]> git.sesse.net Git - nageru/blob - audio_mixer.cpp
Do not use the timing of dropped frames as part of the video master clock.
[nageru] / audio_mixer.cpp
1 #include "audio_mixer.h"
2
3 #include <assert.h>
4 #include <endian.h>
5 #include <bmusb/bmusb.h>
6 #include <stdio.h>
7 #include <endian.h>
8 #include <cmath>
9 #ifdef __SSE__
10 #include <immintrin.h>
11 #endif
12
13 #include "db.h"
14 #include "flags.h"
15 #include "mixer.h"
16 #include "state.pb.h"
17 #include "timebase.h"
18
19 using namespace bmusb;
20 using namespace std;
21 using namespace std::placeholders;
22
23 namespace {
24
25 // TODO: If these prove to be a bottleneck, they can be SSSE3-optimized
26 // (usually including multiple channels at a time).
27
28 void convert_fixed16_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
29                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
30                              size_t num_samples)
31 {
32         assert(in_channel < in_num_channels);
33         assert(out_channel < out_num_channels);
34         src += in_channel * 2;
35         dst += out_channel;
36
37         for (size_t i = 0; i < num_samples; ++i) {
38                 int16_t s = le16toh(*(int16_t *)src);
39                 *dst = s * (1.0f / 32768.0f);
40
41                 src += 2 * in_num_channels;
42                 dst += out_num_channels;
43         }
44 }
45
46 void convert_fixed24_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
47                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
48                              size_t num_samples)
49 {
50         assert(in_channel < in_num_channels);
51         assert(out_channel < out_num_channels);
52         src += in_channel * 3;
53         dst += out_channel;
54
55         for (size_t i = 0; i < num_samples; ++i) {
56                 uint32_t s1 = src[0];
57                 uint32_t s2 = src[1];
58                 uint32_t s3 = src[2];
59                 uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
60                 *dst = int(s) * (1.0f / 2147483648.0f);
61
62                 src += 3 * in_num_channels;
63                 dst += out_num_channels;
64         }
65 }
66
67 void convert_fixed32_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
68                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
69                              size_t num_samples)
70 {
71         assert(in_channel < in_num_channels);
72         assert(out_channel < out_num_channels);
73         src += in_channel * 4;
74         dst += out_channel;
75
76         for (size_t i = 0; i < num_samples; ++i) {
77                 int32_t s = le32toh(*(int32_t *)src);
78                 *dst = s * (1.0f / 2147483648.0f);
79
80                 src += 4 * in_num_channels;
81                 dst += out_num_channels;
82         }
83 }
84
85 float find_peak_plain(const float *samples, size_t num_samples) __attribute__((unused));
86
87 float find_peak_plain(const float *samples, size_t num_samples)
88 {
89         float m = fabs(samples[0]);
90         for (size_t i = 1; i < num_samples; ++i) {
91                 m = max(m, fabs(samples[i]));
92         }
93         return m;
94 }
95
96 #ifdef __SSE__
97 static inline float horizontal_max(__m128 m)
98 {
99         __m128 tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 0, 3, 2));
100         m = _mm_max_ps(m, tmp);
101         tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 3, 0, 1));
102         m = _mm_max_ps(m, tmp);
103         return _mm_cvtss_f32(m);
104 }
105
106 float find_peak(const float *samples, size_t num_samples)
107 {
108         const __m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffffu));
109         __m128 m = _mm_setzero_ps();
110         for (size_t i = 0; i < (num_samples & ~3); i += 4) {
111                 __m128 x = _mm_loadu_ps(samples + i);
112                 x = _mm_and_ps(x, abs_mask);
113                 m = _mm_max_ps(m, x);
114         }
115         float result = horizontal_max(m);
116
117         for (size_t i = (num_samples & ~3); i < num_samples; ++i) {
118                 result = max(result, fabs(samples[i]));
119         }
120
121 #if 0
122         // Self-test. We should be bit-exact the same.
123         float reference_result = find_peak_plain(samples, num_samples);
124         if (result != reference_result) {
125                 fprintf(stderr, "Error: Peak is %f [%f %f %f %f]; should be %f.\n",
126                         result,
127                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(0, 0, 0, 0))),
128                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 1, 1, 1))),
129                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 2, 2, 2))),
130                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(3, 3, 3, 3))),
131                         reference_result);
132                 abort();
133         }
134 #endif
135         return result;
136 }
137 #else
138 float find_peak(const float *samples, size_t num_samples)
139 {
140         return find_peak_plain(samples, num_samples);
141 }
142 #endif
143
144 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
145 {
146         size_t num_samples = in.size() / 2;
147         out_l->resize(num_samples);
148         out_r->resize(num_samples);
149
150         const float *inptr = in.data();
151         float *lptr = &(*out_l)[0];
152         float *rptr = &(*out_r)[0];
153         for (size_t i = 0; i < num_samples; ++i) {
154                 *lptr++ = *inptr++;
155                 *rptr++ = *inptr++;
156         }
157 }
158
159 }  // namespace
160
161 AudioMixer::AudioMixer(unsigned num_cards)
162         : num_cards(num_cards),
163           limiter(OUTPUT_FREQUENCY),
164           correlation(OUTPUT_FREQUENCY)
165 {
166         global_audio_mixer = this;
167
168         for (unsigned bus_index = 0; bus_index < MAX_BUSES; ++bus_index) {
169                 locut[bus_index].init(FILTER_HPF, 2);
170                 eq[bus_index][EQ_BAND_BASS].init(FILTER_LOW_SHELF, 1);
171                 // Note: EQ_BAND_MID isn't used (see comments in apply_eq()).
172                 eq[bus_index][EQ_BAND_TREBLE].init(FILTER_HIGH_SHELF, 1);
173                 compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
174                 level_compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
175
176                 set_bus_settings(bus_index, get_default_bus_settings());
177         }
178         set_limiter_enabled(global_flags.limiter_enabled);
179         set_final_makeup_gain_auto(global_flags.final_makeup_gain_auto);
180         alsa_pool.init();
181
182         InputMapping new_input_mapping;
183         if (!global_flags.input_mapping_filename.empty()) {
184                 if (!load_input_mapping_from_file(get_devices(),
185                                                   global_flags.input_mapping_filename,
186                                                   &new_input_mapping)) {
187                         fprintf(stderr, "Failed to load input mapping from '%s', exiting.\n",
188                                 global_flags.input_mapping_filename.c_str());
189                         exit(1);
190                 }
191         } else {
192                 // Generate a very simple, default input mapping.
193                 InputMapping::Bus input;
194                 input.name = "Main";
195                 input.device.type = InputSourceType::CAPTURE_CARD;
196                 input.device.index = 0;
197                 input.source_channel[0] = 0;
198                 input.source_channel[1] = 1;
199
200                 new_input_mapping.buses.push_back(input);
201         }
202         set_input_mapping(new_input_mapping);
203
204         r128.init(2, OUTPUT_FREQUENCY);
205         r128.integr_start();
206
207         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
208         // and there's a limit to how important the peak meter is.
209         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
210 }
211
212 void AudioMixer::reset_resampler(DeviceSpec device_spec)
213 {
214         lock_guard<timed_mutex> lock(audio_mutex);
215         reset_resampler_mutex_held(device_spec);
216 }
217
218 void AudioMixer::reset_resampler_mutex_held(DeviceSpec device_spec)
219 {
220         AudioDevice *device = find_audio_device(device_spec);
221
222         if (device->interesting_channels.empty()) {
223                 device->resampling_queue.reset();
224         } else {
225                 // TODO: ResamplingQueue should probably take the full device spec.
226                 // (It's only used for console output, though.)
227                 device->resampling_queue.reset(new ResamplingQueue(device_spec.index, device->capture_frequency, OUTPUT_FREQUENCY, device->interesting_channels.size()));
228         }
229         device->next_local_pts = 0;
230 }
231
232 bool AudioMixer::add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, AudioFormat audio_format, int64_t frame_length)
233 {
234         AudioDevice *device = find_audio_device(device_spec);
235
236         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
237         if (!lock.try_lock_for(chrono::milliseconds(10))) {
238                 return false;
239         }
240         if (device->resampling_queue == nullptr) {
241                 // No buses use this device; throw it away.
242                 return true;
243         }
244
245         unsigned num_channels = device->interesting_channels.size();
246         assert(num_channels > 0);
247
248         // Convert the audio to fp32.
249         unique_ptr<float[]> audio(new float[num_samples * num_channels]);
250         unsigned channel_index = 0;
251         for (auto channel_it = device->interesting_channels.cbegin(); channel_it != device->interesting_channels.end(); ++channel_it, ++channel_index) {
252                 switch (audio_format.bits_per_sample) {
253                 case 0:
254                         assert(num_samples == 0);
255                         break;
256                 case 16:
257                         convert_fixed16_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
258                         break;
259                 case 24:
260                         convert_fixed24_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
261                         break;
262                 case 32:
263                         convert_fixed32_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
264                         break;
265                 default:
266                         fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
267                         assert(false);
268                 }
269         }
270
271         // Now add it.
272         int64_t local_pts = device->next_local_pts;
273         device->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.get(), num_samples);
274         device->next_local_pts = local_pts + frame_length;
275         return true;
276 }
277
278 bool AudioMixer::add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length)
279 {
280         AudioDevice *device = find_audio_device(device_spec);
281
282         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
283         if (!lock.try_lock_for(chrono::milliseconds(10))) {
284                 return false;
285         }
286         if (device->resampling_queue == nullptr) {
287                 // No buses use this device; throw it away.
288                 return true;
289         }
290
291         unsigned num_channels = device->interesting_channels.size();
292         assert(num_channels > 0);
293
294         vector<float> silence(samples_per_frame * num_channels, 0.0f);
295         for (unsigned i = 0; i < num_frames; ++i) {
296                 device->resampling_queue->add_input_samples(device->next_local_pts / double(TIMEBASE), silence.data(), samples_per_frame);
297                 // Note that if the format changed in the meantime, we have
298                 // no way of detecting that; we just have to assume the frame length
299                 // is always the same.
300                 device->next_local_pts += frame_length;
301         }
302         return true;
303 }
304
305 bool AudioMixer::silence_card(DeviceSpec device_spec, bool silence)
306 {
307         AudioDevice *device = find_audio_device(device_spec);
308
309         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
310         if (!lock.try_lock_for(chrono::milliseconds(10))) {
311                 return false;
312         }
313
314         if (device->silenced && !silence) {
315                 reset_resampler_mutex_held(device_spec);
316         }
317         device->silenced = silence;
318         return true;
319 }
320
321 AudioMixer::BusSettings AudioMixer::get_default_bus_settings()
322 {
323         BusSettings settings;
324         settings.fader_volume_db = 0.0f;
325         settings.locut_enabled = global_flags.locut_enabled;
326         for (unsigned band_index = 0; band_index < NUM_EQ_BANDS; ++band_index) {
327                 settings.eq_level_db[band_index] = 0.0f;
328         }
329         settings.gain_staging_db = global_flags.initial_gain_staging_db;
330         settings.level_compressor_enabled = global_flags.gain_staging_auto;
331         settings.compressor_threshold_dbfs = ref_level_dbfs - 12.0f;  // -12 dB.
332         settings.compressor_enabled = global_flags.compressor_enabled;
333         return settings;
334 }
335
336 AudioMixer::BusSettings AudioMixer::get_bus_settings(unsigned bus_index) const
337 {
338         lock_guard<timed_mutex> lock(audio_mutex);
339         BusSettings settings;
340         settings.fader_volume_db = fader_volume_db[bus_index];
341         settings.locut_enabled = locut_enabled[bus_index];
342         for (unsigned band_index = 0; band_index < NUM_EQ_BANDS; ++band_index) {
343                 settings.eq_level_db[band_index] = eq_level_db[bus_index][band_index];
344         }
345         settings.gain_staging_db = gain_staging_db[bus_index];
346         settings.level_compressor_enabled = level_compressor_enabled[bus_index];
347         settings.compressor_threshold_dbfs = compressor_threshold_dbfs[bus_index];
348         settings.compressor_enabled = compressor_enabled[bus_index];
349         return settings;
350 }
351
352 void AudioMixer::set_bus_settings(unsigned bus_index, const AudioMixer::BusSettings &settings)
353 {
354         lock_guard<timed_mutex> lock(audio_mutex);
355         fader_volume_db[bus_index] = settings.fader_volume_db;
356         locut_enabled[bus_index] = settings.locut_enabled;
357         for (unsigned band_index = 0; band_index < NUM_EQ_BANDS; ++band_index) {
358                 eq_level_db[bus_index][band_index] = settings.eq_level_db[band_index];
359         }
360         gain_staging_db[bus_index] = settings.gain_staging_db;
361         level_compressor_enabled[bus_index] = settings.level_compressor_enabled;
362         compressor_threshold_dbfs[bus_index] = settings.compressor_threshold_dbfs;
363         compressor_enabled[bus_index] = settings.compressor_enabled;
364 }
365
366 AudioMixer::AudioDevice *AudioMixer::find_audio_device(DeviceSpec device)
367 {
368         switch (device.type) {
369         case InputSourceType::CAPTURE_CARD:
370                 return &video_cards[device.index];
371         case InputSourceType::ALSA_INPUT:
372                 return &alsa_inputs[device.index];
373         case InputSourceType::SILENCE:
374         default:
375                 assert(false);
376         }
377         return nullptr;
378 }
379
380 // Get a pointer to the given channel from the given device.
381 // The channel must be picked out earlier and resampled.
382 void AudioMixer::find_sample_src_from_device(const map<DeviceSpec, vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride)
383 {
384         static float zero = 0.0f;
385         if (source_channel == -1 || device_spec.type == InputSourceType::SILENCE) {
386                 *srcptr = &zero;
387                 *stride = 0;
388                 return;
389         }
390         AudioDevice *device = find_audio_device(device_spec);
391         assert(device->interesting_channels.count(source_channel) != 0);
392         unsigned channel_index = 0;
393         for (int channel : device->interesting_channels) {
394                 if (channel == source_channel) break;
395                 ++channel_index;
396         }
397         assert(channel_index < device->interesting_channels.size());
398         const auto it = samples_card.find(device_spec);
399         assert(it != samples_card.end());
400         *srcptr = &(it->second)[channel_index];
401         *stride = device->interesting_channels.size();
402 }
403
404 // TODO: Can be SSSE3-optimized if need be.
405 void AudioMixer::fill_audio_bus(const map<DeviceSpec, vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output)
406 {
407         if (bus.device.type == InputSourceType::SILENCE) {
408                 memset(output, 0, num_samples * sizeof(*output));
409         } else {
410                 assert(bus.device.type == InputSourceType::CAPTURE_CARD ||
411                        bus.device.type == InputSourceType::ALSA_INPUT);
412                 const float *lsrc, *rsrc;
413                 unsigned lstride, rstride;
414                 float *dptr = output;
415                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[0], &lsrc, &lstride);
416                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[1], &rsrc, &rstride);
417                 for (unsigned i = 0; i < num_samples; ++i) {
418                         *dptr++ = *lsrc;
419                         *dptr++ = *rsrc;
420                         lsrc += lstride;
421                         rsrc += rstride;
422                 }
423         }
424 }
425
426 vector<DeviceSpec> AudioMixer::get_active_devices() const
427 {
428         vector<DeviceSpec> ret;
429         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
430                 const DeviceSpec device_spec{InputSourceType::CAPTURE_CARD, card_index};
431                 if (!find_audio_device(device_spec)->interesting_channels.empty()) {
432                         ret.push_back(device_spec);
433                 }
434         }
435         for (unsigned card_index = 0; card_index < MAX_ALSA_CARDS; ++card_index) {
436                 const DeviceSpec device_spec{InputSourceType::ALSA_INPUT, card_index};
437                 if (!find_audio_device(device_spec)->interesting_channels.empty()) {
438                         ret.push_back(device_spec);
439                 }
440         }
441         return ret;
442 }
443
444 vector<float> AudioMixer::get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy)
445 {
446         map<DeviceSpec, vector<float>> samples_card;
447         vector<float> samples_bus;
448
449         lock_guard<timed_mutex> lock(audio_mutex);
450
451         // Pick out all the interesting channels from all the cards.
452         for (const DeviceSpec &device_spec : get_active_devices()) {
453                 AudioDevice *device = find_audio_device(device_spec);
454                 samples_card[device_spec].resize(num_samples * device->interesting_channels.size());
455                 if (device->silenced) {
456                         memset(&samples_card[device_spec][0], 0, samples_card[device_spec].size() * sizeof(float));
457                 } else {
458                         device->resampling_queue->get_output_samples(
459                                 pts,
460                                 &samples_card[device_spec][0],
461                                 num_samples,
462                                 rate_adjustment_policy);
463                 }
464         }
465
466         vector<float> samples_out, left, right;
467         samples_out.resize(num_samples * 2);
468         samples_bus.resize(num_samples * 2);
469         for (unsigned bus_index = 0; bus_index < input_mapping.buses.size(); ++bus_index) {
470                 fill_audio_bus(samples_card, input_mapping.buses[bus_index], num_samples, &samples_bus[0]);
471                 apply_eq(bus_index, &samples_bus);
472
473                 {
474                         lock_guard<mutex> lock(compressor_mutex);
475
476                         // Apply a level compressor to get the general level right.
477                         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
478                         // (or more precisely, near it, since we don't use infinite ratio),
479                         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
480                         // entirely arbitrary, but from practical tests with speech, it seems to
481                         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
482                         if (level_compressor_enabled[bus_index]) {
483                                 float threshold = 0.01f;   // -40 dBFS.
484                                 float ratio = 20.0f;
485                                 float attack_time = 0.5f;
486                                 float release_time = 20.0f;
487                                 float makeup_gain = from_db(ref_level_dbfs - (-40.0f));  // +26 dB.
488                                 level_compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
489                                 gain_staging_db[bus_index] = to_db(level_compressor[bus_index]->get_attenuation() * makeup_gain);
490                         } else {
491                                 // Just apply the gain we already had.
492                                 float g = from_db(gain_staging_db[bus_index]);
493                                 for (size_t i = 0; i < samples_bus.size(); ++i) {
494                                         samples_bus[i] *= g;
495                                 }
496                         }
497
498 #if 0
499                         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
500                                 level_compressor.get_level(), to_db(level_compressor.get_level()),
501                                 level_compressor.get_attenuation(), to_db(level_compressor.get_attenuation()),
502                                 to_db(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
503 #endif
504
505                         // The real compressor.
506                         if (compressor_enabled[bus_index]) {
507                                 float threshold = from_db(compressor_threshold_dbfs[bus_index]);
508                                 float ratio = 20.0f;
509                                 float attack_time = 0.005f;
510                                 float release_time = 0.040f;
511                                 float makeup_gain = 2.0f;  // +6 dB.
512                                 compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
513                 //              compressor_att = compressor.get_attenuation();
514                         }
515                 }
516
517                 add_bus_to_master(bus_index, samples_bus, &samples_out);
518                 deinterleave_samples(samples_bus, &left, &right);
519                 measure_bus_levels(bus_index, left, right);
520         }
521
522         {
523                 lock_guard<mutex> lock(compressor_mutex);
524
525                 // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
526                 // Note that since ratio is not infinite, we could go slightly higher than this.
527                 if (limiter_enabled) {
528                         float threshold = from_db(limiter_threshold_dbfs);
529                         float ratio = 30.0f;
530                         float attack_time = 0.0f;  // Instant.
531                         float release_time = 0.020f;
532                         float makeup_gain = 1.0f;  // 0 dB.
533                         limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
534         //              limiter_att = limiter.get_attenuation();
535                 }
536
537         //      printf("limiter=%+5.1f  compressor=%+5.1f\n", to_db(limiter_att), to_db(compressor_att));
538         }
539
540         // At this point, we are most likely close to +0 LU (at least if the
541         // faders sum to 0 dB and the compressors are on), but all of our
542         // measurements have been on raw sample values, not R128 values.
543         // So we have a final makeup gain to get us to +0 LU; the gain
544         // adjustments required should be relatively small, and also, the
545         // offset shouldn't change much (only if the type of audio changes
546         // significantly). Thus, we shoot for updating this value basically
547         // “whenever we process buffers”, since the R128 calculation isn't exactly
548         // something we get out per-sample.
549         //
550         // Note that there's a feedback loop here, so we choose a very slow filter
551         // (half-time of 30 seconds).
552         double target_loudness_factor, alpha;
553         double loudness_lu = r128.loudness_M() - ref_level_lufs;
554         double current_makeup_lu = to_db(final_makeup_gain);
555         target_loudness_factor = final_makeup_gain * from_db(-loudness_lu);
556
557         // If we're outside +/- 5 LU uncorrected, we don't count it as
558         // a normal signal (probably silence) and don't change the
559         // correction factor; just apply what we already have.
560         if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
561                 alpha = 0.0;
562         } else {
563                 // Formula adapted from
564                 // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
565                 const double half_time_s = 30.0;
566                 const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
567                 alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
568         }
569
570         {
571                 lock_guard<mutex> lock(compressor_mutex);
572                 double m = final_makeup_gain;
573                 for (size_t i = 0; i < samples_out.size(); i += 2) {
574                         samples_out[i + 0] *= m;
575                         samples_out[i + 1] *= m;
576                         m += (target_loudness_factor - m) * alpha;
577                 }
578                 final_makeup_gain = m;
579         }
580
581         update_meters(samples_out);
582
583         return samples_out;
584 }
585
586 namespace {
587
588 void apply_filter_fade(StereoFilter *filter, float *data, unsigned num_samples, float cutoff_hz, float db, float last_db)
589 {
590         // A granularity of 32 samples is an okay tradeoff between speed and
591         // smoothness; recalculating the filters is pretty expensive, so it's
592         // good that we don't do this all the time.
593         static constexpr unsigned filter_granularity_samples = 32;
594
595         const float cutoff_linear = cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY;
596         if (fabs(db - last_db) < 1e-3) {
597                 // Constant over this frame.
598                 if (fabs(db) > 0.01f) {
599                         filter->render(data, num_samples, cutoff_linear, 0.5f, db / 40.0f);
600                 }
601         } else {
602                 // We need to do a fade. (Rounding up avoids division by zero.)
603                 unsigned num_blocks = (num_samples + filter_granularity_samples - 1) / filter_granularity_samples;
604                 const float inc_db_norm = (db - last_db) / 40.0f / num_blocks;
605                 float db_norm = db / 40.0f;
606                 for (size_t i = 0; i < num_samples; i += filter_granularity_samples) {
607                         size_t samples_this_block = std::min<size_t>(num_samples - i, filter_granularity_samples);
608                         filter->render(data + i * 2, samples_this_block, cutoff_linear, 0.5f, db_norm);
609                         db_norm += inc_db_norm;
610                 }
611         }
612 }
613
614 }  // namespace
615
616 void AudioMixer::apply_eq(unsigned bus_index, vector<float> *samples_bus)
617 {
618         constexpr float bass_freq_hz = 200.0f;
619         constexpr float treble_freq_hz = 4700.0f;
620
621         // Cut away everything under 120 Hz (or whatever the cutoff is);
622         // we don't need it for voice, and it will reduce headroom
623         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
624         // should be dampened.)
625         if (locut_enabled[bus_index]) {
626                 locut[bus_index].render(samples_bus->data(), samples_bus->size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
627         }
628
629         // Apply the rest of the EQ. Since we only have a simple three-band EQ,
630         // we can implement it with two shelf filters. We use a simple gain to
631         // set the mid-level filter, and then offset the low and high bands
632         // from that if we need to. (We could perhaps have folded the gain into
633         // the next part, but it's so cheap that the trouble isn't worth it.)
634         //
635         // If any part of the EQ has changed appreciably since last frame,
636         // we fade smoothly during the course of this frame.
637         const float bass_db = eq_level_db[bus_index][EQ_BAND_BASS];
638         const float mid_db = eq_level_db[bus_index][EQ_BAND_MID];
639         const float treble_db = eq_level_db[bus_index][EQ_BAND_TREBLE];
640
641         const float last_bass_db = last_eq_level_db[bus_index][EQ_BAND_BASS];
642         const float last_mid_db = last_eq_level_db[bus_index][EQ_BAND_MID];
643         const float last_treble_db = last_eq_level_db[bus_index][EQ_BAND_TREBLE];
644
645         assert(samples_bus->size() % 2 == 0);
646         const unsigned num_samples = samples_bus->size() / 2;
647
648         if (fabs(mid_db - last_mid_db) < 1e-3) {
649                 // Constant over this frame.
650                 const float gain = from_db(mid_db);
651                 for (size_t i = 0; i < samples_bus->size(); ++i) {
652                         (*samples_bus)[i] *= gain;
653                 }
654         } else {
655                 // We need to do a fade.
656                 float gain = from_db(last_mid_db);
657                 const float gain_inc = pow(from_db(mid_db - last_mid_db), 1.0 / num_samples);
658                 for (size_t i = 0; i < num_samples; ++i) {
659                         (*samples_bus)[i * 2 + 0] *= gain;
660                         (*samples_bus)[i * 2 + 1] *= gain;
661                         gain *= gain_inc;
662                 }
663         }
664
665         apply_filter_fade(&eq[bus_index][EQ_BAND_BASS], samples_bus->data(), num_samples, bass_freq_hz, bass_db - mid_db, last_bass_db - last_mid_db);
666         apply_filter_fade(&eq[bus_index][EQ_BAND_TREBLE], samples_bus->data(), num_samples, treble_freq_hz, treble_db - mid_db, last_treble_db - last_mid_db);
667
668         last_eq_level_db[bus_index][EQ_BAND_BASS] = bass_db;
669         last_eq_level_db[bus_index][EQ_BAND_MID] = mid_db;
670         last_eq_level_db[bus_index][EQ_BAND_TREBLE] = treble_db;
671 }
672
673 void AudioMixer::add_bus_to_master(unsigned bus_index, const vector<float> &samples_bus, vector<float> *samples_out)
674 {
675         assert(samples_bus.size() == samples_out->size());
676         assert(samples_bus.size() % 2 == 0);
677         unsigned num_samples = samples_bus.size() / 2;
678         if (fabs(fader_volume_db[bus_index] - last_fader_volume_db[bus_index]) > 1e-3) {
679                 // The volume has changed; do a fade over the course of this frame.
680                 // (We might have some numerical issues here, but it seems to sound OK.)
681                 // For the purpose of fading here, the silence floor is set to -90 dB
682                 // (the fader only goes to -84).
683                 float old_volume = from_db(max<float>(last_fader_volume_db[bus_index], -90.0f));
684                 float volume = from_db(max<float>(fader_volume_db[bus_index], -90.0f));
685
686                 float volume_inc = pow(volume / old_volume, 1.0 / num_samples);
687                 volume = old_volume;
688                 if (bus_index == 0) {
689                         for (unsigned i = 0; i < num_samples; ++i) {
690                                 (*samples_out)[i * 2 + 0] = samples_bus[i * 2 + 0] * volume;
691                                 (*samples_out)[i * 2 + 1] = samples_bus[i * 2 + 1] * volume;
692                                 volume *= volume_inc;
693                         }
694                 } else {
695                         for (unsigned i = 0; i < num_samples; ++i) {
696                                 (*samples_out)[i * 2 + 0] += samples_bus[i * 2 + 0] * volume;
697                                 (*samples_out)[i * 2 + 1] += samples_bus[i * 2 + 1] * volume;
698                                 volume *= volume_inc;
699                         }
700                 }
701         } else {
702                 float volume = from_db(fader_volume_db[bus_index]);
703                 if (bus_index == 0) {
704                         for (unsigned i = 0; i < num_samples; ++i) {
705                                 (*samples_out)[i * 2 + 0] = samples_bus[i * 2 + 0] * volume;
706                                 (*samples_out)[i * 2 + 1] = samples_bus[i * 2 + 1] * volume;
707                         }
708                 } else {
709                         for (unsigned i = 0; i < num_samples; ++i) {
710                                 (*samples_out)[i * 2 + 0] += samples_bus[i * 2 + 0] * volume;
711                                 (*samples_out)[i * 2 + 1] += samples_bus[i * 2 + 1] * volume;
712                         }
713                 }
714         }
715
716         last_fader_volume_db[bus_index] = fader_volume_db[bus_index];
717 }
718
719 void AudioMixer::measure_bus_levels(unsigned bus_index, const vector<float> &left, const vector<float> &right)
720 {
721         assert(left.size() == right.size());
722         const float volume = from_db(fader_volume_db[bus_index]);
723         const float peak_levels[2] = {
724                 find_peak(left.data(), left.size()) * volume,
725                 find_peak(right.data(), right.size()) * volume
726         };
727         for (unsigned channel = 0; channel < 2; ++channel) {
728                 // Compute the current value, including hold and falloff.
729                 // The constants are borrowed from zita-mu1 by Fons Adriaensen.
730                 static constexpr float hold_sec = 0.5f;
731                 static constexpr float falloff_db_sec = 15.0f;  // dB/sec falloff after hold.
732                 float current_peak;
733                 PeakHistory &history = peak_history[bus_index][channel];
734                 history.historic_peak = max(history.historic_peak, peak_levels[channel]);
735                 if (history.age_seconds < hold_sec) {
736                         current_peak = history.last_peak;
737                 } else {
738                         current_peak = history.last_peak * from_db(-falloff_db_sec * (history.age_seconds - hold_sec));
739                 }
740
741                 // See if we have a new peak to replace the old (possibly falling) one.
742                 if (peak_levels[channel] > current_peak) {
743                         history.last_peak = peak_levels[channel];
744                         history.age_seconds = 0.0f;  // Not 100% correct, but more than good enough given our frame sizes.
745                         current_peak = peak_levels[channel];
746                 } else {
747                         history.age_seconds += float(left.size()) / OUTPUT_FREQUENCY;
748                 }
749                 history.current_level = peak_levels[channel];
750                 history.current_peak = current_peak;
751         }
752 }
753
754 void AudioMixer::update_meters(const vector<float> &samples)
755 {
756         // Upsample 4x to find interpolated peak.
757         peak_resampler.inp_data = const_cast<float *>(samples.data());
758         peak_resampler.inp_count = samples.size() / 2;
759
760         vector<float> interpolated_samples;
761         interpolated_samples.resize(samples.size());
762         {
763                 lock_guard<mutex> lock(audio_measure_mutex);
764
765                 while (peak_resampler.inp_count > 0) {  // About four iterations.
766                         peak_resampler.out_data = &interpolated_samples[0];
767                         peak_resampler.out_count = interpolated_samples.size() / 2;
768                         peak_resampler.process();
769                         size_t out_stereo_samples = interpolated_samples.size() / 2 - peak_resampler.out_count;
770                         peak = max<float>(peak, find_peak(interpolated_samples.data(), out_stereo_samples * 2));
771                         peak_resampler.out_data = nullptr;
772                 }
773         }
774
775         // Find R128 levels and L/R correlation.
776         vector<float> left, right;
777         deinterleave_samples(samples, &left, &right);
778         float *ptrs[] = { left.data(), right.data() };
779         {
780                 lock_guard<mutex> lock(audio_measure_mutex);
781                 r128.process(left.size(), ptrs);
782                 correlation.process_samples(samples);
783         }
784
785         send_audio_level_callback();
786 }
787
788 void AudioMixer::reset_meters()
789 {
790         lock_guard<mutex> lock(audio_measure_mutex);
791         peak_resampler.reset();
792         peak = 0.0f;
793         r128.reset();
794         r128.integr_start();
795         correlation.reset();
796 }
797
798 void AudioMixer::send_audio_level_callback()
799 {
800         if (audio_level_callback == nullptr) {
801                 return;
802         }
803
804         lock_guard<mutex> lock(audio_measure_mutex);
805         double loudness_s = r128.loudness_S();
806         double loudness_i = r128.integrated();
807         double loudness_range_low = r128.range_min();
808         double loudness_range_high = r128.range_max();
809
810         vector<BusLevel> bus_levels;
811         bus_levels.resize(input_mapping.buses.size());
812         {
813                 lock_guard<mutex> lock(compressor_mutex);
814                 for (unsigned bus_index = 0; bus_index < bus_levels.size(); ++bus_index) {
815                         bus_levels[bus_index].current_level_dbfs[0] = to_db(peak_history[bus_index][0].current_level);
816                         bus_levels[bus_index].current_level_dbfs[1] = to_db(peak_history[bus_index][1].current_level);
817                         bus_levels[bus_index].peak_level_dbfs[0] = to_db(peak_history[bus_index][0].current_peak);
818                         bus_levels[bus_index].peak_level_dbfs[1] = to_db(peak_history[bus_index][1].current_peak);
819                         bus_levels[bus_index].historic_peak_dbfs = to_db(
820                                 max(peak_history[bus_index][0].historic_peak,
821                                     peak_history[bus_index][1].historic_peak));
822                         bus_levels[bus_index].gain_staging_db = gain_staging_db[bus_index];
823                         if (compressor_enabled[bus_index]) {
824                                 bus_levels[bus_index].compressor_attenuation_db = -to_db(compressor[bus_index]->get_attenuation());
825                         } else {
826                                 bus_levels[bus_index].compressor_attenuation_db = 0.0;
827                         }
828                 }
829         }
830
831         audio_level_callback(loudness_s, to_db(peak), bus_levels,
832                 loudness_i, loudness_range_low, loudness_range_high,
833                 to_db(final_makeup_gain),
834                 correlation.get_correlation());
835 }
836
837 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices()
838 {
839         lock_guard<timed_mutex> lock(audio_mutex);
840
841         map<DeviceSpec, DeviceInfo> devices;
842         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
843                 const DeviceSpec spec{ InputSourceType::CAPTURE_CARD, card_index };
844                 const AudioDevice *device = &video_cards[card_index];
845                 DeviceInfo info;
846                 info.display_name = device->display_name;
847                 info.num_channels = 8;
848                 devices.insert(make_pair(spec, info));
849         }
850         vector<ALSAPool::Device> available_alsa_devices = alsa_pool.get_devices();
851         for (unsigned card_index = 0; card_index < available_alsa_devices.size(); ++card_index) {
852                 const DeviceSpec spec{ InputSourceType::ALSA_INPUT, card_index };
853                 const ALSAPool::Device &device = available_alsa_devices[card_index];
854                 DeviceInfo info;
855                 info.display_name = device.display_name();
856                 info.num_channels = device.num_channels;
857                 info.alsa_name = device.name;
858                 info.alsa_info = device.info;
859                 info.alsa_address = device.address;
860                 devices.insert(make_pair(spec, info));
861         }
862         return devices;
863 }
864
865 void AudioMixer::set_display_name(DeviceSpec device_spec, const string &name)
866 {
867         AudioDevice *device = find_audio_device(device_spec);
868
869         lock_guard<timed_mutex> lock(audio_mutex);
870         device->display_name = name;
871 }
872
873 void AudioMixer::serialize_device(DeviceSpec device_spec, DeviceSpecProto *device_spec_proto)
874 {
875         lock_guard<timed_mutex> lock(audio_mutex);
876         switch (device_spec.type) {
877                 case InputSourceType::SILENCE:
878                         device_spec_proto->set_type(DeviceSpecProto::SILENCE);
879                         break;
880                 case InputSourceType::CAPTURE_CARD:
881                         device_spec_proto->set_type(DeviceSpecProto::CAPTURE_CARD);
882                         device_spec_proto->set_index(device_spec.index);
883                         device_spec_proto->set_display_name(video_cards[device_spec.index].display_name);
884                         break;
885                 case InputSourceType::ALSA_INPUT:
886                         alsa_pool.serialize_device(device_spec.index, device_spec_proto);
887                         break;
888         }
889 }
890
891 void AudioMixer::set_input_mapping(const InputMapping &new_input_mapping)
892 {
893         lock_guard<timed_mutex> lock(audio_mutex);
894
895         map<DeviceSpec, set<unsigned>> interesting_channels;
896         for (const InputMapping::Bus &bus : new_input_mapping.buses) {
897                 if (bus.device.type == InputSourceType::CAPTURE_CARD ||
898                     bus.device.type == InputSourceType::ALSA_INPUT) {
899                         for (unsigned channel = 0; channel < 2; ++channel) {
900                                 if (bus.source_channel[channel] != -1) {
901                                         interesting_channels[bus.device].insert(bus.source_channel[channel]);
902                                 }
903                         }
904                 }
905         }
906
907         // Reset resamplers for all cards that don't have the exact same state as before.
908         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
909                 const DeviceSpec device_spec{InputSourceType::CAPTURE_CARD, card_index};
910                 AudioDevice *device = find_audio_device(device_spec);
911                 if (device->interesting_channels != interesting_channels[device_spec]) {
912                         device->interesting_channels = interesting_channels[device_spec];
913                         reset_resampler_mutex_held(device_spec);
914                 }
915         }
916         for (unsigned card_index = 0; card_index < MAX_ALSA_CARDS; ++card_index) {
917                 const DeviceSpec device_spec{InputSourceType::ALSA_INPUT, card_index};
918                 AudioDevice *device = find_audio_device(device_spec);
919                 if (interesting_channels[device_spec].empty()) {
920                         alsa_pool.release_device(card_index);
921                 } else {
922                         alsa_pool.hold_device(card_index);
923                 }
924                 if (device->interesting_channels != interesting_channels[device_spec]) {
925                         device->interesting_channels = interesting_channels[device_spec];
926                         alsa_pool.reset_device(device_spec.index);
927                         reset_resampler_mutex_held(device_spec);
928                 }
929         }
930
931         input_mapping = new_input_mapping;
932 }
933
934 InputMapping AudioMixer::get_input_mapping() const
935 {
936         lock_guard<timed_mutex> lock(audio_mutex);
937         return input_mapping;
938 }
939
940 void AudioMixer::reset_peak(unsigned bus_index)
941 {
942         lock_guard<timed_mutex> lock(audio_mutex);
943         for (unsigned channel = 0; channel < 2; ++channel) {
944                 PeakHistory &history = peak_history[bus_index][channel];
945                 history.current_level = 0.0f;
946                 history.historic_peak = 0.0f;
947                 history.current_peak = 0.0f;
948                 history.last_peak = 0.0f;
949                 history.age_seconds = 0.0f;
950         }
951 }
952
953 AudioMixer *global_audio_mixer = nullptr;