]> git.sesse.net Git - mlt/blob - src/modules/core/transition_composite.c
fix 100% opacity to be truly opaque (kdenlive-2708)
[mlt] / src / modules / core / transition_composite.c
1 /*
2  * transition_composite.c -- compose one image over another using alpha channel
3  * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4  * Author: Dan Dennedy <dan@dennedy.org>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, uint32_t step );
31
32 /** Geometry struct.
33 */
34
35 struct geometry_s
36 {
37         struct mlt_geometry_item_s item;
38         int nw; // normalised width
39         int nh; // normalised height
40         int sw; // scaled width, not including consumer scale based upon w/nw
41         int sh; // scaled height, not including consumer scale based upon h/nh
42         int halign; // horizontal alignment: 0=left, 1=center, 2=right
43         int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
44         int x_src;
45         int y_src;
46 };
47
48 /** Parse the alignment properties into the geometry.
49 */
50
51 static int alignment_parse( char* align )
52 {
53         int ret = 0;
54         
55         if ( align == NULL );
56         else if ( isdigit( align[ 0 ] ) )
57                 ret = atoi( align );
58         else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
59                 ret = 1;
60         else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
61                 ret = 2;
62
63         return ret;
64 }
65
66 /** Calculate real geometry.
67 */
68
69 static void geometry_calculate( mlt_transition self, struct geometry_s *output, double position )
70 {
71         mlt_properties properties = MLT_TRANSITION_PROPERTIES( self );
72         mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
73         int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
74         int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
75         int length = mlt_geometry_get_length( geometry );
76
77         // Allow wrapping
78         if ( !repeat_off && position >= length && length != 0 )
79         {
80                 int section = position / length;
81                 position -= section * length;
82                 if ( !mirror_off && section % 2 == 1 )
83                         position = length - position;
84         }
85
86         // Fetch the key for the position
87         mlt_geometry_fetch( geometry, &output->item, position );
88 }
89
90 static mlt_geometry transition_parse_keys( mlt_transition self, int normalised_width, int normalised_height )
91 {
92         // Loop variable for property interrogation
93         int i = 0;
94
95         // Get the properties of the transition
96         mlt_properties properties = MLT_TRANSITION_PROPERTIES( self );
97
98         // Create an empty geometries object
99         mlt_geometry geometry = mlt_geometry_init( );
100
101         // Get the duration
102         mlt_position length = mlt_transition_get_length( self );
103         double cycle = mlt_properties_get_double( properties, "cycle" );
104
105         // Get the new style geometry string
106         char *property = mlt_properties_get( properties, "geometry" );
107
108         // Allow a geometry repeat cycle
109         if ( cycle >= 1 )
110                 length = cycle;
111         else if ( cycle > 0 )
112                 length *= cycle;
113
114         // Parse the geometry if we have one
115         mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
116
117         // Check if we're using the old style geometry
118         if ( property == NULL )
119         {
120                 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for 
121                 // practical use - while deprecated, it has been slightly extended too - keys can now
122                 // be specified out of order, and can be blanked or NULL to simulate removal
123
124                 // Structure to use for parsing and inserting
125                 struct mlt_geometry_item_s item;
126
127                 // Parse the start property
128                 item.frame = 0;
129                 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
130                         mlt_geometry_insert( geometry, &item );
131
132                 // Parse the keys in between
133                 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
134                 {
135                         // Get the name of the property
136                         char *name = mlt_properties_get_name( properties, i );
137         
138                         // Check that it's valid
139                         if ( !strncmp( name, "key[", 4 ) )
140                         {
141                                 // Get the value of the property
142                                 char *value = mlt_properties_get_value( properties, i );
143         
144                                 // Determine the frame number
145                                 item.frame = atoi( name + 4 );
146         
147                                 // Parse and add to the list
148                                 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
149                                         mlt_geometry_insert( geometry, &item );
150                                 else
151                                         fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
152                         }
153                 }
154
155                 // Parse the end
156                 item.frame = -1;
157                 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
158                         mlt_geometry_insert( geometry, &item );
159                 mlt_geometry_interpolate( geometry );
160         }
161         
162         return geometry;
163 }
164
165 /** Adjust position according to scaled size and alignment properties.
166 */
167
168 static void alignment_calculate( struct geometry_s *geometry )
169 {
170         geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
171         geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
172 }
173
174 /** Calculate the position for this frame.
175 */
176
177 static int position_calculate( mlt_transition self, mlt_position position )
178 {
179         // Get the in and out position
180         mlt_position in = mlt_transition_get_in( self );
181
182         // Now do the calcs
183         return position - in;
184 }
185
186 /** Calculate the field delta for this frame - position between two frames.
187 */
188
189 static int get_value( mlt_properties properties, const char *preferred, const char *fallback )
190 {
191         int value = mlt_properties_get_int( properties, preferred );
192         if ( value == 0 )
193                 value = mlt_properties_get_int( properties, fallback );
194         return value;
195 }
196
197 /** A linear threshold determination function.
198 */
199
200 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
201 {
202         if ( a < edge1 )
203                 return 0;
204
205         if ( a >= edge2 )
206                 return 0x10000;
207
208         return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
209 }
210
211 /** A smoother, non-linear threshold determination function.
212 */
213
214 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
215 {
216         if ( a < edge1 )
217                 return 0;
218
219         if ( a >= edge2 )
220                 return 0x10000;
221
222         a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
223
224         return ( ( ( a * a ) >> 16 )  * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
225 }
226
227 /** Load the luma map from PGM stream.
228 */
229
230 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
231 {
232         uint8_t *data = NULL;
233         while (1)
234         {
235                 char line[128];
236                 char comment[128];
237                 int i = 2;
238                 int maxval;
239                 int bpp;
240                 uint16_t *p;
241
242                 line[127] = '\0';
243
244                 // get the magic code
245                 if ( fgets( line, 127, f ) == NULL )
246                         break;
247
248                 // skip comments
249                 while ( sscanf( line, " #%s", comment ) > 0 )
250                         if ( fgets( line, 127, f ) == NULL )
251                                 break;
252
253                 if ( line[0] != 'P' || line[1] != '5' )
254                         break;
255
256                 // skip white space and see if a new line must be fetched
257                 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
258                 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
259                         break;
260
261                 // skip comments
262                 while ( sscanf( line, " #%s", comment ) > 0 )
263                         if ( fgets( line, 127, f ) == NULL )
264                                 break;
265
266                 // get the dimensions
267                 if ( line[0] == 'P' )
268                         i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
269                 else
270                         i = sscanf( line, "%d %d %d", width, height, &maxval );
271
272                 // get the height value, if not yet
273                 if ( i < 2 )
274                 {
275                         if ( fgets( line, 127, f ) == NULL )
276                                 break;
277
278                         // skip comments
279                         while ( sscanf( line, " #%s", comment ) > 0 )
280                                 if ( fgets( line, 127, f ) == NULL )
281                                         break;
282
283                         i = sscanf( line, "%d", height );
284                         if ( i == 0 )
285                                 break;
286                         else
287                                 i = 2;
288                 }
289
290                 // get the maximum gray value, if not yet
291                 if ( i < 3 )
292                 {
293                         if ( fgets( line, 127, f ) == NULL )
294                                 break;
295
296                         // skip comments
297                         while ( sscanf( line, " #%s", comment ) > 0 )
298                                 if ( fgets( line, 127, f ) == NULL )
299                                         break;
300
301                         i = sscanf( line, "%d", &maxval );
302                         if ( i == 0 )
303                                 break;
304                 }
305
306                 // determine if this is one or two bytes per pixel
307                 bpp = maxval > 255 ? 2 : 1;
308
309                 // allocate temporary storage for the raw data
310                 data = mlt_pool_alloc( *width * *height * bpp );
311                 if ( data == NULL )
312                         break;
313
314                 // read the raw data
315                 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
316                         break;
317
318                 // allocate the luma bitmap
319                 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
320                 if ( *map == NULL )
321                         break;
322
323                 // proces the raw data into the luma bitmap
324                 for ( i = 0; i < *width * *height * bpp; i += bpp )
325                 {
326                         if ( bpp == 1 )
327                                 *p++ = data[ i ] << 8;
328                         else
329                                 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
330                 }
331
332                 break;
333         }
334
335         if ( data != NULL )
336                 mlt_pool_release( data );
337 }
338
339 /** Generate a luma map from any YUV image.
340 */
341
342 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
343 {
344         int i;
345         
346         // allocate the luma bitmap
347         uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
348         if ( *map == NULL )
349                 return;
350
351         // proces the image data into the luma bitmap
352         for ( i = 0; i < width * height * 2; i += 2 )
353                 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
354 }
355
356 static inline int calculate_mix( uint16_t *luma, int j, int softness, int weight, int alpha, uint32_t step )
357 {
358         return ( ( luma ? smoothstep( luma[ j ], luma[ j ] + softness, step ) : weight ) * ( alpha + 1 ) ) >> 8;
359 }
360
361 static inline uint8_t sample_mix( uint8_t dest, uint8_t src, int mix )
362 {
363         return ( src * mix + dest * ( ( 1 << 16 ) - mix ) ) >> 16;
364 }
365
366 /** Composite a source line over a destination line
367 */
368 #if defined(USE_SSE) && defined(ARCH_X86_64)
369 void composite_line_yuv_sse2_simple(uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight);
370 #endif
371
372 void composite_line_yuv( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
373 {
374         register int j = 0;
375         register int mix;
376
377 #if defined(USE_SSE) && defined(ARCH_X86_64)
378         if ( !luma && width > 7 )
379         {
380                 composite_line_yuv_sse2_simple(dest, src, width, alpha_b, alpha_a, weight);
381                 j = width - width % 8;
382                 dest += j * 2;
383                 src += j * 2;
384                 alpha_a += j;
385                 alpha_b += j;
386         }
387 #endif
388
389         for ( ; j < width; j ++ )
390         {
391                 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++, step );
392                 *dest = sample_mix( *dest, *src++, mix );
393                 dest++;
394                 *dest = sample_mix( *dest, *src++, mix );
395                 dest++;
396                 *alpha_a = ( mix >> 8 ) | *alpha_a;
397                 alpha_a ++;
398         }
399 }
400
401 static void composite_line_yuv_or( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
402 {
403         register int j;
404         register int mix;
405
406         for ( j = 0; j < width; j ++ )
407         {
408                 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ | *alpha_a, step );
409                 *dest = sample_mix( *dest, *src++, mix );
410                 dest++;
411                 *dest = sample_mix( *dest, *src++, mix );
412                 dest++;
413                 *alpha_a ++ = mix >> 8;
414         }
415 }
416
417 static void composite_line_yuv_and( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step  )
418 {
419         register int j;
420         register int mix;
421
422         for ( j = 0; j < width; j ++ )
423         {
424                 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ & *alpha_a, step );
425                 *dest = sample_mix( *dest, *src++, mix );
426                 dest++;
427                 *dest = sample_mix( *dest, *src++, mix );
428                 dest++;
429                 *alpha_a ++ = mix >> 8;
430         }
431 }
432
433 static void composite_line_yuv_xor( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
434 {
435         register int j;
436         register int mix;
437
438         for ( j = 0; j < width; j ++ )
439         {
440                 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ ^ *alpha_a, step );
441                 *dest = sample_mix( *dest, *src++, mix );
442                 dest++;
443                 *dest = sample_mix( *dest, *src++, mix );
444                 dest++;
445                 *alpha_a ++ = mix >> 8;
446         }
447 }
448
449 /** Composite function.
450 */
451
452 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *alpha_b, uint8_t *alpha_a, struct geometry_s geometry, int field, uint16_t *p_luma, double softness, composite_line_fn line_fn )
453 {
454         int ret = 0;
455         int i;
456         int x_src = -geometry.x_src, y_src = -geometry.y_src;
457         int uneven_x_src = ( x_src % 2 );
458         int step = ( field > -1 ) ? 2 : 1;
459         int bpp = 2;
460         int stride_src = geometry.sw * bpp;
461         int stride_dest = width_dest * bpp;
462         int i_softness = ( 1 << 16 ) * softness;
463         int weight = ( ( 1 << 16 ) * geometry.item.mix + 50 ) / 100;
464         uint32_t luma_step = ( ( ( 1 << 16 ) - 1 ) * geometry.item.mix + 50 ) / 100 * ( 1.0 + softness );
465
466         // Adjust to consumer scale
467         int x = rint( geometry.item.x * width_dest / geometry.nw );
468         int y = rint( geometry.item.y * height_dest / geometry.nh );
469         int uneven_x = ( x % 2 );
470
471         // optimization points - no work to do
472         if ( width_src <= 0 || height_src <= 0 || y_src >= height_src || x_src >= width_src )
473                 return ret;
474
475         if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
476                 return ret;
477
478         // cropping affects the source width
479         if ( x_src > 0 )
480         {
481                 width_src -= x_src;
482                 // and it implies cropping
483                 if ( width_src > geometry.item.w )
484                         width_src = geometry.item.w;
485         }
486
487         // cropping affects the source height
488         if ( y_src > 0 )
489         {
490                 height_src -= y_src;
491                 // and it implies cropping
492                 if ( height_src > geometry.item.h )
493                         height_src = geometry.item.h;
494         }
495
496         // crop overlay off the left edge of frame
497         if ( x < 0 )
498         {
499                 x_src = -x;
500                 width_src -= x_src;
501                 x = 0;
502         }
503
504         // crop overlay beyond right edge of frame
505         if ( x + width_src > width_dest )
506                 width_src = width_dest - x;
507
508         // crop overlay off the top edge of the frame
509         if ( y < 0 )
510         {
511                 y_src = -y;
512                 height_src -= y_src;
513                 y = 0;
514         }
515         
516         // crop overlay below bottom edge of frame
517         if ( y + height_src > height_dest )
518                 height_src = height_dest - y;
519
520         // offset pointer into overlay buffer based on cropping
521         p_src += x_src * bpp + y_src * stride_src;
522
523         // offset pointer into frame buffer based upon positive coordinates only!
524         p_dest += x * bpp + y * stride_dest;
525
526         // offset pointer into alpha channel based upon cropping
527         alpha_b += x_src + y_src * stride_src / bpp;
528         alpha_a += x + y * stride_dest / bpp;
529
530         // offset pointer into luma channel based upon cropping
531         if ( p_luma )
532                 p_luma += x_src + y_src * stride_src / bpp;
533         
534         // Assuming lower field first
535         // Special care is taken to make sure the b_frame is aligned to the correct field.
536         // field 0 = lower field and y should be odd (y is 0-based).
537         // field 1 = upper field and y should be even.
538         if ( ( field > -1 ) && ( y % 2 == field ) )
539         {
540                 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
541                         p_dest += stride_dest;
542                 else
543                         p_dest -= stride_dest;
544         }
545
546         // On the second field, use the other lines from b_frame
547         if ( field == 1 )
548         {
549                 p_src += stride_src;
550                 alpha_b += stride_src / bpp;
551                 alpha_a += stride_dest / bpp;
552                 height_src--;
553         }
554
555         stride_src *= step;
556         stride_dest *= step;
557         int alpha_b_stride = stride_src / bpp;
558         int alpha_a_stride = stride_dest / bpp;
559
560         // Align chroma of source and destination
561         if ( uneven_x != uneven_x_src )
562         {
563                 p_src += 2;
564                 width_src -= 2;
565                 alpha_b += 1;
566         }
567
568         // now do the compositing only to cropped extents
569         for ( i = 0; i < height_src; i += step )
570         {
571                 line_fn( p_dest, p_src, width_src, alpha_b, alpha_a, weight, p_luma, i_softness, luma_step );
572
573                 p_src += stride_src;
574                 p_dest += stride_dest;
575                 alpha_b += alpha_b_stride;
576                 alpha_a += alpha_a_stride;
577                 if ( p_luma )
578                         p_luma += alpha_b_stride;
579         }
580
581         return ret;
582 }
583
584
585 /** Scale 16bit greyscale luma map using nearest neighbor.
586 */
587
588 static inline void
589 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
590 {
591         register int i, j;
592         register int x_step = ( src_width << 16 ) / dest_width;
593         register int y_step = ( src_height << 16 ) / dest_height;
594         register int x, y = 0;
595
596         for ( i = 0; i < dest_height; i++ )
597         {
598                 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
599                 x = 0;
600                 
601                 for ( j = 0; j < dest_width; j++ )
602                 {
603                         *dest_buf++ = src[ x >> 16 ] ^ invert;
604                         x += x_step;
605                 }
606                 y += y_step;
607         }
608 }
609
610 static uint16_t* get_luma( mlt_transition self, mlt_properties properties, int width, int height )
611 {
612         // The cached luma map information
613         int luma_width = mlt_properties_get_int( properties, "_luma.width" );
614         int luma_height = mlt_properties_get_int( properties, "_luma.height" );
615         uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
616         int invert = mlt_properties_get_int( properties, "luma_invert" );
617         
618         // If the filename property changed, reload the map
619         char *resource = mlt_properties_get( properties, "luma" );
620
621         char temp[ 512 ];
622
623         if ( luma_width == 0 || luma_height == 0 )
624         {
625                 luma_width = width;
626                 luma_height = height;
627         }
628
629         if ( resource && resource[0] && strchr( resource, '%' ) )
630         {
631                 // TODO: Clean up quick and dirty compressed/existence check
632                 FILE *test;
633                 sprintf( temp, "%s/lumas/%s/%s", mlt_environment( "MLT_DATA" ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
634                 test = fopen( temp, "r" );
635                 if ( test == NULL )
636                         strcat( temp, ".png" );
637                 else
638                         fclose( test );
639                 resource = temp;
640         }
641
642         if ( resource && resource[0] )
643         {
644                 char *old_luma = mlt_properties_get( properties, "_luma" );
645                 int old_invert = mlt_properties_get_int( properties, "_luma_invert" );
646
647                 if ( invert != old_invert || ( old_luma && old_luma[0] && strcmp( resource, old_luma ) ) )
648                 {
649                         mlt_properties_set_data( properties, "_luma.orig_bitmap", NULL, 0, NULL, NULL );
650                         luma_bitmap = NULL;
651                 }
652         }
653         else {
654                 char *old_luma = mlt_properties_get( properties, "_luma" );
655                 if ( old_luma && old_luma[0] )
656                 {
657                         mlt_properties_set_data( properties, "_luma.orig_bitmap", NULL, 0, NULL, NULL );
658                         luma_bitmap = NULL;
659                         mlt_properties_set( properties, "_luma", NULL);
660                 }
661         }
662
663         if ( resource && resource[0] && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
664         {
665                 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
666                 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
667                 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
668
669                 // Load the original luma once
670                 if ( orig_bitmap == NULL )
671                 {
672                         char *extension = strrchr( resource, '.' );
673                         
674                         // See if it is a PGM
675                         if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
676                         {
677                                 // Open PGM
678                                 FILE *f = fopen( resource, "r" );
679                                 if ( f != NULL )
680                                 {
681                                         // Load from PGM
682                                         luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
683                                         fclose( f );
684                                         
685                                         // Remember the original size for subsequent scaling
686                                         mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
687                                         mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
688                                         mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
689                                 }
690                         }
691                         else
692                         {
693                                 // Get the factory producer service
694                                 char *factory = mlt_properties_get( properties, "factory" );
695         
696                                 // Create the producer
697                                 mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( self ) );
698                                 mlt_producer producer = mlt_factory_producer( profile, factory, resource );
699         
700                                 // If we have one
701                                 if ( producer != NULL )
702                                 {
703                                         // Get the producer properties
704                                         mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
705         
706                                         // Ensure that we loop
707                                         mlt_properties_set( producer_properties, "eof", "loop" );
708         
709                                         // Now pass all producer. properties on the transition down
710                                         mlt_properties_pass( producer_properties, properties, "luma." );
711         
712                                         // We will get the alpha frame from the producer
713                                         mlt_frame luma_frame = NULL;
714         
715                                         // Get the luma frame
716                                         if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
717                                         {
718                                                 uint8_t *luma_image;
719                                                 mlt_image_format luma_format = mlt_image_yuv422;
720         
721                                                 // Get image from the luma producer
722                                                 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
723                                                 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
724         
725                                                 // Generate the luma map
726                                                 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
727                                                         luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
728         
729                                                 // Remember the original size for subsequent scaling
730                                                 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
731                                                 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
732                                                 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
733                                                 
734                                                 // Cleanup the luma frame
735                                                 mlt_frame_close( luma_frame );
736                                         }
737         
738                                         // Cleanup the luma producer
739                                         mlt_producer_close( producer );
740                                 }
741                         }
742                 }
743                 // Scale luma map
744                 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
745                 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
746
747                 // Remember the scaled luma size to prevent unnecessary scaling
748                 mlt_properties_set_int( properties, "_luma.width", width );
749                 mlt_properties_set_int( properties, "_luma.height", height );
750                 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
751                 mlt_properties_set( properties, "_luma", resource );
752                 mlt_properties_set_int( properties, "_luma_invert", invert );
753         }
754         return luma_bitmap;
755 }
756
757 /** Get the properly sized image from b_frame.
758 */
759
760 static int get_b_frame_image( mlt_transition self, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
761 {
762         int ret = 0;
763         mlt_image_format format = mlt_image_yuv422;
764
765         // Get the properties objects
766         mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
767         mlt_properties properties = MLT_TRANSITION_PROPERTIES( self );
768         uint8_t resize_alpha = mlt_properties_get_int( b_props, "resize_alpha" );
769         double output_ar = mlt_profile_sar( mlt_service_profile( MLT_TRANSITION_SERVICE(self) ) );
770
771         // Do not scale if we are cropping - the compositing rectangle can crop the b image
772         // TODO: Use the animatable w and h of the crop geometry to scale independently of crop rectangle
773         if ( mlt_properties_get( properties, "crop" ) )
774         {
775                 int real_width = get_value( b_props, "meta.media.width", "width" );
776                 int real_height = get_value( b_props, "meta.media.height", "height" );
777                 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
778                 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
779                 int scaled_height = real_height;
780                 geometry->sw = scaled_width;
781                 geometry->sh = scaled_height;
782         }
783         // Normalise aspect ratios and scale preserving aspect ratio
784         else if ( mlt_properties_get_int( properties, "aligned" ) && mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
785         {
786                 // Adjust b_frame pixel aspect
787                 int normalised_width = geometry->item.w;
788                 int normalised_height = geometry->item.h;
789                 int real_width = get_value( b_props, "meta.media.width", "width" );
790                 int real_height = get_value( b_props, "meta.media.height", "height" );
791                 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
792                 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
793                 int scaled_height = real_height;
794 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d real %dx%d output_ar %f\n", __FILE__,
795 // scaled_width, scaled_height, normalised_width, normalised_height, real_width, real_height,
796 // output_ar);
797
798                 // Now ensure that our images fit in the normalised frame
799                 if ( scaled_width > normalised_width )
800                 {
801                         scaled_height = rint( scaled_height * normalised_width / scaled_width );
802                         scaled_width = normalised_width;
803                 }
804                 if ( scaled_height > normalised_height )
805                 {
806                         scaled_width = rint( scaled_width * normalised_height / scaled_height );
807                         scaled_height = normalised_height;
808                 }
809
810                 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
811                 // ????: Shouln't this be the default behaviour?
812                 if ( mlt_properties_get_int( properties, "fill" ) && scaled_width > 0 && scaled_height > 0 )
813                 {
814                         if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height <= normalised_width )
815                         {
816                                 scaled_width = rint( scaled_width * normalised_height / scaled_height );
817                                 scaled_height = normalised_height;
818                         }
819                         else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
820                         {
821                                 scaled_height = rint( scaled_height * normalised_width / scaled_width );
822                                 scaled_width = normalised_width;
823                         }
824                 }
825
826                 // Save the new scaled dimensions
827                 geometry->sw = scaled_width;
828                 geometry->sh = scaled_height;
829         }
830         else
831         {
832                 geometry->sw = geometry->item.w;
833                 geometry->sh = geometry->item.h;
834         }
835
836         // We want to ensure that we bypass resize now...
837         if ( resize_alpha == 0 )
838                 mlt_properties_set_int( b_props, "distort", mlt_properties_get_int( properties, "distort" ) );
839
840         // If we're not aligned, we want a non-transparent background
841         if ( mlt_properties_get_int( properties, "aligned" ) == 0 )
842                 mlt_properties_set_int( b_props, "resize_alpha", 255 );
843
844         // Take into consideration alignment for optimisation (titles are a special case)
845         if ( !mlt_properties_get_int( properties, "titles" ) &&
846                  mlt_properties_get( properties, "crop" ) == NULL )
847                 alignment_calculate( geometry );
848
849         // Adjust to consumer scale
850         *width = rint( geometry->sw * *width / geometry->nw );
851         *width -= *width % 2; // coerce to even width for yuv422
852         *height = rint( geometry->sh * *height / geometry->nh );
853 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d resize %dx%d\n", __FILE__,
854 // geometry->sw, geometry->sh, geometry->nw, geometry->nh, *width, *height);
855
856         ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
857
858         // composite_yuv uses geometry->sw to determine source stride, which
859         // should equal the image width if not using crop property.
860         if ( !mlt_properties_get( properties, "crop" ) )
861                 geometry->sw = *width;
862
863         // Set the frame back
864         mlt_properties_set_int( b_props, "resize_alpha", resize_alpha );
865
866         return ret && image != NULL;
867 }
868
869 static void crop_calculate( mlt_transition self, mlt_properties properties, struct geometry_s *result, double position )
870 {
871         // Initialize panning info
872         result->x_src = 0;
873         result->y_src = 0;
874         if ( mlt_properties_get( properties, "crop" ) )
875         {
876                 mlt_geometry crop = mlt_properties_get_data( properties, "crop_geometry", NULL );
877                 if ( !crop )
878                 {
879                         crop = mlt_geometry_init();
880                         mlt_position length = mlt_transition_get_length( self );
881                         double cycle = mlt_properties_get_double( properties, "cycle" );
882
883                         // Allow a geometry repeat cycle
884                         if ( cycle >= 1 )
885                                 length = cycle;
886                         else if ( cycle > 0 )
887                                 length *= cycle;
888                         mlt_geometry_parse( crop, mlt_properties_get( properties, "crop" ), length, result->sw, result->sh );
889                         mlt_properties_set_data( properties, "crop_geometry", crop, 0, (mlt_destructor)mlt_geometry_close, NULL );
890                 }
891
892                 // Repeat processing
893                 int length = mlt_geometry_get_length( crop );
894                 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
895                 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
896                 if ( !repeat_off && position >= length && length != 0 )
897                 {
898                         int section = position / length;
899                         position -= section * length;
900                         if ( !mirror_off && section % 2 == 1 )
901                                 position = length - position;
902                 }
903
904                 // Compute the pan
905                 struct mlt_geometry_item_s crop_item;
906                 mlt_geometry_fetch( crop, &crop_item, position );
907                 result->x_src = rint( crop_item.x );
908                 result->y_src = rint( crop_item.y );
909         }
910 }
911
912 static mlt_geometry composite_calculate( mlt_transition self, struct geometry_s *result, mlt_frame a_frame, double position )
913 {
914         // Get the properties from the transition
915         mlt_properties properties = MLT_TRANSITION_PROPERTIES( self );
916
917         // Get the properties from the frame
918         mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
919         
920         // Structures for geometry
921         mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
922
923         // Obtain the normalised width and height from the a_frame
924         mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( self ) );
925         int normalised_width = profile->width;
926         int normalised_height = profile->height;
927
928         char *name = mlt_properties_get( properties, "_unique_id" );
929         char key[ 256 ];
930
931         sprintf( key, "%s.in", name );
932         if ( mlt_properties_get( a_props, key ) )
933         {
934                 sscanf( mlt_properties_get( a_props, key ), "%f %f %f %f %f %d %d", &result->item.x, &result->item.y, &result->item.w, &result->item.h, &result->item.mix, &result->nw, &result->nh );
935         }
936         else
937         {
938                 // Now parse the geometries
939                 if ( start == NULL )
940                 {
941                         // Parse the transitions properties
942                         start = transition_parse_keys( self, normalised_width, normalised_height );
943
944                         // Assign to properties to ensure we get destroyed
945                         mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
946                 }
947                 else
948                 {
949                         mlt_position length = mlt_transition_get_length( self );
950                         double cycle = mlt_properties_get_double( properties, "cycle" );
951                         if ( cycle > 1 )
952                                 length = cycle;
953                         else if ( cycle > 0 )
954                                 length *= cycle;
955                         mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
956                 }
957
958                 // Do the calculation
959                 geometry_calculate( self, result, position );
960
961                 // Assign normalised info
962                 result->nw = normalised_width;
963                 result->nh = normalised_height;
964         }
965
966         // Now parse the alignment
967         result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
968         result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
969
970         crop_calculate( self, properties, result, position );
971
972         return start;
973 }
974
975 mlt_frame composite_copy_region( mlt_transition self, mlt_frame a_frame, mlt_position frame_position )
976 {
977         // Create a frame to return
978         mlt_frame b_frame = mlt_frame_init( MLT_TRANSITION_SERVICE( self ) );
979
980         // Get the properties of the a frame
981         mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
982
983         // Get the properties of the b frame
984         mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
985
986         // Get the position
987         int position = position_calculate( self, frame_position );
988
989         // Get the unique id of the transition
990         char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( self ), "_unique_id" );
991         char key[ 256 ];
992
993         // Destination image
994         uint8_t *dest = NULL;
995
996         // Get the image and dimensions
997         uint8_t *image = NULL;
998         int width = mlt_properties_get_int( a_props, "width" );
999         int height = mlt_properties_get_int( a_props, "height" );
1000         mlt_image_format format = mlt_image_yuv422;
1001
1002         mlt_frame_get_image( a_frame, &image, &format, &width, &height, 0 );
1003         if ( !image )
1004                 return b_frame;
1005
1006         // Pointers for copy operation
1007         uint8_t *p;
1008
1009         // Coordinates
1010         int w = 0;
1011         int h = 0;
1012         int x = 0;
1013         int y = 0;
1014
1015         int ss = 0;
1016         int ds = 0;
1017
1018         // Will need to know region to copy
1019         struct geometry_s result;
1020
1021         // Calculate the region now
1022         composite_calculate( self, &result, a_frame, position );
1023
1024         // Need to scale down to actual dimensions
1025         x = rint( result.item.x * width / result.nw );
1026         y = rint( result.item.y * height / result.nh );
1027         w = rint( result.item.w * width / result.nw );
1028         h = rint( result.item.h * height / result.nh );
1029
1030         if ( x % 2 )
1031         {
1032                 x --;
1033                 w ++;
1034         }
1035
1036         // Store the key
1037         sprintf( key, "%s.in=%d %d %d %d %f %d %d", name, x, y, w, h, result.item.mix, width, height );
1038         mlt_properties_parse( a_props, key );
1039         sprintf( key, "%s.out=%d %d %d %d %f %d %d", name, x, y, w, h, result.item.mix, width, height );
1040         mlt_properties_parse( a_props, key );
1041
1042         ds = w * 2;
1043         ss = width * 2;
1044
1045         // Now we need to create a new destination image
1046         dest = mlt_pool_alloc( w * h * 2 );
1047
1048         // Assign to the new frame
1049         mlt_frame_set_image( b_frame, dest, w * h * 2, mlt_pool_release );
1050         mlt_properties_set_int( b_props, "width", w );
1051         mlt_properties_set_int( b_props, "height", h );
1052         mlt_properties_set_int( b_props, "format", format );
1053
1054         if ( y < 0 )
1055         {
1056                 dest += ( ds * -y );
1057                 h += y;
1058                 y = 0;
1059         }
1060
1061         if ( y + h > height )
1062                 h -= ( y + h - height );
1063
1064         if ( x < 0 )
1065         {
1066                 dest += -x * 2;
1067                 w += x;
1068                 x = 0;
1069         }
1070
1071         if ( w > 0 && h > 0 )
1072         {
1073                 // Copy the region of the image
1074                 p = image + y * ss + x * 2;
1075
1076                 while ( h -- )
1077                 {
1078                         memcpy( dest, p, w * 2 );
1079                         dest += ds;
1080                         p += ss;
1081                 }
1082         }
1083
1084         // Assign this position to the b frame
1085         mlt_frame_set_position( b_frame, frame_position );
1086         mlt_properties_set_int( b_props, "distort", 1 );
1087
1088         // Return the frame
1089         return b_frame;
1090 }
1091
1092 /** Get the image.
1093 */
1094
1095 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
1096 {
1097         // Get the b frame from the stack
1098         mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
1099
1100         // Get the transition from the a frame
1101         mlt_transition self = mlt_frame_pop_service( a_frame );
1102
1103         // Get in and out
1104         double position = mlt_deque_pop_back_double( MLT_FRAME_IMAGE_STACK( a_frame ) );
1105         int out = mlt_frame_pop_service_int( a_frame );
1106         int in = mlt_frame_pop_service_int( a_frame );
1107
1108         // Get the properties from the transition
1109         mlt_properties properties = MLT_TRANSITION_PROPERTIES( self );
1110
1111         // TODO: clean up always_active behaviour
1112         if ( mlt_properties_get_int( properties, "always_active" ) )
1113         {
1114                 mlt_events_block( properties, properties );
1115                 mlt_properties_set_int( properties, "in", in );
1116                 mlt_properties_set_int( properties, "out", out );
1117                 mlt_events_unblock( properties, properties );
1118         }
1119
1120         // This compositer is yuv422 only
1121         *format = mlt_image_yuv422;
1122
1123         if ( b_frame != NULL )
1124         {
1125                 // Get the properties of the a frame
1126                 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
1127
1128                 // Get the properties of the b frame
1129                 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
1130
1131                 // Structures for geometry
1132                 struct geometry_s result;
1133
1134                 // Calculate the position
1135                 double delta = mlt_transition_get_progress_delta( self, a_frame );
1136                 mlt_position length = mlt_transition_get_length( self );
1137
1138                 // Get the image from the b frame
1139                 uint8_t *image_b = NULL;
1140                 mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( self ) );
1141                 int width_b = *width > 0 ? *width : profile->width;
1142                 int height_b = *height > 0 ? *height : profile->height;
1143         
1144                 // Vars for alphas
1145                 uint8_t *alpha_a = NULL;
1146                 uint8_t *alpha_b = NULL;
1147
1148                 // Do the calculation
1149                 // NB: Locks needed here since the properties are being modified
1150                 int invert = mlt_properties_get_int( properties, "invert" );
1151                 mlt_service_lock( MLT_TRANSITION_SERVICE( self ) );
1152                 composite_calculate( self, &result, invert ? b_frame : a_frame, position );
1153                 mlt_service_unlock( MLT_TRANSITION_SERVICE( self ) );
1154
1155                 // Manual option to deinterlace
1156                 if ( mlt_properties_get_int( properties, "deinterlace" ) )
1157                 {
1158                         mlt_properties_set_int( a_props, "consumer_deinterlace", 1 );
1159                         mlt_properties_set_int( b_props, "consumer_deinterlace", 1 );
1160                 }
1161
1162                 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
1163                 if ( mlt_properties_get_int( properties, "no_alpha" ) && 
1164                          result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
1165                 {
1166                         mlt_frame_get_image( b_frame, image, format, width, height, 1 );
1167                         if ( !mlt_frame_is_test_card( a_frame ) )
1168                                 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
1169                         return 0;
1170                 }
1171
1172                 if ( a_frame == b_frame )
1173                 {
1174                         double aspect_ratio = mlt_frame_get_aspect_ratio( b_frame );
1175                         get_b_frame_image( self, b_frame, &image_b, &width_b, &height_b, &result );
1176                         alpha_b = mlt_frame_get_alpha_mask( b_frame );
1177                         mlt_properties_set_double( a_props, "aspect_ratio", aspect_ratio );
1178                 }
1179
1180                 // Get the image from the a frame
1181                 mlt_frame_get_image( a_frame, invert ? &image_b : image, format, width, height, 1 );
1182                 alpha_a = mlt_frame_get_alpha_mask( a_frame );
1183
1184                 // Optimisation - no compositing required
1185                 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
1186                         return 0;
1187
1188                 // Need to keep the width/height of the a_frame on the b_frame for titling
1189                 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1190                 {
1191                         mlt_properties_set_int( a_props, "dest_width", *width );
1192                         mlt_properties_set_int( a_props, "dest_height", *height );
1193                         mlt_properties_set_int( b_props, "dest_width", *width );
1194                         mlt_properties_set_int( b_props, "dest_height", *height );
1195                 }
1196                 else
1197                 {
1198                         mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1199                         mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1200                 }
1201
1202                 // Special case for titling...
1203                 if ( mlt_properties_get_int( properties, "titles" ) )
1204                 {
1205                         if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1206                                 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1207                         width_b = mlt_properties_get_int( a_props, "dest_width" );
1208                         height_b = mlt_properties_get_int( a_props, "dest_height" );
1209                 }
1210
1211                 if ( *image != image_b && ( ( invert ? 0 : image_b ) || get_b_frame_image( self, b_frame, invert ? image : &image_b, &width_b, &height_b, &result ) == 0 ) )
1212                 {
1213                         uint8_t *dest = *image;
1214                         uint8_t *src = image_b;
1215                         int progressive = 
1216                                         mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1217                                         mlt_properties_get_int( properties, "progressive" );
1218                         int field;
1219                         
1220                         double luma_softness = mlt_properties_get_double( properties, "softness" );
1221                         mlt_service_lock( MLT_TRANSITION_SERVICE( self ) );
1222                         uint16_t *luma_bitmap = get_luma( self, properties, width_b, height_b );
1223                         mlt_service_unlock( MLT_TRANSITION_SERVICE( self ) );
1224                         char *operator = mlt_properties_get( properties, "operator" );
1225
1226                         alpha_b = alpha_b == NULL ? mlt_frame_get_alpha_mask( b_frame ) : alpha_b;
1227
1228                         composite_line_fn line_fn = composite_line_yuv;
1229
1230                         // Replacement and override
1231                         if ( operator != NULL )
1232                         {
1233                                 if ( !strcmp( operator, "or" ) )
1234                                         line_fn = composite_line_yuv_or;
1235                                 if ( !strcmp( operator, "and" ) )
1236                                         line_fn = composite_line_yuv_and;
1237                                 if ( !strcmp( operator, "xor" ) )
1238                                         line_fn = composite_line_yuv_xor;
1239                         }
1240
1241                         // Allow the user to completely obliterate the alpha channels from both frames
1242                         if ( mlt_properties_get( properties, "alpha_a" ) )
1243                                 memset( alpha_a, mlt_properties_get_int( properties, "alpha_a" ), *width * *height );
1244
1245                         if ( mlt_properties_get( properties, "alpha_b" ) )
1246                                 memset( alpha_b, mlt_properties_get_int( properties, "alpha_b" ), width_b * height_b );
1247
1248                         for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1249                         {
1250                                 // Assume lower field (0) first
1251                                 double field_position = position + field * delta * length;
1252                                 
1253                                 // Do the calculation if we need to
1254                                 // NB: Locks needed here since the properties are being modified
1255                                 mlt_service_lock( MLT_TRANSITION_SERVICE( self ) );
1256                                 composite_calculate( self, &result, invert ? b_frame : a_frame, field_position );
1257                                 mlt_service_unlock( MLT_TRANSITION_SERVICE( self ) );
1258
1259                                 if ( mlt_properties_get_int( properties, "titles" ) )
1260                                 {
1261                                         result.item.w = rint( *width * ( result.item.w / result.nw ) );
1262                                         result.nw = result.item.w;
1263                                         result.item.h = rint( *height * ( result.item.h / result.nh ) );
1264                                         result.nh = *height;
1265                                         result.sw = width_b;
1266                                         result.sh = height_b;
1267                                 }
1268
1269                                 // Enforce cropping
1270                                 if ( mlt_properties_get( properties, "crop" ) )
1271                                 {
1272                                         if ( result.x_src == 0 )
1273                                                 width_b = width_b > result.item.w ? result.item.w : width_b;
1274                                         if ( result.y_src == 0 )
1275                                                 height_b = height_b > result.item.h ? result.item.h : height_b;
1276                                 }
1277                                 else
1278                                 {
1279                                         // Otherwise, align
1280                                         alignment_calculate( &result );
1281                                 }
1282
1283                                 // Composite the b_frame on the a_frame
1284                                 if ( invert )
1285                                         composite_yuv( dest, width_b, height_b, src, *width, *height, alpha_a, alpha_b, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1286                                 else
1287                                         composite_yuv( dest, *width, *height, src, width_b, height_b, alpha_b, alpha_a, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1288                         }
1289                 }
1290         }
1291         else
1292         {
1293                 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1294         }
1295
1296         return 0;
1297 }
1298
1299 /** Composition transition processing.
1300 */
1301
1302 static mlt_frame composite_process( mlt_transition self, mlt_frame a_frame, mlt_frame b_frame )
1303 {
1304         // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1305         if ( mlt_properties_get_int(  MLT_TRANSITION_PROPERTIES( self ), "always_active" ) == 0 )
1306         {
1307                 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( self ), "in" ) );
1308                 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( self ), "out" ) );
1309                 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), position_calculate( self, mlt_frame_get_position( a_frame ) ) );
1310         }
1311         else
1312         {
1313                 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1314                 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
1315                 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
1316                 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
1317         }
1318         
1319         mlt_frame_push_service( a_frame, self );
1320         mlt_frame_push_frame( a_frame, b_frame );
1321         mlt_frame_push_get_image( a_frame, transition_get_image );
1322         return a_frame;
1323 }
1324
1325 /** Constructor for the filter.
1326 */
1327
1328 mlt_transition transition_composite_init( mlt_profile profile, mlt_service_type type, const char *id, char *arg )
1329 {
1330         mlt_transition self = calloc( 1, sizeof( struct mlt_transition_s ) );
1331         if ( self != NULL && mlt_transition_init( self, NULL ) == 0 )
1332         {
1333                 mlt_properties properties = MLT_TRANSITION_PROPERTIES( self );
1334                 
1335                 self->process = composite_process;
1336                 
1337                 // Default starting motion and zoom
1338                 mlt_properties_set( properties, "start", arg != NULL ? arg : "0/0:100%x100%" );
1339                 
1340                 // Default factory
1341                 mlt_properties_set( properties, "factory", mlt_environment( "MLT_PRODUCER" ) );
1342
1343                 // Use alignment (and hence alpha of b frame)
1344                 mlt_properties_set_int( properties, "aligned", 1 );
1345
1346                 // Default to progressive rendering
1347                 mlt_properties_set_int( properties, "progressive", 1 );
1348                 
1349                 // Inform apps and framework that this is a video only transition
1350                 mlt_properties_set_int( properties, "_transition_type", 1 );
1351         }
1352         return self;
1353 }