]> git.sesse.net Git - nageru/blob - audio_mixer.cpp
Ask for the right number of channels when creating an ALSA device.
[nageru] / audio_mixer.cpp
1 #include "audio_mixer.h"
2
3 #include <assert.h>
4 #include <endian.h>
5 #include <bmusb/bmusb.h>
6 #include <stdio.h>
7 #include <endian.h>
8 #include <cmath>
9
10 #include "db.h"
11 #include "flags.h"
12 #include "timebase.h"
13
14 using namespace bmusb;
15 using namespace std;
16 using namespace std::placeholders;
17
18 namespace {
19
20 // TODO: If these prove to be a bottleneck, they can be SSSE3-optimized
21 // (usually including multiple channels at a time).
22
23 void convert_fixed16_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
24                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
25                              size_t num_samples)
26 {
27         assert(in_channel < in_num_channels);
28         assert(out_channel < out_num_channels);
29         src += in_channel * 2;
30         dst += out_channel;
31
32         for (size_t i = 0; i < num_samples; ++i) {
33                 int16_t s = le16toh(*(int16_t *)src);
34                 *dst = s * (1.0f / 32768.0f);
35
36                 src += 2 * in_num_channels;
37                 dst += out_num_channels;
38         }
39 }
40
41 void convert_fixed24_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
42                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
43                              size_t num_samples)
44 {
45         assert(in_channel < in_num_channels);
46         assert(out_channel < out_num_channels);
47         src += in_channel * 3;
48         dst += out_channel;
49
50         for (size_t i = 0; i < num_samples; ++i) {
51                 uint32_t s1 = src[0];
52                 uint32_t s2 = src[1];
53                 uint32_t s3 = src[2];
54                 uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
55                 *dst = int(s) * (1.0f / 2147483648.0f);
56
57                 src += 3 * in_num_channels;
58                 dst += out_num_channels;
59         }
60 }
61
62 void convert_fixed32_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
63                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
64                              size_t num_samples)
65 {
66         assert(in_channel < in_num_channels);
67         assert(out_channel < out_num_channels);
68         src += in_channel * 4;
69         dst += out_channel;
70
71         for (size_t i = 0; i < num_samples; ++i) {
72                 int32_t s = le32toh(*(int32_t *)src);
73                 *dst = s * (1.0f / 2147483648.0f);
74
75                 src += 4 * in_num_channels;
76                 dst += out_num_channels;
77         }
78 }
79
80 float find_peak(const float *samples, size_t num_samples)
81 {
82         float m = fabs(samples[0]);
83         for (size_t i = 1; i < num_samples; ++i) {
84                 m = max(m, fabs(samples[i]));
85         }
86         return m;
87 }
88
89 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
90 {
91         size_t num_samples = in.size() / 2;
92         out_l->resize(num_samples);
93         out_r->resize(num_samples);
94
95         const float *inptr = in.data();
96         float *lptr = &(*out_l)[0];
97         float *rptr = &(*out_r)[0];
98         for (size_t i = 0; i < num_samples; ++i) {
99                 *lptr++ = *inptr++;
100                 *rptr++ = *inptr++;
101         }
102 }
103
104 }  // namespace
105
106 AudioMixer::AudioMixer(unsigned num_cards)
107         : num_cards(num_cards),
108           level_compressor(OUTPUT_FREQUENCY),
109           limiter(OUTPUT_FREQUENCY),
110           compressor(OUTPUT_FREQUENCY),
111           correlation(OUTPUT_FREQUENCY)
112 {
113         locut.init(FILTER_HPF, 2);
114
115         set_locut_enabled(global_flags.locut_enabled);
116         set_gain_staging_db(global_flags.initial_gain_staging_db);
117         set_gain_staging_auto(global_flags.gain_staging_auto);
118         set_compressor_enabled(global_flags.compressor_enabled);
119         set_limiter_enabled(global_flags.limiter_enabled);
120         set_final_makeup_gain_auto(global_flags.final_makeup_gain_auto);
121
122         // Generate a very simple, default input mapping.
123         InputMapping::Bus input;
124         input.name = "Main";
125         input.device.type = InputSourceType::CAPTURE_CARD;
126         input.device.index = 0;
127         input.source_channel[0] = 0;
128         input.source_channel[1] = 1;
129
130         InputMapping new_input_mapping;
131         new_input_mapping.buses.push_back(input);
132         set_input_mapping(new_input_mapping);
133
134         // Look for ALSA cards.
135         available_alsa_cards = ALSAInput::enumerate_devices();
136
137         r128.init(2, OUTPUT_FREQUENCY);
138         r128.integr_start();
139
140         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
141         // and there's a limit to how important the peak meter is.
142         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
143 }
144
145 AudioMixer::~AudioMixer()
146 {
147         for (unsigned card_index = 0; card_index < available_alsa_cards.size(); ++card_index) {
148                 const AudioDevice &device = alsa_inputs[card_index];
149                 if (device.alsa_device != nullptr) {
150                         device.alsa_device->stop_capture_thread();
151                 }
152         }
153 }
154
155
156 void AudioMixer::reset_resampler(DeviceSpec device_spec)
157 {
158         lock_guard<timed_mutex> lock(audio_mutex);
159         reset_resampler_mutex_held(device_spec);
160 }
161
162 void AudioMixer::reset_resampler_mutex_held(DeviceSpec device_spec)
163 {
164         AudioDevice *device = find_audio_device(device_spec);
165
166         if (device->interesting_channels.empty()) {
167                 device->resampling_queue.reset();
168         } else {
169                 // TODO: ResamplingQueue should probably take the full device spec.
170                 // (It's only used for console output, though.)
171                 device->resampling_queue.reset(new ResamplingQueue(device_spec.index, device->capture_frequency, OUTPUT_FREQUENCY, device->interesting_channels.size()));
172         }
173         device->next_local_pts = 0;
174 }
175
176 void AudioMixer::reset_alsa_mutex_held(DeviceSpec device_spec)
177 {
178         assert(device_spec.type == InputSourceType::ALSA_INPUT);
179         unsigned card_index = device_spec.index;
180         AudioDevice *device = find_audio_device(device_spec);
181
182         if (device->alsa_device != nullptr) {
183                 device->alsa_device->stop_capture_thread();
184         }
185         if (device->interesting_channels.empty()) {
186                 device->alsa_device.reset();
187         } else {
188                 const ALSAInput::Device &alsa_dev = available_alsa_cards[card_index];
189                 device->alsa_device.reset(new ALSAInput(alsa_dev.address.c_str(), OUTPUT_FREQUENCY, alsa_dev.num_channels, bind(&AudioMixer::add_audio, this, device_spec, _1, _2, _3, _4)));
190                 device->capture_frequency = device->alsa_device->get_sample_rate();
191                 device->alsa_device->start_capture_thread();
192         }
193 }
194
195 bool AudioMixer::add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, AudioFormat audio_format, int64_t frame_length)
196 {
197         AudioDevice *device = find_audio_device(device_spec);
198
199         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
200         if (!lock.try_lock_for(chrono::milliseconds(10))) {
201                 return false;
202         }
203         if (device->resampling_queue == nullptr) {
204                 // No buses use this device; throw it away.
205                 return true;
206         }
207
208         unsigned num_channels = device->interesting_channels.size();
209         assert(num_channels > 0);
210
211         // Convert the audio to fp32.
212         vector<float> audio;
213         audio.resize(num_samples * num_channels);
214         unsigned channel_index = 0;
215         for (auto channel_it = device->interesting_channels.cbegin(); channel_it != device->interesting_channels.end(); ++channel_it, ++channel_index) {
216                 switch (audio_format.bits_per_sample) {
217                 case 0:
218                         assert(num_samples == 0);
219                         break;
220                 case 16:
221                         convert_fixed16_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
222                         break;
223                 case 24:
224                         convert_fixed24_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
225                         break;
226                 case 32:
227                         convert_fixed32_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
228                         break;
229                 default:
230                         fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
231                         assert(false);
232                 }
233         }
234
235         // Now add it.
236         int64_t local_pts = device->next_local_pts;
237         device->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
238         device->next_local_pts = local_pts + frame_length;
239         return true;
240 }
241
242 bool AudioMixer::add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length)
243 {
244         AudioDevice *device = find_audio_device(device_spec);
245
246         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
247         if (!lock.try_lock_for(chrono::milliseconds(10))) {
248                 return false;
249         }
250         if (device->resampling_queue == nullptr) {
251                 // No buses use this device; throw it away.
252                 return true;
253         }
254
255         unsigned num_channels = device->interesting_channels.size();
256         assert(num_channels > 0);
257
258         vector<float> silence(samples_per_frame * num_channels, 0.0f);
259         for (unsigned i = 0; i < num_frames; ++i) {
260                 device->resampling_queue->add_input_samples(device->next_local_pts / double(TIMEBASE), silence.data(), samples_per_frame);
261                 // Note that if the format changed in the meantime, we have
262                 // no way of detecting that; we just have to assume the frame length
263                 // is always the same.
264                 device->next_local_pts += frame_length;
265         }
266         return true;
267 }
268
269 AudioMixer::AudioDevice *AudioMixer::find_audio_device(DeviceSpec device)
270 {
271         switch (device.type) {
272         case InputSourceType::CAPTURE_CARD:
273                 return &video_cards[device.index];
274         case InputSourceType::ALSA_INPUT:
275                 return &alsa_inputs[device.index];
276         case InputSourceType::SILENCE:
277         default:
278                 assert(false);
279         }
280         return nullptr;
281 }
282
283 // Get a pointer to the given channel from the given device.
284 // The channel must be picked out earlier and resampled.
285 void AudioMixer::find_sample_src_from_device(const map<DeviceSpec, vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride)
286 {
287         static float zero = 0.0f;
288         if (source_channel == -1 || device_spec.type == InputSourceType::SILENCE) {
289                 *srcptr = &zero;
290                 *stride = 0;
291                 return;
292         }
293         AudioDevice *device = find_audio_device(device_spec);
294         assert(device->interesting_channels.count(source_channel) != 0);
295         unsigned channel_index = 0;
296         for (int channel : device->interesting_channels) {
297                 if (channel == source_channel) break;
298                 ++channel_index;
299         }
300         assert(channel_index < device->interesting_channels.size());
301         const auto it = samples_card.find(device_spec);
302         assert(it != samples_card.end());
303         *srcptr = &(it->second)[channel_index];
304         *stride = device->interesting_channels.size();
305 }
306
307 // TODO: Can be SSSE3-optimized if need be.
308 void AudioMixer::fill_audio_bus(const map<DeviceSpec, vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output)
309 {
310         if (bus.device.type == InputSourceType::SILENCE) {
311                 memset(output, 0, num_samples * sizeof(*output));
312         } else {
313                 assert(bus.device.type == InputSourceType::CAPTURE_CARD ||
314                        bus.device.type == InputSourceType::ALSA_INPUT);
315                 const float *lsrc, *rsrc;
316                 unsigned lstride, rstride;
317                 float *dptr = output;
318                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[0], &lsrc, &lstride);
319                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[1], &rsrc, &rstride);
320                 for (unsigned i = 0; i < num_samples; ++i) {
321                         *dptr++ = *lsrc;
322                         *dptr++ = *rsrc;
323                         lsrc += lstride;
324                         rsrc += rstride;
325                 }
326         }
327 }
328
329 vector<float> AudioMixer::get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy)
330 {
331         map<DeviceSpec, vector<float>> samples_card;
332         vector<float> samples_bus;
333
334         lock_guard<timed_mutex> lock(audio_mutex);
335
336         // Pick out all the interesting channels from all the cards.
337         // TODO: If the card has been hotswapped, the number of channels
338         // might have changed; if so, we need to do some sort of remapping
339         // to silence.
340         for (const auto &spec_and_info : get_devices_mutex_held()) {
341                 const DeviceSpec &device_spec = spec_and_info.first;
342                 AudioDevice *device = find_audio_device(device_spec);
343                 if (!device->interesting_channels.empty()) {
344                         samples_card[device_spec].resize(num_samples * device->interesting_channels.size());
345                         device->resampling_queue->get_output_samples(
346                                 pts,
347                                 &samples_card[device_spec][0],
348                                 num_samples,
349                                 rate_adjustment_policy);
350                 }
351         }
352
353         // TODO: Move lo-cut etc. into each bus.
354         vector<float> samples_out, left, right;
355         samples_out.resize(num_samples * 2);
356         samples_bus.resize(num_samples * 2);
357         for (unsigned bus_index = 0; bus_index < input_mapping.buses.size(); ++bus_index) {
358                 fill_audio_bus(samples_card, input_mapping.buses[bus_index], num_samples, &samples_bus[0]);
359
360                 // TODO: We should measure post-fader.
361                 deinterleave_samples(samples_bus, &left, &right);
362                 measure_bus_levels(bus_index, left, right);
363
364                 float volume = from_db(fader_volume_db[bus_index]);
365                 if (bus_index == 0) {
366                         for (unsigned i = 0; i < num_samples * 2; ++i) {
367                                 samples_out[i] = samples_bus[i] * volume;
368                         }
369                 } else {
370                         for (unsigned i = 0; i < num_samples * 2; ++i) {
371                                 samples_out[i] += samples_bus[i] * volume;
372                         }
373                 }
374         }
375
376         // Cut away everything under 120 Hz (or whatever the cutoff is);
377         // we don't need it for voice, and it will reduce headroom
378         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
379         // should be dampened.)
380         if (locut_enabled) {
381                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
382         }
383
384         {
385                 lock_guard<mutex> lock(compressor_mutex);
386
387                 // Apply a level compressor to get the general level right.
388                 // Basically, if it's over about -40 dBFS, we squeeze it down to that level
389                 // (or more precisely, near it, since we don't use infinite ratio),
390                 // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
391                 // entirely arbitrary, but from practical tests with speech, it seems to
392                 // put ut around -23 LUFS, so it's a reasonable starting point for later use.
393                 {
394                         if (level_compressor_enabled) {
395                                 float threshold = 0.01f;   // -40 dBFS.
396                                 float ratio = 20.0f;
397                                 float attack_time = 0.5f;
398                                 float release_time = 20.0f;
399                                 float makeup_gain = from_db(ref_level_dbfs - (-40.0f));  // +26 dB.
400                                 level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
401                                 gain_staging_db = to_db(level_compressor.get_attenuation() * makeup_gain);
402                         } else {
403                                 // Just apply the gain we already had.
404                                 float g = from_db(gain_staging_db);
405                                 for (size_t i = 0; i < samples_out.size(); ++i) {
406                                         samples_out[i] *= g;
407                                 }
408                         }
409                 }
410
411         #if 0
412                 printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
413                         level_compressor.get_level(), to_db(level_compressor.get_level()),
414                         level_compressor.get_attenuation(), to_db(level_compressor.get_attenuation()),
415                         to_db(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
416         #endif
417
418         //      float limiter_att, compressor_att;
419
420                 // The real compressor.
421                 if (compressor_enabled) {
422                         float threshold = from_db(compressor_threshold_dbfs);
423                         float ratio = 20.0f;
424                         float attack_time = 0.005f;
425                         float release_time = 0.040f;
426                         float makeup_gain = 2.0f;  // +6 dB.
427                         compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
428         //              compressor_att = compressor.get_attenuation();
429                 }
430
431                 // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
432                 // Note that since ratio is not infinite, we could go slightly higher than this.
433                 if (limiter_enabled) {
434                         float threshold = from_db(limiter_threshold_dbfs);
435                         float ratio = 30.0f;
436                         float attack_time = 0.0f;  // Instant.
437                         float release_time = 0.020f;
438                         float makeup_gain = 1.0f;  // 0 dB.
439                         limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
440         //              limiter_att = limiter.get_attenuation();
441                 }
442
443         //      printf("limiter=%+5.1f  compressor=%+5.1f\n", to_db(limiter_att), to_db(compressor_att));
444         }
445
446         // At this point, we are most likely close to +0 LU, but all of our
447         // measurements have been on raw sample values, not R128 values.
448         // So we have a final makeup gain to get us to +0 LU; the gain
449         // adjustments required should be relatively small, and also, the
450         // offset shouldn't change much (only if the type of audio changes
451         // significantly). Thus, we shoot for updating this value basically
452         // “whenever we process buffers”, since the R128 calculation isn't exactly
453         // something we get out per-sample.
454         //
455         // Note that there's a feedback loop here, so we choose a very slow filter
456         // (half-time of 30 seconds).
457         double target_loudness_factor, alpha;
458         double loudness_lu = r128.loudness_M() - ref_level_lufs;
459         double current_makeup_lu = to_db(final_makeup_gain);
460         target_loudness_factor = final_makeup_gain * from_db(-loudness_lu);
461
462         // If we're outside +/- 5 LU uncorrected, we don't count it as
463         // a normal signal (probably silence) and don't change the
464         // correction factor; just apply what we already have.
465         if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
466                 alpha = 0.0;
467         } else {
468                 // Formula adapted from
469                 // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
470                 const double half_time_s = 30.0;
471                 const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
472                 alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
473         }
474
475         {
476                 lock_guard<mutex> lock(compressor_mutex);
477                 double m = final_makeup_gain;
478                 for (size_t i = 0; i < samples_out.size(); i += 2) {
479                         samples_out[i + 0] *= m;
480                         samples_out[i + 1] *= m;
481                         m += (target_loudness_factor - m) * alpha;
482                 }
483                 final_makeup_gain = m;
484         }
485
486         update_meters(samples_out);
487
488         return samples_out;
489 }
490
491 void AudioMixer::measure_bus_levels(unsigned bus_index, const vector<float> &left, const vector<float> &right)
492 {
493         const float *ptrs[] = { left.data(), right.data() };
494         {
495                 lock_guard<mutex> lock(audio_measure_mutex);
496                 bus_r128[bus_index]->process(left.size(), const_cast<float **>(ptrs));
497         }
498 }
499
500 void AudioMixer::update_meters(const vector<float> &samples)
501 {
502         // Upsample 4x to find interpolated peak.
503         peak_resampler.inp_data = const_cast<float *>(samples.data());
504         peak_resampler.inp_count = samples.size() / 2;
505
506         vector<float> interpolated_samples;
507         interpolated_samples.resize(samples.size());
508         {
509                 lock_guard<mutex> lock(audio_measure_mutex);
510
511                 while (peak_resampler.inp_count > 0) {  // About four iterations.
512                         peak_resampler.out_data = &interpolated_samples[0];
513                         peak_resampler.out_count = interpolated_samples.size() / 2;
514                         peak_resampler.process();
515                         size_t out_stereo_samples = interpolated_samples.size() / 2 - peak_resampler.out_count;
516                         peak = max<float>(peak, find_peak(interpolated_samples.data(), out_stereo_samples * 2));
517                         peak_resampler.out_data = nullptr;
518                 }
519         }
520
521         // Find R128 levels and L/R correlation.
522         vector<float> left, right;
523         deinterleave_samples(samples, &left, &right);
524         float *ptrs[] = { left.data(), right.data() };
525         {
526                 lock_guard<mutex> lock(audio_measure_mutex);
527                 r128.process(left.size(), ptrs);
528                 correlation.process_samples(samples);
529         }
530
531         send_audio_level_callback();
532 }
533
534 void AudioMixer::reset_meters()
535 {
536         lock_guard<mutex> lock(audio_measure_mutex);
537         peak_resampler.reset();
538         peak = 0.0f;
539         r128.reset();
540         r128.integr_start();
541         correlation.reset();
542 }
543
544 void AudioMixer::send_audio_level_callback()
545 {
546         if (audio_level_callback == nullptr) {
547                 return;
548         }
549
550         lock_guard<mutex> lock(audio_measure_mutex);
551         double loudness_s = r128.loudness_S();
552         double loudness_i = r128.integrated();
553         double loudness_range_low = r128.range_min();
554         double loudness_range_high = r128.range_max();
555
556         vector<float> bus_loudness;
557         bus_loudness.resize(input_mapping.buses.size());
558         for (unsigned bus_index = 0; bus_index < bus_r128.size(); ++bus_index) {
559                 bus_loudness[bus_index] = bus_r128[bus_index]->loudness_S();
560         }
561
562         audio_level_callback(loudness_s, to_db(peak), bus_loudness,
563                 loudness_i, loudness_range_low, loudness_range_high,
564                 gain_staging_db,
565                 to_db(final_makeup_gain),
566                 correlation.get_correlation());
567 }
568
569 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices() const
570 {
571         lock_guard<timed_mutex> lock(audio_mutex);
572         return get_devices_mutex_held();
573 }
574
575 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices_mutex_held() const
576 {
577         map<DeviceSpec, DeviceInfo> devices;
578         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
579                 const DeviceSpec spec{ InputSourceType::CAPTURE_CARD, card_index };
580                 const AudioDevice *device = &video_cards[card_index];
581                 DeviceInfo info;
582                 info.name = device->name;
583                 info.num_channels = 8;  // FIXME: This is wrong for fake cards.
584                 devices.insert(make_pair(spec, info));
585         }
586         for (unsigned card_index = 0; card_index < available_alsa_cards.size(); ++card_index) {
587                 const DeviceSpec spec{ InputSourceType::ALSA_INPUT, card_index };
588                 const ALSAInput::Device &device = available_alsa_cards[card_index];
589                 DeviceInfo info;
590                 info.name = device.name + " (" + device.info + ")";
591                 info.num_channels = device.num_channels;
592                 devices.insert(make_pair(spec, info));
593         }
594         return devices;
595 }
596
597 void AudioMixer::set_name(DeviceSpec device_spec, const string &name)
598 {
599         AudioDevice *device = find_audio_device(device_spec);
600
601         lock_guard<timed_mutex> lock(audio_mutex);
602         device->name = name;
603 }
604
605 void AudioMixer::set_input_mapping(const InputMapping &new_input_mapping)
606 {
607         lock_guard<timed_mutex> lock(audio_mutex);
608
609         map<DeviceSpec, set<unsigned>> interesting_channels;
610         for (const InputMapping::Bus &bus : new_input_mapping.buses) {
611                 if (bus.device.type == InputSourceType::CAPTURE_CARD ||
612                     bus.device.type == InputSourceType::ALSA_INPUT) {
613                         for (unsigned channel = 0; channel < 2; ++channel) {
614                                 if (bus.source_channel[channel] != -1) {
615                                         interesting_channels[bus.device].insert(bus.source_channel[channel]);
616                                 }
617                         }
618                 }
619         }
620
621         // Reset resamplers for all cards that don't have the exact same state as before.
622         for (const auto &spec_and_info : get_devices_mutex_held()) {
623                 const DeviceSpec &device_spec = spec_and_info.first;
624                 AudioDevice *device = find_audio_device(device_spec);
625                 if (device->interesting_channels != interesting_channels[device_spec]) {
626                         device->interesting_channels = interesting_channels[device_spec];
627                         if (device_spec.type == InputSourceType::ALSA_INPUT) {
628                                 reset_alsa_mutex_held(device_spec);
629                         }
630                         reset_resampler_mutex_held(device_spec);
631                 }
632         }
633
634         {
635                 lock_guard<mutex> lock(audio_measure_mutex);
636                 bus_r128.resize(new_input_mapping.buses.size());
637                 for (unsigned bus_index = 0; bus_index < bus_r128.size(); ++bus_index) {
638                         if (bus_r128[bus_index] == nullptr) {
639                                 bus_r128[bus_index].reset(new Ebu_r128_proc);
640                         }
641                         bus_r128[bus_index]->init(2, OUTPUT_FREQUENCY);
642                 }
643         }
644
645         input_mapping = new_input_mapping;
646 }
647
648 InputMapping AudioMixer::get_input_mapping() const
649 {
650         lock_guard<timed_mutex> lock(audio_mutex);
651         return input_mapping;
652 }