]> git.sesse.net Git - nageru/blob - audio_mixer.cpp
Replace the R128 meters for each channel with a digital peak meter.
[nageru] / audio_mixer.cpp
1 #include "audio_mixer.h"
2
3 #include <assert.h>
4 #include <endian.h>
5 #include <bmusb/bmusb.h>
6 #include <stdio.h>
7 #include <endian.h>
8 #include <cmath>
9 #ifdef __SSE__
10 #include <immintrin.h>
11 #endif
12
13 #include "db.h"
14 #include "flags.h"
15 #include "timebase.h"
16
17 using namespace bmusb;
18 using namespace std;
19 using namespace std::placeholders;
20
21 namespace {
22
23 // TODO: If these prove to be a bottleneck, they can be SSSE3-optimized
24 // (usually including multiple channels at a time).
25
26 void convert_fixed16_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
27                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
28                              size_t num_samples)
29 {
30         assert(in_channel < in_num_channels);
31         assert(out_channel < out_num_channels);
32         src += in_channel * 2;
33         dst += out_channel;
34
35         for (size_t i = 0; i < num_samples; ++i) {
36                 int16_t s = le16toh(*(int16_t *)src);
37                 *dst = s * (1.0f / 32768.0f);
38
39                 src += 2 * in_num_channels;
40                 dst += out_num_channels;
41         }
42 }
43
44 void convert_fixed24_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
45                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
46                              size_t num_samples)
47 {
48         assert(in_channel < in_num_channels);
49         assert(out_channel < out_num_channels);
50         src += in_channel * 3;
51         dst += out_channel;
52
53         for (size_t i = 0; i < num_samples; ++i) {
54                 uint32_t s1 = src[0];
55                 uint32_t s2 = src[1];
56                 uint32_t s3 = src[2];
57                 uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
58                 *dst = int(s) * (1.0f / 2147483648.0f);
59
60                 src += 3 * in_num_channels;
61                 dst += out_num_channels;
62         }
63 }
64
65 void convert_fixed32_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
66                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
67                              size_t num_samples)
68 {
69         assert(in_channel < in_num_channels);
70         assert(out_channel < out_num_channels);
71         src += in_channel * 4;
72         dst += out_channel;
73
74         for (size_t i = 0; i < num_samples; ++i) {
75                 int32_t s = le32toh(*(int32_t *)src);
76                 *dst = s * (1.0f / 2147483648.0f);
77
78                 src += 4 * in_num_channels;
79                 dst += out_num_channels;
80         }
81 }
82
83 float find_peak_plain(const float *samples, size_t num_samples) __attribute__((unused));
84
85 float find_peak_plain(const float *samples, size_t num_samples)
86 {
87         float m = fabs(samples[0]);
88         for (size_t i = 1; i < num_samples; ++i) {
89                 m = max(m, fabs(samples[i]));
90         }
91         return m;
92 }
93
94 #ifdef __SSE__
95 static inline float horizontal_max(__m128 m)
96 {
97         __m128 tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 0, 3, 2));
98         m = _mm_max_ps(m, tmp);
99         tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 3, 0, 1));
100         m = _mm_max_ps(m, tmp);
101         return _mm_cvtss_f32(m);
102 }
103
104 float find_peak(const float *samples, size_t num_samples)
105 {
106         const __m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffffu));
107         __m128 m = _mm_setzero_ps();
108         for (size_t i = 0; i < (num_samples & ~3); i += 4) {
109                 __m128 x = _mm_loadu_ps(samples + i);
110                 x = _mm_and_ps(x, abs_mask);
111                 m = _mm_max_ps(m, x);
112         }
113         float result = horizontal_max(m);
114
115         for (size_t i = (num_samples & ~3); i < num_samples; ++i) {
116                 result = max(result, fabs(samples[i]));
117         }
118
119 #if 0
120         // Self-test. We should be bit-exact the same.
121         float reference_result = find_peak_plain(samples, num_samples);
122         if (result != reference_result) {
123                 fprintf(stderr, "Error: Peak is %f [%f %f %f %f]; should be %f.\n",
124                         result,
125                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(0, 0, 0, 0))),
126                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 1, 1, 1))),
127                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 2, 2, 2))),
128                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(3, 3, 3, 3))),
129                         reference_result);
130                 abort();
131         }
132 #endif
133         return result;
134 }
135 #else
136 float find_peak(const float *samples, size_t num_samples)
137 {
138         return find_peak_plain(samples, num_samples);
139 }
140 #endif
141
142 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
143 {
144         size_t num_samples = in.size() / 2;
145         out_l->resize(num_samples);
146         out_r->resize(num_samples);
147
148         const float *inptr = in.data();
149         float *lptr = &(*out_l)[0];
150         float *rptr = &(*out_r)[0];
151         for (size_t i = 0; i < num_samples; ++i) {
152                 *lptr++ = *inptr++;
153                 *rptr++ = *inptr++;
154         }
155 }
156
157 }  // namespace
158
159 AudioMixer::AudioMixer(unsigned num_cards)
160         : num_cards(num_cards),
161           limiter(OUTPUT_FREQUENCY),
162           correlation(OUTPUT_FREQUENCY)
163 {
164         for (unsigned bus_index = 0; bus_index < MAX_BUSES; ++bus_index) {
165                 locut[bus_index].init(FILTER_HPF, 2);
166                 locut_enabled[bus_index] = global_flags.locut_enabled;
167                 gain_staging_db[bus_index] = global_flags.initial_gain_staging_db;
168                 compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
169                 compressor_threshold_dbfs[bus_index] = ref_level_dbfs - 12.0f;  // -12 dB.
170                 compressor_enabled[bus_index] = global_flags.compressor_enabled;
171                 level_compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
172                 level_compressor_enabled[bus_index] = global_flags.gain_staging_auto;
173         }
174         set_limiter_enabled(global_flags.limiter_enabled);
175         set_final_makeup_gain_auto(global_flags.final_makeup_gain_auto);
176
177         // Generate a very simple, default input mapping.
178         InputMapping::Bus input;
179         input.name = "Main";
180         input.device.type = InputSourceType::CAPTURE_CARD;
181         input.device.index = 0;
182         input.source_channel[0] = 0;
183         input.source_channel[1] = 1;
184
185         InputMapping new_input_mapping;
186         new_input_mapping.buses.push_back(input);
187         set_input_mapping(new_input_mapping);
188
189         // Look for ALSA cards.
190         available_alsa_cards = ALSAInput::enumerate_devices();
191
192         r128.init(2, OUTPUT_FREQUENCY);
193         r128.integr_start();
194
195         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
196         // and there's a limit to how important the peak meter is.
197         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
198 }
199
200 AudioMixer::~AudioMixer()
201 {
202         for (unsigned card_index = 0; card_index < available_alsa_cards.size(); ++card_index) {
203                 const AudioDevice &device = alsa_inputs[card_index];
204                 if (device.alsa_device != nullptr) {
205                         device.alsa_device->stop_capture_thread();
206                 }
207         }
208 }
209
210
211 void AudioMixer::reset_resampler(DeviceSpec device_spec)
212 {
213         lock_guard<timed_mutex> lock(audio_mutex);
214         reset_resampler_mutex_held(device_spec);
215 }
216
217 void AudioMixer::reset_resampler_mutex_held(DeviceSpec device_spec)
218 {
219         AudioDevice *device = find_audio_device(device_spec);
220
221         if (device->interesting_channels.empty()) {
222                 device->resampling_queue.reset();
223         } else {
224                 // TODO: ResamplingQueue should probably take the full device spec.
225                 // (It's only used for console output, though.)
226                 device->resampling_queue.reset(new ResamplingQueue(device_spec.index, device->capture_frequency, OUTPUT_FREQUENCY, device->interesting_channels.size()));
227         }
228         device->next_local_pts = 0;
229 }
230
231 void AudioMixer::reset_alsa_mutex_held(DeviceSpec device_spec)
232 {
233         assert(device_spec.type == InputSourceType::ALSA_INPUT);
234         unsigned card_index = device_spec.index;
235         AudioDevice *device = find_audio_device(device_spec);
236
237         if (device->alsa_device != nullptr) {
238                 device->alsa_device->stop_capture_thread();
239         }
240         if (device->interesting_channels.empty()) {
241                 device->alsa_device.reset();
242         } else {
243                 const ALSAInput::Device &alsa_dev = available_alsa_cards[card_index];
244                 device->alsa_device.reset(new ALSAInput(alsa_dev.address.c_str(), OUTPUT_FREQUENCY, alsa_dev.num_channels, bind(&AudioMixer::add_audio, this, device_spec, _1, _2, _3, _4)));
245                 device->capture_frequency = device->alsa_device->get_sample_rate();
246                 device->alsa_device->start_capture_thread();
247         }
248 }
249
250 bool AudioMixer::add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, AudioFormat audio_format, int64_t frame_length)
251 {
252         AudioDevice *device = find_audio_device(device_spec);
253
254         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
255         if (!lock.try_lock_for(chrono::milliseconds(10))) {
256                 return false;
257         }
258         if (device->resampling_queue == nullptr) {
259                 // No buses use this device; throw it away.
260                 return true;
261         }
262
263         unsigned num_channels = device->interesting_channels.size();
264         assert(num_channels > 0);
265
266         // Convert the audio to fp32.
267         unique_ptr<float[]> audio(new float[num_samples * num_channels]);
268         unsigned channel_index = 0;
269         for (auto channel_it = device->interesting_channels.cbegin(); channel_it != device->interesting_channels.end(); ++channel_it, ++channel_index) {
270                 switch (audio_format.bits_per_sample) {
271                 case 0:
272                         assert(num_samples == 0);
273                         break;
274                 case 16:
275                         convert_fixed16_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
276                         break;
277                 case 24:
278                         convert_fixed24_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
279                         break;
280                 case 32:
281                         convert_fixed32_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
282                         break;
283                 default:
284                         fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
285                         assert(false);
286                 }
287         }
288
289         // Now add it.
290         int64_t local_pts = device->next_local_pts;
291         device->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.get(), num_samples);
292         device->next_local_pts = local_pts + frame_length;
293         return true;
294 }
295
296 bool AudioMixer::add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length)
297 {
298         AudioDevice *device = find_audio_device(device_spec);
299
300         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
301         if (!lock.try_lock_for(chrono::milliseconds(10))) {
302                 return false;
303         }
304         if (device->resampling_queue == nullptr) {
305                 // No buses use this device; throw it away.
306                 return true;
307         }
308
309         unsigned num_channels = device->interesting_channels.size();
310         assert(num_channels > 0);
311
312         vector<float> silence(samples_per_frame * num_channels, 0.0f);
313         for (unsigned i = 0; i < num_frames; ++i) {
314                 device->resampling_queue->add_input_samples(device->next_local_pts / double(TIMEBASE), silence.data(), samples_per_frame);
315                 // Note that if the format changed in the meantime, we have
316                 // no way of detecting that; we just have to assume the frame length
317                 // is always the same.
318                 device->next_local_pts += frame_length;
319         }
320         return true;
321 }
322
323 AudioMixer::AudioDevice *AudioMixer::find_audio_device(DeviceSpec device)
324 {
325         switch (device.type) {
326         case InputSourceType::CAPTURE_CARD:
327                 return &video_cards[device.index];
328         case InputSourceType::ALSA_INPUT:
329                 return &alsa_inputs[device.index];
330         case InputSourceType::SILENCE:
331         default:
332                 assert(false);
333         }
334         return nullptr;
335 }
336
337 // Get a pointer to the given channel from the given device.
338 // The channel must be picked out earlier and resampled.
339 void AudioMixer::find_sample_src_from_device(const map<DeviceSpec, vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride)
340 {
341         static float zero = 0.0f;
342         if (source_channel == -1 || device_spec.type == InputSourceType::SILENCE) {
343                 *srcptr = &zero;
344                 *stride = 0;
345                 return;
346         }
347         AudioDevice *device = find_audio_device(device_spec);
348         assert(device->interesting_channels.count(source_channel) != 0);
349         unsigned channel_index = 0;
350         for (int channel : device->interesting_channels) {
351                 if (channel == source_channel) break;
352                 ++channel_index;
353         }
354         assert(channel_index < device->interesting_channels.size());
355         const auto it = samples_card.find(device_spec);
356         assert(it != samples_card.end());
357         *srcptr = &(it->second)[channel_index];
358         *stride = device->interesting_channels.size();
359 }
360
361 // TODO: Can be SSSE3-optimized if need be.
362 void AudioMixer::fill_audio_bus(const map<DeviceSpec, vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output)
363 {
364         if (bus.device.type == InputSourceType::SILENCE) {
365                 memset(output, 0, num_samples * sizeof(*output));
366         } else {
367                 assert(bus.device.type == InputSourceType::CAPTURE_CARD ||
368                        bus.device.type == InputSourceType::ALSA_INPUT);
369                 const float *lsrc, *rsrc;
370                 unsigned lstride, rstride;
371                 float *dptr = output;
372                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[0], &lsrc, &lstride);
373                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[1], &rsrc, &rstride);
374                 for (unsigned i = 0; i < num_samples; ++i) {
375                         *dptr++ = *lsrc;
376                         *dptr++ = *rsrc;
377                         lsrc += lstride;
378                         rsrc += rstride;
379                 }
380         }
381 }
382
383 vector<float> AudioMixer::get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy)
384 {
385         map<DeviceSpec, vector<float>> samples_card;
386         vector<float> samples_bus;
387
388         lock_guard<timed_mutex> lock(audio_mutex);
389
390         // Pick out all the interesting channels from all the cards.
391         // TODO: If the card has been hotswapped, the number of channels
392         // might have changed; if so, we need to do some sort of remapping
393         // to silence.
394         for (const auto &spec_and_info : get_devices_mutex_held()) {
395                 const DeviceSpec &device_spec = spec_and_info.first;
396                 AudioDevice *device = find_audio_device(device_spec);
397                 if (!device->interesting_channels.empty()) {
398                         samples_card[device_spec].resize(num_samples * device->interesting_channels.size());
399                         device->resampling_queue->get_output_samples(
400                                 pts,
401                                 &samples_card[device_spec][0],
402                                 num_samples,
403                                 rate_adjustment_policy);
404                 }
405         }
406
407         vector<float> samples_out, left, right;
408         samples_out.resize(num_samples * 2);
409         samples_bus.resize(num_samples * 2);
410         for (unsigned bus_index = 0; bus_index < input_mapping.buses.size(); ++bus_index) {
411                 fill_audio_bus(samples_card, input_mapping.buses[bus_index], num_samples, &samples_bus[0]);
412
413                 // Cut away everything under 120 Hz (or whatever the cutoff is);
414                 // we don't need it for voice, and it will reduce headroom
415                 // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
416                 // should be dampened.)
417                 if (locut_enabled[bus_index]) {
418                         locut[bus_index].render(samples_bus.data(), samples_bus.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
419                 }
420
421                 {
422                         lock_guard<mutex> lock(compressor_mutex);
423
424                         // Apply a level compressor to get the general level right.
425                         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
426                         // (or more precisely, near it, since we don't use infinite ratio),
427                         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
428                         // entirely arbitrary, but from practical tests with speech, it seems to
429                         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
430                         if (level_compressor_enabled[bus_index]) {
431                                 float threshold = 0.01f;   // -40 dBFS.
432                                 float ratio = 20.0f;
433                                 float attack_time = 0.5f;
434                                 float release_time = 20.0f;
435                                 float makeup_gain = from_db(ref_level_dbfs - (-40.0f));  // +26 dB.
436                                 level_compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
437                                 gain_staging_db[bus_index] = to_db(level_compressor[bus_index]->get_attenuation() * makeup_gain);
438                         } else {
439                                 // Just apply the gain we already had.
440                                 float g = from_db(gain_staging_db[bus_index]);
441                                 for (size_t i = 0; i < samples_bus.size(); ++i) {
442                                         samples_bus[i] *= g;
443                                 }
444                         }
445
446 #if 0
447                         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
448                                 level_compressor.get_level(), to_db(level_compressor.get_level()),
449                                 level_compressor.get_attenuation(), to_db(level_compressor.get_attenuation()),
450                                 to_db(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
451 #endif
452
453                         // The real compressor.
454                         if (compressor_enabled[bus_index]) {
455                                 float threshold = from_db(compressor_threshold_dbfs[bus_index]);
456                                 float ratio = 20.0f;
457                                 float attack_time = 0.005f;
458                                 float release_time = 0.040f;
459                                 float makeup_gain = 2.0f;  // +6 dB.
460                                 compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
461                 //              compressor_att = compressor.get_attenuation();
462                         }
463                 }
464
465                 float volume = from_db(fader_volume_db[bus_index]);
466                 if (bus_index == 0) {
467                         for (unsigned i = 0; i < num_samples * 2; ++i) {
468                                 samples_out[i] = samples_bus[i] * volume;
469                         }
470                 } else {
471                         for (unsigned i = 0; i < num_samples * 2; ++i) {
472                                 samples_out[i] += samples_bus[i] * volume;
473                         }
474                 }
475
476                 deinterleave_samples(samples_bus, &left, &right);
477                 measure_bus_levels(bus_index, left, right, volume);
478         }
479
480         {
481                 lock_guard<mutex> lock(compressor_mutex);
482
483                 // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
484                 // Note that since ratio is not infinite, we could go slightly higher than this.
485                 if (limiter_enabled) {
486                         float threshold = from_db(limiter_threshold_dbfs);
487                         float ratio = 30.0f;
488                         float attack_time = 0.0f;  // Instant.
489                         float release_time = 0.020f;
490                         float makeup_gain = 1.0f;  // 0 dB.
491                         limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
492         //              limiter_att = limiter.get_attenuation();
493                 }
494
495         //      printf("limiter=%+5.1f  compressor=%+5.1f\n", to_db(limiter_att), to_db(compressor_att));
496         }
497
498         // At this point, we are most likely close to +0 LU (at least if the
499         // faders sum to 0 dB and the compressors are on), but all of our
500         // measurements have been on raw sample values, not R128 values.
501         // So we have a final makeup gain to get us to +0 LU; the gain
502         // adjustments required should be relatively small, and also, the
503         // offset shouldn't change much (only if the type of audio changes
504         // significantly). Thus, we shoot for updating this value basically
505         // “whenever we process buffers”, since the R128 calculation isn't exactly
506         // something we get out per-sample.
507         //
508         // Note that there's a feedback loop here, so we choose a very slow filter
509         // (half-time of 30 seconds).
510         double target_loudness_factor, alpha;
511         double loudness_lu = r128.loudness_M() - ref_level_lufs;
512         double current_makeup_lu = to_db(final_makeup_gain);
513         target_loudness_factor = final_makeup_gain * from_db(-loudness_lu);
514
515         // If we're outside +/- 5 LU uncorrected, we don't count it as
516         // a normal signal (probably silence) and don't change the
517         // correction factor; just apply what we already have.
518         if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
519                 alpha = 0.0;
520         } else {
521                 // Formula adapted from
522                 // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
523                 const double half_time_s = 30.0;
524                 const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
525                 alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
526         }
527
528         {
529                 lock_guard<mutex> lock(compressor_mutex);
530                 double m = final_makeup_gain;
531                 for (size_t i = 0; i < samples_out.size(); i += 2) {
532                         samples_out[i + 0] *= m;
533                         samples_out[i + 1] *= m;
534                         m += (target_loudness_factor - m) * alpha;
535                 }
536                 final_makeup_gain = m;
537         }
538
539         update_meters(samples_out);
540
541         return samples_out;
542 }
543
544 void AudioMixer::measure_bus_levels(unsigned bus_index, const vector<float> &left, const vector<float> &right, float volume)
545 {
546         assert(left.size() == right.size());
547         const float peak_levels[2] = {
548                 find_peak(left.data(), left.size()) * volume,
549                 find_peak(right.data(), right.size()) * volume
550         };
551         for (unsigned channel = 0; channel < 2; ++channel) {
552                 // Compute the current value, including hold and falloff.
553                 // The constants are borrowed from zita-mu1 by Fons Adriaensen.
554                 static constexpr float hold_sec = 0.5f;
555                 static constexpr float falloff_db_sec = 15.0f;  // dB/sec falloff after hold.
556                 float current_peak;
557                 PeakHistory &history = peak_history[bus_index][channel];
558                 if (history.age_seconds < hold_sec) {
559                         current_peak = history.last_peak;
560                 } else {
561                         current_peak = history.last_peak * from_db(-falloff_db_sec * (history.age_seconds - hold_sec));
562                 }
563
564                 // See if we have a new peak to replace the old (possibly falling) one.
565                 if (peak_levels[channel] > current_peak) {
566                         history.last_peak = peak_levels[channel];
567                         history.age_seconds = 0.0f;  // Not 100% correct, but more than good enough given our frame sizes.
568                         current_peak = peak_levels[channel];
569                 } else {
570                         history.age_seconds += float(left.size()) / OUTPUT_FREQUENCY;
571                 }
572                 history.current_level = peak_levels[channel];
573                 history.current_peak = current_peak;
574         }
575 }
576
577 void AudioMixer::update_meters(const vector<float> &samples)
578 {
579         // Upsample 4x to find interpolated peak.
580         peak_resampler.inp_data = const_cast<float *>(samples.data());
581         peak_resampler.inp_count = samples.size() / 2;
582
583         vector<float> interpolated_samples;
584         interpolated_samples.resize(samples.size());
585         {
586                 lock_guard<mutex> lock(audio_measure_mutex);
587
588                 while (peak_resampler.inp_count > 0) {  // About four iterations.
589                         peak_resampler.out_data = &interpolated_samples[0];
590                         peak_resampler.out_count = interpolated_samples.size() / 2;
591                         peak_resampler.process();
592                         size_t out_stereo_samples = interpolated_samples.size() / 2 - peak_resampler.out_count;
593                         peak = max<float>(peak, find_peak(interpolated_samples.data(), out_stereo_samples * 2));
594                         peak_resampler.out_data = nullptr;
595                 }
596         }
597
598         // Find R128 levels and L/R correlation.
599         vector<float> left, right;
600         deinterleave_samples(samples, &left, &right);
601         float *ptrs[] = { left.data(), right.data() };
602         {
603                 lock_guard<mutex> lock(audio_measure_mutex);
604                 r128.process(left.size(), ptrs);
605                 correlation.process_samples(samples);
606         }
607
608         send_audio_level_callback();
609 }
610
611 void AudioMixer::reset_meters()
612 {
613         lock_guard<mutex> lock(audio_measure_mutex);
614         peak_resampler.reset();
615         peak = 0.0f;
616         r128.reset();
617         r128.integr_start();
618         correlation.reset();
619 }
620
621 void AudioMixer::send_audio_level_callback()
622 {
623         if (audio_level_callback == nullptr) {
624                 return;
625         }
626
627         lock_guard<mutex> lock(audio_measure_mutex);
628         double loudness_s = r128.loudness_S();
629         double loudness_i = r128.integrated();
630         double loudness_range_low = r128.range_min();
631         double loudness_range_high = r128.range_max();
632
633         vector<BusLevel> bus_levels;
634         bus_levels.resize(input_mapping.buses.size());
635         {
636                 lock_guard<mutex> lock(compressor_mutex);
637                 for (unsigned bus_index = 0; bus_index < bus_levels.size(); ++bus_index) {
638                         bus_levels[bus_index].current_level_dbfs[0] = to_db(peak_history[bus_index][0].current_level);
639                         bus_levels[bus_index].current_level_dbfs[1] = to_db(peak_history[bus_index][1].current_level);
640                         bus_levels[bus_index].peak_level_dbfs[0] = to_db(peak_history[bus_index][0].current_peak);
641                         bus_levels[bus_index].peak_level_dbfs[1] = to_db(peak_history[bus_index][1].current_peak);
642                         bus_levels[bus_index].gain_staging_db = gain_staging_db[bus_index];
643                         if (compressor_enabled[bus_index]) {
644                                 bus_levels[bus_index].compressor_attenuation_db = -to_db(compressor[bus_index]->get_attenuation());
645                         } else {
646                                 bus_levels[bus_index].compressor_attenuation_db = 0.0;
647                         }
648                 }
649         }
650
651         audio_level_callback(loudness_s, to_db(peak), bus_levels,
652                 loudness_i, loudness_range_low, loudness_range_high,
653                 to_db(final_makeup_gain),
654                 correlation.get_correlation());
655 }
656
657 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices() const
658 {
659         lock_guard<timed_mutex> lock(audio_mutex);
660         return get_devices_mutex_held();
661 }
662
663 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices_mutex_held() const
664 {
665         map<DeviceSpec, DeviceInfo> devices;
666         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
667                 const DeviceSpec spec{ InputSourceType::CAPTURE_CARD, card_index };
668                 const AudioDevice *device = &video_cards[card_index];
669                 DeviceInfo info;
670                 info.name = device->name;
671                 info.num_channels = 8;  // FIXME: This is wrong for fake cards.
672                 devices.insert(make_pair(spec, info));
673         }
674         for (unsigned card_index = 0; card_index < available_alsa_cards.size(); ++card_index) {
675                 const DeviceSpec spec{ InputSourceType::ALSA_INPUT, card_index };
676                 const ALSAInput::Device &device = available_alsa_cards[card_index];
677                 DeviceInfo info;
678                 info.name = device.name + " (" + device.info + ")";
679                 info.num_channels = device.num_channels;
680                 devices.insert(make_pair(spec, info));
681         }
682         return devices;
683 }
684
685 void AudioMixer::set_name(DeviceSpec device_spec, const string &name)
686 {
687         AudioDevice *device = find_audio_device(device_spec);
688
689         lock_guard<timed_mutex> lock(audio_mutex);
690         device->name = name;
691 }
692
693 void AudioMixer::set_input_mapping(const InputMapping &new_input_mapping)
694 {
695         lock_guard<timed_mutex> lock(audio_mutex);
696
697         map<DeviceSpec, set<unsigned>> interesting_channels;
698         for (const InputMapping::Bus &bus : new_input_mapping.buses) {
699                 if (bus.device.type == InputSourceType::CAPTURE_CARD ||
700                     bus.device.type == InputSourceType::ALSA_INPUT) {
701                         for (unsigned channel = 0; channel < 2; ++channel) {
702                                 if (bus.source_channel[channel] != -1) {
703                                         interesting_channels[bus.device].insert(bus.source_channel[channel]);
704                                 }
705                         }
706                 }
707         }
708
709         // Reset resamplers for all cards that don't have the exact same state as before.
710         for (const auto &spec_and_info : get_devices_mutex_held()) {
711                 const DeviceSpec &device_spec = spec_and_info.first;
712                 AudioDevice *device = find_audio_device(device_spec);
713                 if (device->interesting_channels != interesting_channels[device_spec]) {
714                         device->interesting_channels = interesting_channels[device_spec];
715                         if (device_spec.type == InputSourceType::ALSA_INPUT) {
716                                 reset_alsa_mutex_held(device_spec);
717                         }
718                         reset_resampler_mutex_held(device_spec);
719                 }
720         }
721
722         input_mapping = new_input_mapping;
723 }
724
725 InputMapping AudioMixer::get_input_mapping() const
726 {
727         lock_guard<timed_mutex> lock(audio_mutex);
728         return input_mapping;
729 }