74
75 /**
76  * This structure describes how to handle spherical videos, outlining
77  * information about projection, initial layout, and any other view modifier.
78  *
79  * @note The struct must be allocated with av_spherical_alloc() and
80  *       its size is not a part of the public ABI.
81  */
82 typedef struct AVSphericalMapping {
83     /**
84      * Projection type.
85      */
86     enum AVSphericalProjection projection;
87
88     /**
89      * @name Initial orientation
90      * @{
91      * There fields describe additional rotations applied to the sphere after
92      * the video frame is mapped onto it. The sphere is rotated around the
93      * viewer, who remains stationary. The order of transformation is always
94      * yaw, followed by pitch, and finally by roll.
95      *
96      * The coordinate system matches the one defined in OpenGL, where the
97      * forward vector (z) is coming out of screen, and it is equivalent to
98      * a rotation matrix of R = r_y(yaw) * r_x(pitch) * r_z(roll).
99      *
100      * A positive yaw rotates the portion of the sphere in front of the viewer
101      * toward their right. A positive pitch rotates the portion of the sphere
102      * in front of the viewer upwards. A positive roll tilts the portion of
103      * the sphere in front of the viewer to the viewer's right.
104      *
105      * These values are exported as 16.16 fixed point.
106      *
107      * See this equirectangular projection as example:
108      *
109      * @code{.unparsed}
110      *                   Yaw
111      *     -180           0           180
112      *   90 +-------------+-------------+  180
113      *      |             |             |                  up
114      * P    |             |             |                 y|    forward
115      * i    |             ^             |                  |   /z
116      * t  0 +-------------X-------------+    0 Roll        |  /
117      * c    |             |             |                  | /
118      * h    |             |             |                 0|/_____right
119      *      |             |             |                        x
120      *  -90 +-------------+-------------+ -180
121      *
122      * X - the default camera center
123      * ^ - the default up vector
124      * @endcode
125      */
126     int32_t yaw;   ///< Rotation around the up vector [-180, 180].
127     int32_t pitch; ///< Rotation around the right vector [-90, 90].
128     int32_t roll;  ///< Rotation around the forward vector [-180, 180].
129     /**
130      * @}
131      */
132
133     /**
134      * @name Bounding rectangle
135      * @anchor bounding
136      * @{
137      * These fields indicate the location of the current tile, and where
138      * it should be mapped relative to the original surface. They are
139      * exported as 0.32 fixed point, and can be converted to classic
140      * pixel values with av_spherical_bounds().
141      *
142      * @code{.unparsed}
143      *      +----------------+----------+
144      *      |                |bound_top |
145      *      |            +--------+     |
146      *      | bound_left |tile    |     |
147      *      +<---------->|        |<--->+bound_right
148      *      |            +--------+     |
149      *      |                |          |
150      *      |    bound_bottom|          |
151      *      +----------------+----------+
152      * @endcode
153      *
154      * If needed, the original video surface dimensions can be derived
155      * by adding the current stream or frame size to the related bounds,
156      * like in the following example:
157      *
158      * @code{c}
159      *     original_width  = tile->width  + bound_left + bound_right;
160      *     original_height = tile->height + bound_top  + bound_bottom;
161      * @endcode
162      *
163      * @note These values are valid only for the tiled equirectangular
164      *       projection type (@ref AV_SPHERICAL_EQUIRECTANGULAR_TILE),
165      *       and should be ignored in all other cases.
166      */
167     uint32_t bound_left;   ///< Distance from the left edge
168     uint32_t bound_top;    ///< Distance from the top edge
169     uint32_t bound_right;  ///< Distance from the right edge
170     uint32_t bound_bottom; ///< Distance from the bottom edge
171     /**
172      * @}
173      */
174
175     /**
176      * Number of pixels to pad from the edge of each cube face.
177      *
178      * @note This value is valid for only for the cubemap projection type
179      *       (@ref AV_SPHERICAL_CUBEMAP), and should be ignored in all other
180      *       cases.
181      */
182     uint32_t padding;
183 } AVSphericalMapping;
184
185 /**
186  * Allocate a AVSphericalVideo structure and initialize its fields to default
187  * values.
188  *
189  * @return the newly allocated struct or NULL on failure
190  */
191 AVSphericalMapping *av_spherical_alloc(size_t *size);
192
193 /**
194  * Convert the @ref bounding fields from an AVSphericalVideo
195  * from 0.32 fixed point to pixels.
196  *
197  * @param map    The AVSphericalVideo map to read bound values from.
198  * @param width  Width of the current frame or stream.
199  * @param height Height of the current frame or stream.
200  * @param left   Pixels from the left edge.
201  * @param top    Pixels from the top edge.
202  * @param right  Pixels from the right edge.
203  * @param bottom Pixels from the bottom edge.
204  */
205 void av_spherical_tile_bounds(const AVSphericalMapping *map,
206                               size_t width, size_t height,
207                               size_t *left, size_t *top,
208                               size_t *right, size_t *bottom);
209
210 /**
211  * Provide a human-readable name of a given AVSphericalProjection.
212  *
213  * @param projection The input AVSphericalProjection.
214  *
215  * @return The name of the AVSphericalProjection, or "unknown".
216  */
217 const char *av_spherical_projection_name(enum AVSphericalProjection projection);
218
219 /**
220  * Get the AVSphericalProjection form a human-readable name.
221  *
222  * @param name The input string.
223  *
224  * @return The AVSphericalProjection value, or -1 if not found.
225  */
226 int av_spherical_from_name(const char *name);
227 /**
228  * @}
229  * @}
230  */
231
232 #endif /* AVUTIL_SPHERICAL_H */