]> git.sesse.net Git - mlt/blob - src/modules/core/transition_composite.c
Add mlt_geometry_interpolate.
[mlt] / src / modules / core / transition_composite.c
1 /*
2  * transition_composite.c -- compose one image over another using alpha channel
3  * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4  * Author: Dan Dennedy <dan@dennedy.org>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, uint32_t step );
31
32 /** Geometry struct.
33 */
34
35 struct geometry_s
36 {
37         struct mlt_geometry_item_s item;
38         int nw; // normalised width
39         int nh; // normalised height
40         int sw; // scaled width, not including consumer scale based upon w/nw
41         int sh; // scaled height, not including consumer scale based upon h/nh
42         int halign; // horizontal alignment: 0=left, 1=center, 2=right
43         int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
44         int x_src;
45         int y_src;
46 };
47
48 /** Parse the alignment properties into the geometry.
49 */
50
51 static int alignment_parse( char* align )
52 {
53         int ret = 0;
54         
55         if ( align == NULL );
56         else if ( isdigit( align[ 0 ] ) )
57                 ret = atoi( align );
58         else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
59                 ret = 1;
60         else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
61                 ret = 2;
62
63         return ret;
64 }
65
66 /** Calculate real geometry.
67 */
68
69 static void geometry_calculate( mlt_transition this, struct geometry_s *output, double position )
70 {
71         mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
72         mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
73         int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
74         int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
75         int length = mlt_geometry_get_length( geometry );
76
77         // Allow wrapping
78         if ( !repeat_off && position >= length && length != 0 )
79         {
80                 int section = position / length;
81                 position -= section * length;
82                 if ( !mirror_off && section % 2 == 1 )
83                         position = length - position;
84         }
85
86         // Fetch the key for the position
87         mlt_geometry_fetch( geometry, &output->item, position );
88 }
89
90 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
91 {
92         // Loop variable for property interrogation
93         int i = 0;
94
95         // Get the properties of the transition
96         mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
97
98         // Create an empty geometries object
99         mlt_geometry geometry = mlt_geometry_init( );
100
101         // Get the duration
102         mlt_position length = mlt_transition_get_length( this );
103         double cycle = mlt_properties_get_double( properties, "cycle" );
104
105         // Get the new style geometry string
106         char *property = mlt_properties_get( properties, "geometry" );
107
108         // Allow a geometry repeat cycle
109         if ( cycle >= 1 )
110                 length = cycle;
111         else if ( cycle > 0 )
112                 length *= cycle;
113
114         // Parse the geometry if we have one
115         mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
116
117         // Check if we're using the old style geometry
118         if ( property == NULL )
119         {
120                 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for 
121                 // practical use - while deprecated, it has been slightly extended too - keys can now
122                 // be specified out of order, and can be blanked or NULL to simulate removal
123
124                 // Structure to use for parsing and inserting
125                 struct mlt_geometry_item_s item;
126
127                 // Parse the start property
128                 item.frame = 0;
129                 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
130                         mlt_geometry_insert( geometry, &item );
131
132                 // Parse the keys in between
133                 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
134                 {
135                         // Get the name of the property
136                         char *name = mlt_properties_get_name( properties, i );
137         
138                         // Check that it's valid
139                         if ( !strncmp( name, "key[", 4 ) )
140                         {
141                                 // Get the value of the property
142                                 char *value = mlt_properties_get_value( properties, i );
143         
144                                 // Determine the frame number
145                                 item.frame = atoi( name + 4 );
146         
147                                 // Parse and add to the list
148                                 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
149                                         mlt_geometry_insert( geometry, &item );
150                                 else
151                                         fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
152                         }
153                 }
154
155                 // Parse the end
156                 item.frame = -1;
157                 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
158                         mlt_geometry_insert( geometry, &item );
159                 mlt_geometry_interpolate( geometry );
160         }
161         
162         return geometry;
163 }
164
165 /** Adjust position according to scaled size and alignment properties.
166 */
167
168 static void alignment_calculate( struct geometry_s *geometry )
169 {
170         geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
171         geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
172 }
173
174 /** Calculate the position for this frame.
175 */
176
177 static int position_calculate( mlt_transition this, mlt_position position )
178 {
179         // Get the in and out position
180         mlt_position in = mlt_transition_get_in( this );
181
182         // Now do the calcs
183         return position - in;
184 }
185
186 /** Calculate the field delta for this frame - position between two frames.
187 */
188
189 static int get_value( mlt_properties properties, const char *preferred, const char *fallback )
190 {
191         int value = mlt_properties_get_int( properties, preferred );
192         if ( value == 0 )
193                 value = mlt_properties_get_int( properties, fallback );
194         return value;
195 }
196
197 /** A linear threshold determination function.
198 */
199
200 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
201 {
202         if ( a < edge1 )
203                 return 0;
204
205         if ( a >= edge2 )
206                 return 0x10000;
207
208         return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
209 }
210
211 /** A smoother, non-linear threshold determination function.
212 */
213
214 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
215 {
216         if ( a < edge1 )
217                 return 0;
218
219         if ( a >= edge2 )
220                 return 0x10000;
221
222         a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
223
224         return ( ( ( a * a ) >> 16 )  * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
225 }
226
227 /** Load the luma map from PGM stream.
228 */
229
230 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
231 {
232         uint8_t *data = NULL;
233         while (1)
234         {
235                 char line[128];
236                 char comment[128];
237                 int i = 2;
238                 int maxval;
239                 int bpp;
240                 uint16_t *p;
241
242                 line[127] = '\0';
243
244                 // get the magic code
245                 if ( fgets( line, 127, f ) == NULL )
246                         break;
247
248                 // skip comments
249                 while ( sscanf( line, " #%s", comment ) > 0 )
250                         if ( fgets( line, 127, f ) == NULL )
251                                 break;
252
253                 if ( line[0] != 'P' || line[1] != '5' )
254                         break;
255
256                 // skip white space and see if a new line must be fetched
257                 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
258                 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
259                         break;
260
261                 // skip comments
262                 while ( sscanf( line, " #%s", comment ) > 0 )
263                         if ( fgets( line, 127, f ) == NULL )
264                                 break;
265
266                 // get the dimensions
267                 if ( line[0] == 'P' )
268                         i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
269                 else
270                         i = sscanf( line, "%d %d %d", width, height, &maxval );
271
272                 // get the height value, if not yet
273                 if ( i < 2 )
274                 {
275                         if ( fgets( line, 127, f ) == NULL )
276                                 break;
277
278                         // skip comments
279                         while ( sscanf( line, " #%s", comment ) > 0 )
280                                 if ( fgets( line, 127, f ) == NULL )
281                                         break;
282
283                         i = sscanf( line, "%d", height );
284                         if ( i == 0 )
285                                 break;
286                         else
287                                 i = 2;
288                 }
289
290                 // get the maximum gray value, if not yet
291                 if ( i < 3 )
292                 {
293                         if ( fgets( line, 127, f ) == NULL )
294                                 break;
295
296                         // skip comments
297                         while ( sscanf( line, " #%s", comment ) > 0 )
298                                 if ( fgets( line, 127, f ) == NULL )
299                                         break;
300
301                         i = sscanf( line, "%d", &maxval );
302                         if ( i == 0 )
303                                 break;
304                 }
305
306                 // determine if this is one or two bytes per pixel
307                 bpp = maxval > 255 ? 2 : 1;
308
309                 // allocate temporary storage for the raw data
310                 data = mlt_pool_alloc( *width * *height * bpp );
311                 if ( data == NULL )
312                         break;
313
314                 // read the raw data
315                 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
316                         break;
317
318                 // allocate the luma bitmap
319                 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
320                 if ( *map == NULL )
321                         break;
322
323                 // proces the raw data into the luma bitmap
324                 for ( i = 0; i < *width * *height * bpp; i += bpp )
325                 {
326                         if ( bpp == 1 )
327                                 *p++ = data[ i ] << 8;
328                         else
329                                 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
330                 }
331
332                 break;
333         }
334
335         if ( data != NULL )
336                 mlt_pool_release( data );
337 }
338
339 /** Generate a luma map from any YUV image.
340 */
341
342 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
343 {
344         int i;
345         
346         // allocate the luma bitmap
347         uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
348         if ( *map == NULL )
349                 return;
350
351         // proces the image data into the luma bitmap
352         for ( i = 0; i < width * height * 2; i += 2 )
353                 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
354 }
355
356 static inline int calculate_mix( uint16_t *luma, int j, int softness, int weight, int alpha, uint32_t step )
357 {
358         return ( ( luma ? smoothstep( luma[ j ], luma[ j ] + softness, step ) : weight ) * alpha ) >> 8;
359 }
360
361 static inline uint8_t sample_mix( uint8_t dest, uint8_t src, int mix )
362 {
363         return ( src * mix + dest * ( ( 1 << 16 ) - mix ) ) >> 16;
364 }
365
366 /** Composite a source line over a destination line
367 */
368
369 static void composite_line_yuv( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
370 {
371         register int j;
372         register int mix;
373
374         for ( j = 0; j < width; j ++ )
375         {
376                 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++, step );
377                 *dest = sample_mix( *dest, *src++, mix );
378                 dest++;
379                 *dest = sample_mix( *dest, *src++, mix );
380                 dest++;
381                 *alpha_a = ( mix >> 8 ) | *alpha_a;
382                 alpha_a ++;
383         }
384 }
385
386 static void composite_line_yuv_or( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
387 {
388         register int j;
389         register int mix;
390
391         for ( j = 0; j < width; j ++ )
392         {
393                 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ | *alpha_a, step );
394                 *dest = sample_mix( *dest, *src++, mix );
395                 dest++;
396                 *dest = sample_mix( *dest, *src++, mix );
397                 dest++;
398                 *alpha_a ++ = mix >> 8;
399         }
400 }
401
402 static void composite_line_yuv_and( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step  )
403 {
404         register int j;
405         register int mix;
406
407         for ( j = 0; j < width; j ++ )
408         {
409                 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ & *alpha_a, step );
410                 *dest = sample_mix( *dest, *src++, mix );
411                 dest++;
412                 *dest = sample_mix( *dest, *src++, mix );
413                 dest++;
414                 *alpha_a ++ = mix >> 8;
415         }
416 }
417
418 static void composite_line_yuv_xor( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
419 {
420         register int j;
421         register int mix;
422
423         for ( j = 0; j < width; j ++ )
424         {
425                 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ ^ *alpha_a, step );
426                 *dest = sample_mix( *dest, *src++, mix );
427                 dest++;
428                 *dest = sample_mix( *dest, *src++, mix );
429                 dest++;
430                 *alpha_a ++ = mix >> 8;
431         }
432 }
433
434 /** Composite function.
435 */
436
437 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *alpha_b, uint8_t *alpha_a, struct geometry_s geometry, int field, uint16_t *p_luma, double softness, composite_line_fn line_fn )
438 {
439         int ret = 0;
440         int i;
441         int x_src = -geometry.x_src, y_src = -geometry.y_src;
442         int uneven_x_src = ( x_src % 2 );
443         int step = ( field > -1 ) ? 2 : 1;
444         int bpp = 2;
445         int stride_src = geometry.sw * bpp;
446         int stride_dest = width_dest * bpp;
447         int i_softness = ( 1 << 16 ) * softness;
448         int weight = ( ( 1 << 16 ) - 1 ) * geometry.item.mix / 100;
449         uint32_t luma_step = ( ( 1 << 16 ) - 1 ) * geometry.item.mix / 100 * ( 1.0 + softness );
450
451         // Adjust to consumer scale
452         int x = rint( geometry.item.x * width_dest / geometry.nw );
453         int y = rint( geometry.item.y * height_dest / geometry.nh );
454         int uneven_x = ( x % 2 );
455
456         // optimization points - no work to do
457         if ( width_src <= 0 || height_src <= 0 || y_src >= height_src || x_src >= width_src )
458                 return ret;
459
460         if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
461                 return ret;
462
463         // cropping affects the source width
464         if ( x_src > 0 )
465         {
466                 width_src -= x_src;
467                 // and it implies cropping
468                 if ( width_src > geometry.item.w )
469                         width_src = geometry.item.w;
470         }
471
472         // cropping affects the source height
473         if ( y_src > 0 )
474         {
475                 height_src -= y_src;
476                 // and it implies cropping
477                 if ( height_src > geometry.item.h )
478                         height_src = geometry.item.h;
479         }
480
481         // crop overlay off the left edge of frame
482         if ( x < 0 )
483         {
484                 x_src = -x;
485                 width_src -= x_src;
486                 x = 0;
487         }
488
489         // crop overlay beyond right edge of frame
490         if ( x + width_src > width_dest )
491                 width_src = width_dest - x;
492
493         // crop overlay off the top edge of the frame
494         if ( y < 0 )
495         {
496                 y_src = -y;
497                 height_src -= y_src;
498                 y = 0;
499         }
500         
501         // crop overlay below bottom edge of frame
502         if ( y + height_src > height_dest )
503                 height_src = height_dest - y;
504
505         // offset pointer into overlay buffer based on cropping
506         p_src += x_src * bpp + y_src * stride_src;
507
508         // offset pointer into frame buffer based upon positive coordinates only!
509         p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
510
511         // offset pointer into alpha channel based upon cropping
512         alpha_b += x_src + y_src * stride_src / bpp;
513         alpha_a += x + y * stride_dest / bpp;
514
515         // offset pointer into luma channel based upon cropping
516         if ( p_luma )
517                 p_luma += x_src + y_src * stride_src / bpp;
518         
519         // Assuming lower field first
520         // Special care is taken to make sure the b_frame is aligned to the correct field.
521         // field 0 = lower field and y should be odd (y is 0-based).
522         // field 1 = upper field and y should be even.
523         if ( ( field > -1 ) && ( y % 2 == field ) )
524         {
525                 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
526                         p_dest += stride_dest;
527                 else
528                         p_dest -= stride_dest;
529         }
530
531         // On the second field, use the other lines from b_frame
532         if ( field == 1 )
533         {
534                 p_src += stride_src;
535                 alpha_b += stride_src / bpp;
536                 alpha_a += stride_dest / bpp;
537                 height_src--;
538         }
539
540         stride_src *= step;
541         stride_dest *= step;
542         int alpha_b_stride = stride_src / bpp;
543         int alpha_a_stride = stride_dest / bpp;
544
545         // Align chroma of source and destination
546         if ( uneven_x != uneven_x_src )
547         {
548                 p_src += 2;
549                 width_src -= 2;
550                 alpha_b += 1;
551         }
552
553         // now do the compositing only to cropped extents
554         for ( i = 0; i < height_src; i += step )
555         {
556                 line_fn( p_dest, p_src, width_src, alpha_b, alpha_a, weight, p_luma, i_softness, luma_step );
557
558                 p_src += stride_src;
559                 p_dest += stride_dest;
560                 alpha_b += alpha_b_stride;
561                 alpha_a += alpha_a_stride;
562                 if ( p_luma )
563                         p_luma += alpha_b_stride;
564         }
565
566         return ret;
567 }
568
569
570 /** Scale 16bit greyscale luma map using nearest neighbor.
571 */
572
573 static inline void
574 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
575 {
576         register int i, j;
577         register int x_step = ( src_width << 16 ) / dest_width;
578         register int y_step = ( src_height << 16 ) / dest_height;
579         register int x, y = 0;
580
581         for ( i = 0; i < dest_height; i++ )
582         {
583                 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
584                 x = 0;
585                 
586                 for ( j = 0; j < dest_width; j++ )
587                 {
588                         *dest_buf++ = src[ x >> 16 ] ^ invert;
589                         x += x_step;
590                 }
591                 y += y_step;
592         }
593 }
594
595 static uint16_t* get_luma( mlt_transition this, mlt_properties properties, int width, int height )
596 {
597         // The cached luma map information
598         int luma_width = mlt_properties_get_int( properties, "_luma.width" );
599         int luma_height = mlt_properties_get_int( properties, "_luma.height" );
600         uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
601         int invert = mlt_properties_get_int( properties, "luma_invert" );
602         
603         // If the filename property changed, reload the map
604         char *resource = mlt_properties_get( properties, "luma" );
605
606         char temp[ 512 ];
607
608         if ( luma_width == 0 || luma_height == 0 )
609         {
610                 luma_width = width;
611                 luma_height = height;
612         }
613
614         if ( resource && resource[0] && strchr( resource, '%' ) )
615         {
616                 // TODO: Clean up quick and dirty compressed/existence check
617                 FILE *test;
618                 sprintf( temp, "%s/lumas/%s/%s", mlt_environment( "MLT_DATA" ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
619                 test = fopen( temp, "r" );
620                 if ( test == NULL )
621                         strcat( temp, ".png" );
622                 else
623                         fclose( test );
624                 resource = temp;
625         }
626
627         if ( resource && resource[0] )
628         {
629                 char *old_luma = mlt_properties_get( properties, "_luma" );
630                 int old_invert = mlt_properties_get_int( properties, "_luma_invert" );
631
632                 if ( invert != old_invert || ( old_luma && old_luma[0] && strcmp( resource, old_luma ) ) )
633                 {
634                         mlt_properties_set_data( properties, "_luma.orig_bitmap", NULL, 0, NULL, NULL );
635                         luma_bitmap = NULL;
636                 }
637         }
638         else {
639                 char *old_luma = mlt_properties_get( properties, "_luma" );
640                 if ( old_luma && old_luma[0] )
641                 {
642                         mlt_properties_set_data( properties, "_luma.orig_bitmap", NULL, 0, NULL, NULL );
643                         luma_bitmap = NULL;
644                         mlt_properties_set( properties, "_luma", NULL);
645                 }
646         }
647
648         if ( resource && resource[0] && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
649         {
650                 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
651                 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
652                 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
653
654                 // Load the original luma once
655                 if ( orig_bitmap == NULL )
656                 {
657                         char *extension = strrchr( resource, '.' );
658                         
659                         // See if it is a PGM
660                         if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
661                         {
662                                 // Open PGM
663                                 FILE *f = fopen( resource, "r" );
664                                 if ( f != NULL )
665                                 {
666                                         // Load from PGM
667                                         luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
668                                         fclose( f );
669                                         
670                                         // Remember the original size for subsequent scaling
671                                         mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
672                                         mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
673                                         mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
674                                 }
675                         }
676                         else
677                         {
678                                 // Get the factory producer service
679                                 char *factory = mlt_properties_get( properties, "factory" );
680         
681                                 // Create the producer
682                                 mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( this ) );
683                                 mlt_producer producer = mlt_factory_producer( profile, factory, resource );
684         
685                                 // If we have one
686                                 if ( producer != NULL )
687                                 {
688                                         // Get the producer properties
689                                         mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
690         
691                                         // Ensure that we loop
692                                         mlt_properties_set( producer_properties, "eof", "loop" );
693         
694                                         // Now pass all producer. properties on the transition down
695                                         mlt_properties_pass( producer_properties, properties, "luma." );
696         
697                                         // We will get the alpha frame from the producer
698                                         mlt_frame luma_frame = NULL;
699         
700                                         // Get the luma frame
701                                         if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
702                                         {
703                                                 uint8_t *luma_image;
704                                                 mlt_image_format luma_format = mlt_image_yuv422;
705         
706                                                 // Get image from the luma producer
707                                                 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
708                                                 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
709         
710                                                 // Generate the luma map
711                                                 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
712                                                         luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
713         
714                                                 // Remember the original size for subsequent scaling
715                                                 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
716                                                 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
717                                                 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
718                                                 
719                                                 // Cleanup the luma frame
720                                                 mlt_frame_close( luma_frame );
721                                         }
722         
723                                         // Cleanup the luma producer
724                                         mlt_producer_close( producer );
725                                 }
726                         }
727                 }
728                 // Scale luma map
729                 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
730                 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
731
732                 // Remember the scaled luma size to prevent unnecessary scaling
733                 mlt_properties_set_int( properties, "_luma.width", width );
734                 mlt_properties_set_int( properties, "_luma.height", height );
735                 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
736                 mlt_properties_set( properties, "_luma", resource );
737                 mlt_properties_set_int( properties, "_luma_invert", invert );
738         }
739         return luma_bitmap;
740 }
741
742 /** Get the properly sized image from b_frame.
743 */
744
745 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
746 {
747         int ret = 0;
748         mlt_image_format format = mlt_image_yuv422;
749
750         // Get the properties objects
751         mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
752         mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
753         uint8_t resize_alpha = mlt_properties_get_int( b_props, "resize_alpha" );
754         double consumer_ar = mlt_profile_sar( mlt_service_profile( MLT_TRANSITION_SERVICE(this) ) );
755
756         // Do not scale if we are cropping - the compositing rectangle can crop the b image
757         // TODO: Use the animatable w and h of the crop geometry to scale independently of crop rectangle
758         if ( mlt_properties_get( properties, "crop" ) )
759         {
760                 int real_width = get_value( b_props, "real_width", "width" );
761                 int real_height = get_value( b_props, "real_height", "height" );
762                 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
763                 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
764                 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
765                 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
766                 int scaled_height = real_height;
767                 geometry->sw = scaled_width;
768                 geometry->sh = scaled_height;
769         }
770         // Normalise aspect ratios and scale preserving aspect ratio
771         else if ( mlt_properties_get_int( properties, "aligned" ) && mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
772         {
773                 // Adjust b_frame pixel aspect
774                 int normalised_width = geometry->item.w;
775                 int normalised_height = geometry->item.h;
776                 int real_width = get_value( b_props, "real_width", "width" );
777                 int real_height = get_value( b_props, "real_height", "height" );
778                 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
779                 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
780                 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
781                 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
782                 int scaled_height = real_height;
783 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d real %dx%d output_ar %f => %f\n", __FILE__,
784 // scaled_width, scaled_height, normalised_width, normalised_height, real_width, real_height,
785 // background_ar, output_ar);
786
787                 // Now ensure that our images fit in the normalised frame
788                 if ( scaled_width > normalised_width )
789                 {
790                         scaled_height = rint( scaled_height * normalised_width / scaled_width );
791                         scaled_width = normalised_width;
792                 }
793                 if ( scaled_height > normalised_height )
794                 {
795                         scaled_width = rint( scaled_width * normalised_height / scaled_height );
796                         scaled_height = normalised_height;
797                 }
798
799                 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
800                 // ????: Shouln't this be the default behaviour?
801                 if ( mlt_properties_get_int( properties, "fill" ) && scaled_width > 0 && scaled_height > 0 )
802                 {
803                         if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height <= normalised_width )
804                         {
805                                 scaled_width = rint( scaled_width * normalised_height / scaled_height );
806                                 scaled_height = normalised_height;
807                         }
808                         else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
809                         {
810                                 scaled_height = rint( scaled_height * normalised_width / scaled_width );
811                                 scaled_width = normalised_width;
812                         }
813                 }
814
815                 // Save the new scaled dimensions
816                 geometry->sw = scaled_width;
817                 geometry->sh = scaled_height;
818         }
819         else
820         {
821                 geometry->sw = geometry->item.w;
822                 geometry->sh = geometry->item.h;
823         }
824
825         // We want to ensure that we bypass resize now...
826         if ( resize_alpha == 0 )
827                 mlt_properties_set_int( b_props, "distort", mlt_properties_get_int( properties, "distort" ) );
828
829         // If we're not aligned, we want a non-transparent background
830         if ( mlt_properties_get_int( properties, "aligned" ) == 0 )
831                 mlt_properties_set_int( b_props, "resize_alpha", 255 );
832
833         // Take into consideration alignment for optimisation (titles are a special case)
834         if ( !mlt_properties_get_int( properties, "titles" ) &&
835                  mlt_properties_get( properties, "crop" ) == NULL )
836                 alignment_calculate( geometry );
837
838         // Adjust to consumer scale
839         *width = rint( geometry->sw * *width / geometry->nw );
840         *width -= *width % 2; // coerce to even width for yuv422
841         *height = rint( geometry->sh * *height / geometry->nh );
842 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d resize %dx%d\n", __FILE__,
843 // geometry->sw, geometry->sh, geometry->nw, geometry->nh, *width, *height);
844
845         ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
846
847         // composite_yuv uses geometry->sw to determine source stride, which
848         // should equal the image width if not using crop property.
849         if ( !mlt_properties_get( properties, "crop" ) )
850                 geometry->sw = *width;
851
852         // Set the frame back
853         mlt_properties_set_int( b_props, "resize_alpha", resize_alpha );
854
855         return ret && image != NULL;
856 }
857
858 static void crop_calculate( mlt_transition this, mlt_properties properties, struct geometry_s *result, double position )
859 {
860         // Initialize panning info
861         result->x_src = 0;
862         result->y_src = 0;
863         if ( mlt_properties_get( properties, "crop" ) )
864         {
865                 mlt_geometry crop = mlt_properties_get_data( properties, "crop_geometry", NULL );
866                 if ( !crop )
867                 {
868                         crop = mlt_geometry_init();
869                         mlt_position length = mlt_transition_get_length( this );
870                         double cycle = mlt_properties_get_double( properties, "cycle" );
871
872                         // Allow a geometry repeat cycle
873                         if ( cycle >= 1 )
874                                 length = cycle;
875                         else if ( cycle > 0 )
876                                 length *= cycle;
877                         mlt_geometry_parse( crop, mlt_properties_get( properties, "crop" ), length, result->sw, result->sh );
878                         mlt_properties_set_data( properties, "crop_geometry", crop, 0, (mlt_destructor)mlt_geometry_close, NULL );
879                 }
880
881                 // Repeat processing
882                 int length = mlt_geometry_get_length( crop );
883                 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
884                 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
885                 if ( !repeat_off && position >= length && length != 0 )
886                 {
887                         int section = position / length;
888                         position -= section * length;
889                         if ( !mirror_off && section % 2 == 1 )
890                                 position = length - position;
891                 }
892
893                 // Compute the pan
894                 struct mlt_geometry_item_s crop_item;
895                 mlt_geometry_fetch( crop, &crop_item, position );
896                 result->x_src = rint( crop_item.x );
897                 result->y_src = rint( crop_item.y );
898         }
899 }
900
901 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, double position )
902 {
903         // Get the properties from the transition
904         mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
905
906         // Get the properties from the frame
907         mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
908         
909         // Structures for geometry
910         mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
911
912         // Obtain the normalised width and height from the a_frame
913         int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
914         int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
915
916         char *name = mlt_properties_get( properties, "_unique_id" );
917         char key[ 256 ];
918
919         sprintf( key, "%s.in", name );
920         if ( mlt_properties_get( a_props, key ) )
921         {
922                 sscanf( mlt_properties_get( a_props, key ), "%f,%f,%f,%f,%f,%d,%d", &result->item.x, &result->item.y, &result->item.w, &result->item.h, &result->item.mix, &result->nw, &result->nh );
923         }
924         else
925         {
926                 // Now parse the geometries
927                 if ( start == NULL )
928                 {
929                         // Parse the transitions properties
930                         start = transition_parse_keys( this, normalised_width, normalised_height );
931
932                         // Assign to properties to ensure we get destroyed
933                         mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
934                 }
935                 else
936                 {
937                         mlt_position length = mlt_transition_get_length( this );
938                         double cycle = mlt_properties_get_double( properties, "cycle" );
939                         if ( cycle > 1 )
940                                 length = cycle;
941                         else if ( cycle > 0 )
942                                 length *= cycle;
943                         mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
944                 }
945
946                 // Do the calculation
947                 geometry_calculate( this, result, position );
948
949                 // Assign normalised info
950                 result->nw = normalised_width;
951                 result->nh = normalised_height;
952         }
953
954         // Now parse the alignment
955         result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
956         result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
957
958         crop_calculate( this, properties, result, position );
959
960         return start;
961 }
962
963 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
964 {
965         // Create a frame to return
966         mlt_frame b_frame = mlt_frame_init( MLT_TRANSITION_SERVICE( this ) );
967
968         // Get the properties of the a frame
969         mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
970
971         // Get the properties of the b frame
972         mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
973
974         // Get the position
975         int position = position_calculate( this, frame_position );
976
977         // Get the unique id of the transition
978         char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
979         char key[ 256 ];
980
981         // Destination image
982         uint8_t *dest = NULL;
983
984         // Get the image and dimensions
985         uint8_t *image = NULL;
986         int width = mlt_properties_get_int( a_props, "width" );
987         int height = mlt_properties_get_int( a_props, "height" );
988         mlt_image_format format = mlt_image_yuv422;
989
990         mlt_frame_get_image( a_frame, &image, &format, &width, &height, 0 );
991         if ( !image )
992                 return b_frame;
993
994         // Pointers for copy operation
995         uint8_t *p;
996
997         // Coordinates
998         int w = 0;
999         int h = 0;
1000         int x = 0;
1001         int y = 0;
1002
1003         int ss = 0;
1004         int ds = 0;
1005
1006         // Will need to know region to copy
1007         struct geometry_s result;
1008
1009         // Calculate the region now
1010         composite_calculate( this, &result, a_frame, position );
1011
1012         // Need to scale down to actual dimensions
1013         x = rint( result.item.x * width / result.nw );
1014         y = rint( result.item.y * height / result.nh );
1015         w = rint( result.item.w * width / result.nw );
1016         h = rint( result.item.h * height / result.nh );
1017
1018         if ( x % 2 )
1019         {
1020                 x --;
1021                 w ++;
1022         }
1023
1024         // Store the key
1025         sprintf( key, "%s.in=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
1026         mlt_properties_parse( a_props, key );
1027         sprintf( key, "%s.out=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
1028         mlt_properties_parse( a_props, key );
1029
1030         ds = w * 2;
1031         ss = width * 2;
1032
1033         // Now we need to create a new destination image
1034         dest = mlt_pool_alloc( w * h * 2 );
1035
1036         // Assign to the new frame
1037         mlt_frame_set_image( b_frame, dest, w * h * 2, mlt_pool_release );
1038         mlt_properties_set_int( b_props, "width", w );
1039         mlt_properties_set_int( b_props, "height", h );
1040         mlt_properties_set_int( b_props, "format", format );
1041
1042         if ( y < 0 )
1043         {
1044                 dest += ( ds * -y );
1045                 h += y;
1046                 y = 0;
1047         }
1048
1049         if ( y + h > height )
1050                 h -= ( y + h - height );
1051
1052         if ( x < 0 )
1053         {
1054                 dest += -x * 2;
1055                 w += x;
1056                 x = 0;
1057         }
1058
1059         if ( w > 0 && h > 0 )
1060         {
1061                 // Copy the region of the image
1062                 p = image + y * ss + x * 2;
1063
1064                 while ( h -- )
1065                 {
1066                         memcpy( dest, p, w * 2 );
1067                         dest += ds;
1068                         p += ss;
1069                 }
1070         }
1071
1072         // Assign this position to the b frame
1073         mlt_frame_set_position( b_frame, frame_position );
1074         mlt_properties_set_int( b_props, "distort", 1 );
1075
1076         // Return the frame
1077         return b_frame;
1078 }
1079
1080 /** Get the image.
1081 */
1082
1083 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
1084 {
1085         // Get the b frame from the stack
1086         mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
1087
1088         // Get the transition from the a frame
1089         mlt_transition this = mlt_frame_pop_service( a_frame );
1090
1091         // Get in and out
1092         double position = mlt_deque_pop_back_double( MLT_FRAME_IMAGE_STACK( a_frame ) );
1093         int out = mlt_frame_pop_service_int( a_frame );
1094         int in = mlt_frame_pop_service_int( a_frame );
1095
1096         // Get the properties from the transition
1097         mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1098
1099         // TODO: clean up always_active behaviour
1100         if ( mlt_properties_get_int( properties, "always_active" ) )
1101         {
1102                 mlt_events_block( properties, properties );
1103                 mlt_properties_set_int( properties, "in", in );
1104                 mlt_properties_set_int( properties, "out", out );
1105                 mlt_events_unblock( properties, properties );
1106         }
1107
1108         // This compositer is yuv422 only
1109         *format = mlt_image_yuv422;
1110
1111         if ( b_frame != NULL )
1112         {
1113                 // Get the properties of the a frame
1114                 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
1115
1116                 // Get the properties of the b frame
1117                 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
1118
1119                 // Structures for geometry
1120                 struct geometry_s result;
1121
1122                 // Calculate the position
1123                 double delta = mlt_transition_get_progress_delta( this, a_frame );
1124                 mlt_position length = mlt_transition_get_length( this );
1125
1126                 // Get the image from the b frame
1127                 uint8_t *image_b = NULL;
1128                 int width_b = *width > 0 ? *width : mlt_properties_get_int( a_props, "normalised_width" );
1129                 int height_b = *height > 0 ? *height : mlt_properties_get_int( a_props, "normalised_height" );
1130         
1131                 // Vars for alphas
1132                 uint8_t *alpha_a = NULL;
1133                 uint8_t *alpha_b = NULL;
1134
1135                 // Do the calculation
1136                 // NB: Locks needed here since the properties are being modified
1137                 int invert = mlt_properties_get_int( properties, "invert" );
1138                 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1139                 composite_calculate( this, &result, invert ? b_frame : a_frame, position );
1140                 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1141
1142                 // Manual option to deinterlace
1143                 if ( mlt_properties_get_int( properties, "deinterlace" ) )
1144                 {
1145                         mlt_properties_set_int( a_props, "consumer_deinterlace", 1 );
1146                         mlt_properties_set_int( b_props, "consumer_deinterlace", 1 );
1147                 }
1148
1149                 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
1150                 if ( mlt_properties_get_int( properties, "no_alpha" ) && 
1151                          result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
1152                 {
1153                         mlt_frame_get_image( b_frame, image, format, width, height, 1 );
1154                         if ( !mlt_frame_is_test_card( a_frame ) )
1155                                 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
1156                         return 0;
1157                 }
1158
1159                 if ( a_frame == b_frame )
1160                 {
1161                         double aspect_ratio = mlt_frame_get_aspect_ratio( b_frame );
1162                         get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result );
1163                         alpha_b = mlt_frame_get_alpha_mask( b_frame );
1164                         mlt_properties_set_double( a_props, "aspect_ratio", aspect_ratio );
1165                 }
1166
1167                 // Get the image from the a frame
1168                 mlt_frame_get_image( a_frame, invert ? &image_b : image, format, width, height, 1 );
1169                 alpha_a = mlt_frame_get_alpha_mask( a_frame );
1170
1171                 // Optimisation - no compositing required
1172                 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
1173                         return 0;
1174
1175                 // Need to keep the width/height of the a_frame on the b_frame for titling
1176                 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1177                 {
1178                         mlt_properties_set_int( a_props, "dest_width", *width );
1179                         mlt_properties_set_int( a_props, "dest_height", *height );
1180                         mlt_properties_set_int( b_props, "dest_width", *width );
1181                         mlt_properties_set_int( b_props, "dest_height", *height );
1182                 }
1183                 else
1184                 {
1185                         mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1186                         mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1187                 }
1188
1189                 // Special case for titling...
1190                 if ( mlt_properties_get_int( properties, "titles" ) )
1191                 {
1192                         if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1193                                 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1194                         width_b = mlt_properties_get_int( a_props, "dest_width" );
1195                         height_b = mlt_properties_get_int( a_props, "dest_height" );
1196                 }
1197
1198                 if ( *image != image_b && ( ( invert ? 0 : image_b ) || get_b_frame_image( this, b_frame, invert ? image : &image_b, &width_b, &height_b, &result ) == 0 ) )
1199                 {
1200                         uint8_t *dest = *image;
1201                         uint8_t *src = image_b;
1202                         int progressive = 
1203                                         mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1204                                         mlt_properties_get_int( properties, "progressive" );
1205                         int field;
1206                         
1207                         double luma_softness = mlt_properties_get_double( properties, "softness" );
1208                         mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1209                         uint16_t *luma_bitmap = get_luma( this, properties, width_b, height_b );
1210                         mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1211                         char *operator = mlt_properties_get( properties, "operator" );
1212
1213                         alpha_b = alpha_b == NULL ? mlt_frame_get_alpha_mask( b_frame ) : alpha_b;
1214
1215                         composite_line_fn line_fn = composite_line_yuv;
1216
1217                         // Replacement and override
1218                         if ( operator != NULL )
1219                         {
1220                                 if ( !strcmp( operator, "or" ) )
1221                                         line_fn = composite_line_yuv_or;
1222                                 if ( !strcmp( operator, "and" ) )
1223                                         line_fn = composite_line_yuv_and;
1224                                 if ( !strcmp( operator, "xor" ) )
1225                                         line_fn = composite_line_yuv_xor;
1226                         }
1227
1228                         // Allow the user to completely obliterate the alpha channels from both frames
1229                         if ( mlt_properties_get( properties, "alpha_a" ) )
1230                                 memset( alpha_a, mlt_properties_get_int( properties, "alpha_a" ), *width * *height );
1231
1232                         if ( mlt_properties_get( properties, "alpha_b" ) )
1233                                 memset( alpha_b, mlt_properties_get_int( properties, "alpha_b" ), width_b * height_b );
1234
1235                         for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1236                         {
1237                                 // Assume lower field (0) first
1238                                 double field_position = position + field * delta * length;
1239                                 
1240                                 // Do the calculation if we need to
1241                                 // NB: Locks needed here since the properties are being modified
1242                                 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1243                                 composite_calculate( this, &result, invert ? b_frame : a_frame, field_position );
1244                                 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1245
1246                                 if ( mlt_properties_get_int( properties, "titles" ) )
1247                                 {
1248                                         result.item.w = rint( *width * ( result.item.w / result.nw ) );
1249                                         result.nw = result.item.w;
1250                                         result.item.h = rint( *height * ( result.item.h / result.nh ) );
1251                                         result.nh = *height;
1252                                         result.sw = width_b;
1253                                         result.sh = height_b;
1254                                 }
1255
1256                                 // Enforce cropping
1257                                 if ( mlt_properties_get( properties, "crop" ) )
1258                                 {
1259                                         if ( result.x_src == 0 )
1260                                                 width_b = width_b > result.item.w ? result.item.w : width_b;
1261                                         if ( result.y_src == 0 )
1262                                                 height_b = height_b > result.item.h ? result.item.h : height_b;
1263                                 }
1264                                 else
1265                                 {
1266                                         // Otherwise, align
1267                                         alignment_calculate( &result );
1268                                 }
1269
1270                                 // Composite the b_frame on the a_frame
1271                                 if ( invert )
1272                                         composite_yuv( dest, width_b, height_b, src, *width, *height, alpha_a, alpha_b, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1273                                 else
1274                                         composite_yuv( dest, *width, *height, src, width_b, height_b, alpha_b, alpha_a, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1275                         }
1276                 }
1277         }
1278         else
1279         {
1280                 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1281         }
1282
1283         return 0;
1284 }
1285
1286 /** Composition transition processing.
1287 */
1288
1289 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1290 {
1291         // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1292         if ( mlt_properties_get_int(  MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
1293         {
1294                 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
1295                 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
1296                 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1297         }
1298         else
1299         {
1300                 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1301                 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
1302                 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
1303                 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
1304         }
1305         
1306         mlt_frame_push_service( a_frame, this );
1307         mlt_frame_push_frame( a_frame, b_frame );
1308         mlt_frame_push_get_image( a_frame, transition_get_image );
1309         return a_frame;
1310 }
1311
1312 /** Constructor for the filter.
1313 */
1314
1315 mlt_transition transition_composite_init( mlt_profile profile, mlt_service_type type, const char *id, char *arg )
1316 {
1317         mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1318         if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1319         {
1320                 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1321                 
1322                 this->process = composite_process;
1323                 
1324                 // Default starting motion and zoom
1325                 mlt_properties_set( properties, "start", arg != NULL ? arg : "0/0:100%x100%" );
1326                 
1327                 // Default factory
1328                 mlt_properties_set( properties, "factory", mlt_environment( "MLT_PRODUCER" ) );
1329
1330                 // Use alignment (and hence alpha of b frame)
1331                 mlt_properties_set_int( properties, "aligned", 1 );
1332
1333                 // Default to progressive rendering
1334                 mlt_properties_set_int( properties, "progressive", 1 );
1335                 
1336                 // Inform apps and framework that this is a video only transition
1337                 mlt_properties_set_int( properties, "_transition_type", 1 );
1338         }
1339         return this;
1340 }