]> git.sesse.net Git - nageru/blob - audio_mixer.cpp
e4eb495953baaa49cd487f2b5e16960857d88efb
[nageru] / audio_mixer.cpp
1 #include "audio_mixer.h"
2
3 #include <assert.h>
4 #include <endian.h>
5 #include <bmusb/bmusb.h>
6 #include <stdio.h>
7 #include <endian.h>
8 #include <cmath>
9 #include <limits>
10 #ifdef __SSE__
11 #include <immintrin.h>
12 #endif
13
14 #include "db.h"
15 #include "flags.h"
16 #include "mixer.h"
17 #include "state.pb.h"
18 #include "timebase.h"
19
20 using namespace bmusb;
21 using namespace std;
22 using namespace std::placeholders;
23
24 namespace {
25
26 // TODO: If these prove to be a bottleneck, they can be SSSE3-optimized
27 // (usually including multiple channels at a time).
28
29 void convert_fixed16_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
30                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
31                              size_t num_samples)
32 {
33         assert(in_channel < in_num_channels);
34         assert(out_channel < out_num_channels);
35         src += in_channel * 2;
36         dst += out_channel;
37
38         for (size_t i = 0; i < num_samples; ++i) {
39                 int16_t s = le16toh(*(int16_t *)src);
40                 *dst = s * (1.0f / 32768.0f);
41
42                 src += 2 * in_num_channels;
43                 dst += out_num_channels;
44         }
45 }
46
47 void convert_fixed24_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
48                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
49                              size_t num_samples)
50 {
51         assert(in_channel < in_num_channels);
52         assert(out_channel < out_num_channels);
53         src += in_channel * 3;
54         dst += out_channel;
55
56         for (size_t i = 0; i < num_samples; ++i) {
57                 uint32_t s1 = src[0];
58                 uint32_t s2 = src[1];
59                 uint32_t s3 = src[2];
60                 uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
61                 *dst = int(s) * (1.0f / 2147483648.0f);
62
63                 src += 3 * in_num_channels;
64                 dst += out_num_channels;
65         }
66 }
67
68 void convert_fixed32_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
69                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
70                              size_t num_samples)
71 {
72         assert(in_channel < in_num_channels);
73         assert(out_channel < out_num_channels);
74         src += in_channel * 4;
75         dst += out_channel;
76
77         for (size_t i = 0; i < num_samples; ++i) {
78                 int32_t s = le32toh(*(int32_t *)src);
79                 *dst = s * (1.0f / 2147483648.0f);
80
81                 src += 4 * in_num_channels;
82                 dst += out_num_channels;
83         }
84 }
85
86 float find_peak_plain(const float *samples, size_t num_samples) __attribute__((unused));
87
88 float find_peak_plain(const float *samples, size_t num_samples)
89 {
90         float m = fabs(samples[0]);
91         for (size_t i = 1; i < num_samples; ++i) {
92                 m = max(m, fabs(samples[i]));
93         }
94         return m;
95 }
96
97 #ifdef __SSE__
98 static inline float horizontal_max(__m128 m)
99 {
100         __m128 tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 0, 3, 2));
101         m = _mm_max_ps(m, tmp);
102         tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 3, 0, 1));
103         m = _mm_max_ps(m, tmp);
104         return _mm_cvtss_f32(m);
105 }
106
107 float find_peak(const float *samples, size_t num_samples)
108 {
109         const __m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffffu));
110         __m128 m = _mm_setzero_ps();
111         for (size_t i = 0; i < (num_samples & ~3); i += 4) {
112                 __m128 x = _mm_loadu_ps(samples + i);
113                 x = _mm_and_ps(x, abs_mask);
114                 m = _mm_max_ps(m, x);
115         }
116         float result = horizontal_max(m);
117
118         for (size_t i = (num_samples & ~3); i < num_samples; ++i) {
119                 result = max(result, fabs(samples[i]));
120         }
121
122 #if 0
123         // Self-test. We should be bit-exact the same.
124         float reference_result = find_peak_plain(samples, num_samples);
125         if (result != reference_result) {
126                 fprintf(stderr, "Error: Peak is %f [%f %f %f %f]; should be %f.\n",
127                         result,
128                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(0, 0, 0, 0))),
129                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 1, 1, 1))),
130                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 2, 2, 2))),
131                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(3, 3, 3, 3))),
132                         reference_result);
133                 abort();
134         }
135 #endif
136         return result;
137 }
138 #else
139 float find_peak(const float *samples, size_t num_samples)
140 {
141         return find_peak_plain(samples, num_samples);
142 }
143 #endif
144
145 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
146 {
147         size_t num_samples = in.size() / 2;
148         out_l->resize(num_samples);
149         out_r->resize(num_samples);
150
151         const float *inptr = in.data();
152         float *lptr = &(*out_l)[0];
153         float *rptr = &(*out_r)[0];
154         for (size_t i = 0; i < num_samples; ++i) {
155                 *lptr++ = *inptr++;
156                 *rptr++ = *inptr++;
157         }
158 }
159
160 }  // namespace
161
162 AudioMixer::AudioMixer(unsigned num_cards)
163         : num_cards(num_cards),
164           limiter(OUTPUT_FREQUENCY),
165           correlation(OUTPUT_FREQUENCY)
166 {
167         global_audio_mixer = this;
168
169         for (unsigned bus_index = 0; bus_index < MAX_BUSES; ++bus_index) {
170                 locut[bus_index].init(FILTER_HPF, 2);
171                 eq[bus_index][EQ_BAND_BASS].init(FILTER_LOW_SHELF, 1);
172                 // Note: EQ_BAND_MID isn't used (see comments in apply_eq()).
173                 eq[bus_index][EQ_BAND_TREBLE].init(FILTER_HIGH_SHELF, 1);
174                 compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
175                 level_compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
176
177                 set_bus_settings(bus_index, get_default_bus_settings());
178         }
179         set_limiter_enabled(global_flags.limiter_enabled);
180         set_final_makeup_gain_auto(global_flags.final_makeup_gain_auto);
181         alsa_pool.init();
182
183         if (!global_flags.input_mapping_filename.empty()) {
184                 current_mapping_mode = MappingMode::MULTICHANNEL;
185                 InputMapping new_input_mapping;
186                 if (!load_input_mapping_from_file(get_devices(),
187                                                   global_flags.input_mapping_filename,
188                                                   &new_input_mapping)) {
189                         fprintf(stderr, "Failed to load input mapping from '%s', exiting.\n",
190                                 global_flags.input_mapping_filename.c_str());
191                         exit(1);
192                 }
193                 set_input_mapping(new_input_mapping);
194         } else {
195                 set_simple_input(/*card_index=*/0);
196                 if (global_flags.multichannel_mapping_mode) {
197                         current_mapping_mode = MappingMode::MULTICHANNEL;
198                 }
199         }
200
201         r128.init(2, OUTPUT_FREQUENCY);
202         r128.integr_start();
203
204         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
205         // and there's a limit to how important the peak meter is.
206         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
207 }
208
209 void AudioMixer::reset_resampler(DeviceSpec device_spec)
210 {
211         lock_guard<timed_mutex> lock(audio_mutex);
212         reset_resampler_mutex_held(device_spec);
213 }
214
215 void AudioMixer::reset_resampler_mutex_held(DeviceSpec device_spec)
216 {
217         AudioDevice *device = find_audio_device(device_spec);
218
219         if (device->interesting_channels.empty()) {
220                 device->resampling_queue.reset();
221         } else {
222                 // TODO: ResamplingQueue should probably take the full device spec.
223                 // (It's only used for console output, though.)
224                 device->resampling_queue.reset(new ResamplingQueue(device_spec.index, device->capture_frequency, OUTPUT_FREQUENCY, device->interesting_channels.size()));
225         }
226         device->next_local_pts = 0;
227 }
228
229 bool AudioMixer::add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, AudioFormat audio_format, int64_t frame_length)
230 {
231         AudioDevice *device = find_audio_device(device_spec);
232
233         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
234         if (!lock.try_lock_for(chrono::milliseconds(10))) {
235                 return false;
236         }
237         if (device->resampling_queue == nullptr) {
238                 // No buses use this device; throw it away.
239                 return true;
240         }
241
242         unsigned num_channels = device->interesting_channels.size();
243         assert(num_channels > 0);
244
245         // Convert the audio to fp32.
246         unique_ptr<float[]> audio(new float[num_samples * num_channels]);
247         unsigned channel_index = 0;
248         for (auto channel_it = device->interesting_channels.cbegin(); channel_it != device->interesting_channels.end(); ++channel_it, ++channel_index) {
249                 switch (audio_format.bits_per_sample) {
250                 case 0:
251                         assert(num_samples == 0);
252                         break;
253                 case 16:
254                         convert_fixed16_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
255                         break;
256                 case 24:
257                         convert_fixed24_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
258                         break;
259                 case 32:
260                         convert_fixed32_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
261                         break;
262                 default:
263                         fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
264                         assert(false);
265                 }
266         }
267
268         // Now add it.
269         int64_t local_pts = device->next_local_pts;
270         device->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.get(), num_samples);
271         device->next_local_pts = local_pts + frame_length;
272         return true;
273 }
274
275 bool AudioMixer::add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length)
276 {
277         AudioDevice *device = find_audio_device(device_spec);
278
279         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
280         if (!lock.try_lock_for(chrono::milliseconds(10))) {
281                 return false;
282         }
283         if (device->resampling_queue == nullptr) {
284                 // No buses use this device; throw it away.
285                 return true;
286         }
287
288         unsigned num_channels = device->interesting_channels.size();
289         assert(num_channels > 0);
290
291         vector<float> silence(samples_per_frame * num_channels, 0.0f);
292         for (unsigned i = 0; i < num_frames; ++i) {
293                 device->resampling_queue->add_input_samples(device->next_local_pts / double(TIMEBASE), silence.data(), samples_per_frame);
294                 // Note that if the format changed in the meantime, we have
295                 // no way of detecting that; we just have to assume the frame length
296                 // is always the same.
297                 device->next_local_pts += frame_length;
298         }
299         return true;
300 }
301
302 bool AudioMixer::silence_card(DeviceSpec device_spec, bool silence)
303 {
304         AudioDevice *device = find_audio_device(device_spec);
305
306         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
307         if (!lock.try_lock_for(chrono::milliseconds(10))) {
308                 return false;
309         }
310
311         if (device->silenced && !silence) {
312                 reset_resampler_mutex_held(device_spec);
313         }
314         device->silenced = silence;
315         return true;
316 }
317
318 AudioMixer::BusSettings AudioMixer::get_default_bus_settings()
319 {
320         BusSettings settings;
321         settings.fader_volume_db = 0.0f;
322         settings.locut_enabled = global_flags.locut_enabled;
323         for (unsigned band_index = 0; band_index < NUM_EQ_BANDS; ++band_index) {
324                 settings.eq_level_db[band_index] = 0.0f;
325         }
326         settings.gain_staging_db = global_flags.initial_gain_staging_db;
327         settings.level_compressor_enabled = global_flags.gain_staging_auto;
328         settings.compressor_threshold_dbfs = ref_level_dbfs - 12.0f;  // -12 dB.
329         settings.compressor_enabled = global_flags.compressor_enabled;
330         return settings;
331 }
332
333 AudioMixer::BusSettings AudioMixer::get_bus_settings(unsigned bus_index) const
334 {
335         lock_guard<timed_mutex> lock(audio_mutex);
336         BusSettings settings;
337         settings.fader_volume_db = fader_volume_db[bus_index];
338         settings.locut_enabled = locut_enabled[bus_index];
339         for (unsigned band_index = 0; band_index < NUM_EQ_BANDS; ++band_index) {
340                 settings.eq_level_db[band_index] = eq_level_db[bus_index][band_index];
341         }
342         settings.gain_staging_db = gain_staging_db[bus_index];
343         settings.level_compressor_enabled = level_compressor_enabled[bus_index];
344         settings.compressor_threshold_dbfs = compressor_threshold_dbfs[bus_index];
345         settings.compressor_enabled = compressor_enabled[bus_index];
346         return settings;
347 }
348
349 void AudioMixer::set_bus_settings(unsigned bus_index, const AudioMixer::BusSettings &settings)
350 {
351         lock_guard<timed_mutex> lock(audio_mutex);
352         fader_volume_db[bus_index] = settings.fader_volume_db;
353         locut_enabled[bus_index] = settings.locut_enabled;
354         for (unsigned band_index = 0; band_index < NUM_EQ_BANDS; ++band_index) {
355                 eq_level_db[bus_index][band_index] = settings.eq_level_db[band_index];
356         }
357         gain_staging_db[bus_index] = settings.gain_staging_db;
358         last_gain_staging_db[bus_index] = gain_staging_db[bus_index];
359         level_compressor_enabled[bus_index] = settings.level_compressor_enabled;
360         compressor_threshold_dbfs[bus_index] = settings.compressor_threshold_dbfs;
361         compressor_enabled[bus_index] = settings.compressor_enabled;
362 }
363
364 AudioMixer::AudioDevice *AudioMixer::find_audio_device(DeviceSpec device)
365 {
366         switch (device.type) {
367         case InputSourceType::CAPTURE_CARD:
368                 return &video_cards[device.index];
369         case InputSourceType::ALSA_INPUT:
370                 return &alsa_inputs[device.index];
371         case InputSourceType::SILENCE:
372         default:
373                 assert(false);
374         }
375         return nullptr;
376 }
377
378 // Get a pointer to the given channel from the given device.
379 // The channel must be picked out earlier and resampled.
380 void AudioMixer::find_sample_src_from_device(const map<DeviceSpec, vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride)
381 {
382         static float zero = 0.0f;
383         if (source_channel == -1 || device_spec.type == InputSourceType::SILENCE) {
384                 *srcptr = &zero;
385                 *stride = 0;
386                 return;
387         }
388         AudioDevice *device = find_audio_device(device_spec);
389         assert(device->interesting_channels.count(source_channel) != 0);
390         unsigned channel_index = 0;
391         for (int channel : device->interesting_channels) {
392                 if (channel == source_channel) break;
393                 ++channel_index;
394         }
395         assert(channel_index < device->interesting_channels.size());
396         const auto it = samples_card.find(device_spec);
397         assert(it != samples_card.end());
398         *srcptr = &(it->second)[channel_index];
399         *stride = device->interesting_channels.size();
400 }
401
402 // TODO: Can be SSSE3-optimized if need be.
403 void AudioMixer::fill_audio_bus(const map<DeviceSpec, vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output)
404 {
405         if (bus.device.type == InputSourceType::SILENCE) {
406                 memset(output, 0, num_samples * sizeof(*output));
407         } else {
408                 assert(bus.device.type == InputSourceType::CAPTURE_CARD ||
409                        bus.device.type == InputSourceType::ALSA_INPUT);
410                 const float *lsrc, *rsrc;
411                 unsigned lstride, rstride;
412                 float *dptr = output;
413                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[0], &lsrc, &lstride);
414                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[1], &rsrc, &rstride);
415                 for (unsigned i = 0; i < num_samples; ++i) {
416                         *dptr++ = *lsrc;
417                         *dptr++ = *rsrc;
418                         lsrc += lstride;
419                         rsrc += rstride;
420                 }
421         }
422 }
423
424 vector<DeviceSpec> AudioMixer::get_active_devices() const
425 {
426         vector<DeviceSpec> ret;
427         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
428                 const DeviceSpec device_spec{InputSourceType::CAPTURE_CARD, card_index};
429                 if (!find_audio_device(device_spec)->interesting_channels.empty()) {
430                         ret.push_back(device_spec);
431                 }
432         }
433         for (unsigned card_index = 0; card_index < MAX_ALSA_CARDS; ++card_index) {
434                 const DeviceSpec device_spec{InputSourceType::ALSA_INPUT, card_index};
435                 if (!find_audio_device(device_spec)->interesting_channels.empty()) {
436                         ret.push_back(device_spec);
437                 }
438         }
439         return ret;
440 }
441
442 namespace {
443
444 void apply_gain(float db, float last_db, vector<float> *samples)
445 {
446         if (fabs(db - last_db) < 1e-3) {
447                 // Constant over this frame.
448                 const float gain = from_db(db);
449                 for (size_t i = 0; i < samples->size(); ++i) {
450                         (*samples)[i] *= gain;
451                 }
452         } else {
453                 // We need to do a fade.
454                 unsigned num_samples = samples->size() / 2;
455                 float gain = from_db(last_db);
456                 const float gain_inc = pow(from_db(db - last_db), 1.0 / num_samples);
457                 for (size_t i = 0; i < num_samples; ++i) {
458                         (*samples)[i * 2 + 0] *= gain;
459                         (*samples)[i * 2 + 1] *= gain;
460                         gain *= gain_inc;
461                 }
462         }
463 }
464
465 }  // namespace
466
467 vector<float> AudioMixer::get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy)
468 {
469         map<DeviceSpec, vector<float>> samples_card;
470         vector<float> samples_bus;
471
472         lock_guard<timed_mutex> lock(audio_mutex);
473
474         // Pick out all the interesting channels from all the cards.
475         for (const DeviceSpec &device_spec : get_active_devices()) {
476                 AudioDevice *device = find_audio_device(device_spec);
477                 samples_card[device_spec].resize(num_samples * device->interesting_channels.size());
478                 if (device->silenced) {
479                         memset(&samples_card[device_spec][0], 0, samples_card[device_spec].size() * sizeof(float));
480                 } else {
481                         device->resampling_queue->get_output_samples(
482                                 pts,
483                                 &samples_card[device_spec][0],
484                                 num_samples,
485                                 rate_adjustment_policy);
486                 }
487         }
488
489         vector<float> samples_out, left, right;
490         samples_out.resize(num_samples * 2);
491         samples_bus.resize(num_samples * 2);
492         for (unsigned bus_index = 0; bus_index < input_mapping.buses.size(); ++bus_index) {
493                 fill_audio_bus(samples_card, input_mapping.buses[bus_index], num_samples, &samples_bus[0]);
494                 apply_eq(bus_index, &samples_bus);
495
496                 {
497                         lock_guard<mutex> lock(compressor_mutex);
498
499                         // Apply a level compressor to get the general level right.
500                         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
501                         // (or more precisely, near it, since we don't use infinite ratio),
502                         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
503                         // entirely arbitrary, but from practical tests with speech, it seems to
504                         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
505                         if (level_compressor_enabled[bus_index]) {
506                                 float threshold = 0.01f;   // -40 dBFS.
507                                 float ratio = 20.0f;
508                                 float attack_time = 0.5f;
509                                 float release_time = 20.0f;
510                                 float makeup_gain = from_db(ref_level_dbfs - (-40.0f));  // +26 dB.
511                                 level_compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
512                                 gain_staging_db[bus_index] = to_db(level_compressor[bus_index]->get_attenuation() * makeup_gain);
513                         } else {
514                                 // Just apply the gain we already had.
515                                 float db = gain_staging_db[bus_index];
516                                 float last_db = last_gain_staging_db[bus_index];
517                                 apply_gain(db, last_db, &samples_bus);
518                         }
519                         last_gain_staging_db[bus_index] = gain_staging_db[bus_index];
520
521 #if 0
522                         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
523                                 level_compressor.get_level(), to_db(level_compressor.get_level()),
524                                 level_compressor.get_attenuation(), to_db(level_compressor.get_attenuation()),
525                                 to_db(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
526 #endif
527
528                         // The real compressor.
529                         if (compressor_enabled[bus_index]) {
530                                 float threshold = from_db(compressor_threshold_dbfs[bus_index]);
531                                 float ratio = 20.0f;
532                                 float attack_time = 0.005f;
533                                 float release_time = 0.040f;
534                                 float makeup_gain = 2.0f;  // +6 dB.
535                                 compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
536                 //              compressor_att = compressor.get_attenuation();
537                         }
538                 }
539
540                 add_bus_to_master(bus_index, samples_bus, &samples_out);
541                 deinterleave_samples(samples_bus, &left, &right);
542                 measure_bus_levels(bus_index, left, right);
543         }
544
545         {
546                 lock_guard<mutex> lock(compressor_mutex);
547
548                 // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
549                 // Note that since ratio is not infinite, we could go slightly higher than this.
550                 if (limiter_enabled) {
551                         float threshold = from_db(limiter_threshold_dbfs);
552                         float ratio = 30.0f;
553                         float attack_time = 0.0f;  // Instant.
554                         float release_time = 0.020f;
555                         float makeup_gain = 1.0f;  // 0 dB.
556                         limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
557         //              limiter_att = limiter.get_attenuation();
558                 }
559
560         //      printf("limiter=%+5.1f  compressor=%+5.1f\n", to_db(limiter_att), to_db(compressor_att));
561         }
562
563         // At this point, we are most likely close to +0 LU (at least if the
564         // faders sum to 0 dB and the compressors are on), but all of our
565         // measurements have been on raw sample values, not R128 values.
566         // So we have a final makeup gain to get us to +0 LU; the gain
567         // adjustments required should be relatively small, and also, the
568         // offset shouldn't change much (only if the type of audio changes
569         // significantly). Thus, we shoot for updating this value basically
570         // “whenever we process buffers”, since the R128 calculation isn't exactly
571         // something we get out per-sample.
572         //
573         // Note that there's a feedback loop here, so we choose a very slow filter
574         // (half-time of 30 seconds).
575         double target_loudness_factor, alpha;
576         double loudness_lu = r128.loudness_M() - ref_level_lufs;
577         double current_makeup_lu = to_db(final_makeup_gain);
578         target_loudness_factor = final_makeup_gain * from_db(-loudness_lu);
579
580         // If we're outside +/- 5 LU uncorrected, we don't count it as
581         // a normal signal (probably silence) and don't change the
582         // correction factor; just apply what we already have.
583         if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
584                 alpha = 0.0;
585         } else {
586                 // Formula adapted from
587                 // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
588                 const double half_time_s = 30.0;
589                 const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
590                 alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
591         }
592
593         {
594                 lock_guard<mutex> lock(compressor_mutex);
595                 double m = final_makeup_gain;
596                 for (size_t i = 0; i < samples_out.size(); i += 2) {
597                         samples_out[i + 0] *= m;
598                         samples_out[i + 1] *= m;
599                         m += (target_loudness_factor - m) * alpha;
600                 }
601                 final_makeup_gain = m;
602         }
603
604         update_meters(samples_out);
605
606         return samples_out;
607 }
608
609 namespace {
610
611 void apply_filter_fade(StereoFilter *filter, float *data, unsigned num_samples, float cutoff_hz, float db, float last_db)
612 {
613         // A granularity of 32 samples is an okay tradeoff between speed and
614         // smoothness; recalculating the filters is pretty expensive, so it's
615         // good that we don't do this all the time.
616         static constexpr unsigned filter_granularity_samples = 32;
617
618         const float cutoff_linear = cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY;
619         if (fabs(db - last_db) < 1e-3) {
620                 // Constant over this frame.
621                 if (fabs(db) > 0.01f) {
622                         filter->render(data, num_samples, cutoff_linear, 0.5f, db / 40.0f);
623                 }
624         } else {
625                 // We need to do a fade. (Rounding up avoids division by zero.)
626                 unsigned num_blocks = (num_samples + filter_granularity_samples - 1) / filter_granularity_samples;
627                 const float inc_db_norm = (db - last_db) / 40.0f / num_blocks;
628                 float db_norm = db / 40.0f;
629                 for (size_t i = 0; i < num_samples; i += filter_granularity_samples) {
630                         size_t samples_this_block = std::min<size_t>(num_samples - i, filter_granularity_samples);
631                         filter->render(data + i * 2, samples_this_block, cutoff_linear, 0.5f, db_norm);
632                         db_norm += inc_db_norm;
633                 }
634         }
635 }
636
637 }  // namespace
638
639 void AudioMixer::apply_eq(unsigned bus_index, vector<float> *samples_bus)
640 {
641         constexpr float bass_freq_hz = 200.0f;
642         constexpr float treble_freq_hz = 4700.0f;
643
644         // Cut away everything under 120 Hz (or whatever the cutoff is);
645         // we don't need it for voice, and it will reduce headroom
646         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
647         // should be dampened.)
648         if (locut_enabled[bus_index]) {
649                 locut[bus_index].render(samples_bus->data(), samples_bus->size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
650         }
651
652         // Apply the rest of the EQ. Since we only have a simple three-band EQ,
653         // we can implement it with two shelf filters. We use a simple gain to
654         // set the mid-level filter, and then offset the low and high bands
655         // from that if we need to. (We could perhaps have folded the gain into
656         // the next part, but it's so cheap that the trouble isn't worth it.)
657         //
658         // If any part of the EQ has changed appreciably since last frame,
659         // we fade smoothly during the course of this frame.
660         const float bass_db = eq_level_db[bus_index][EQ_BAND_BASS];
661         const float mid_db = eq_level_db[bus_index][EQ_BAND_MID];
662         const float treble_db = eq_level_db[bus_index][EQ_BAND_TREBLE];
663
664         const float last_bass_db = last_eq_level_db[bus_index][EQ_BAND_BASS];
665         const float last_mid_db = last_eq_level_db[bus_index][EQ_BAND_MID];
666         const float last_treble_db = last_eq_level_db[bus_index][EQ_BAND_TREBLE];
667
668         assert(samples_bus->size() % 2 == 0);
669         const unsigned num_samples = samples_bus->size() / 2;
670
671         apply_gain(mid_db, last_mid_db, samples_bus);
672
673         apply_filter_fade(&eq[bus_index][EQ_BAND_BASS], samples_bus->data(), num_samples, bass_freq_hz, bass_db - mid_db, last_bass_db - last_mid_db);
674         apply_filter_fade(&eq[bus_index][EQ_BAND_TREBLE], samples_bus->data(), num_samples, treble_freq_hz, treble_db - mid_db, last_treble_db - last_mid_db);
675
676         last_eq_level_db[bus_index][EQ_BAND_BASS] = bass_db;
677         last_eq_level_db[bus_index][EQ_BAND_MID] = mid_db;
678         last_eq_level_db[bus_index][EQ_BAND_TREBLE] = treble_db;
679 }
680
681 void AudioMixer::add_bus_to_master(unsigned bus_index, const vector<float> &samples_bus, vector<float> *samples_out)
682 {
683         assert(samples_bus.size() == samples_out->size());
684         assert(samples_bus.size() % 2 == 0);
685         unsigned num_samples = samples_bus.size() / 2;
686         if (fabs(fader_volume_db[bus_index] - last_fader_volume_db[bus_index]) > 1e-3) {
687                 // The volume has changed; do a fade over the course of this frame.
688                 // (We might have some numerical issues here, but it seems to sound OK.)
689                 // For the purpose of fading here, the silence floor is set to -90 dB
690                 // (the fader only goes to -84).
691                 float old_volume = from_db(max<float>(last_fader_volume_db[bus_index], -90.0f));
692                 float volume = from_db(max<float>(fader_volume_db[bus_index], -90.0f));
693
694                 float volume_inc = pow(volume / old_volume, 1.0 / num_samples);
695                 volume = old_volume;
696                 if (bus_index == 0) {
697                         for (unsigned i = 0; i < num_samples; ++i) {
698                                 (*samples_out)[i * 2 + 0] = samples_bus[i * 2 + 0] * volume;
699                                 (*samples_out)[i * 2 + 1] = samples_bus[i * 2 + 1] * volume;
700                                 volume *= volume_inc;
701                         }
702                 } else {
703                         for (unsigned i = 0; i < num_samples; ++i) {
704                                 (*samples_out)[i * 2 + 0] += samples_bus[i * 2 + 0] * volume;
705                                 (*samples_out)[i * 2 + 1] += samples_bus[i * 2 + 1] * volume;
706                                 volume *= volume_inc;
707                         }
708                 }
709         } else {
710                 float volume = from_db(fader_volume_db[bus_index]);
711                 if (bus_index == 0) {
712                         for (unsigned i = 0; i < num_samples; ++i) {
713                                 (*samples_out)[i * 2 + 0] = samples_bus[i * 2 + 0] * volume;
714                                 (*samples_out)[i * 2 + 1] = samples_bus[i * 2 + 1] * volume;
715                         }
716                 } else {
717                         for (unsigned i = 0; i < num_samples; ++i) {
718                                 (*samples_out)[i * 2 + 0] += samples_bus[i * 2 + 0] * volume;
719                                 (*samples_out)[i * 2 + 1] += samples_bus[i * 2 + 1] * volume;
720                         }
721                 }
722         }
723
724         last_fader_volume_db[bus_index] = fader_volume_db[bus_index];
725 }
726
727 void AudioMixer::measure_bus_levels(unsigned bus_index, const vector<float> &left, const vector<float> &right)
728 {
729         assert(left.size() == right.size());
730         const float volume = from_db(fader_volume_db[bus_index]);
731         const float peak_levels[2] = {
732                 find_peak(left.data(), left.size()) * volume,
733                 find_peak(right.data(), right.size()) * volume
734         };
735         for (unsigned channel = 0; channel < 2; ++channel) {
736                 // Compute the current value, including hold and falloff.
737                 // The constants are borrowed from zita-mu1 by Fons Adriaensen.
738                 static constexpr float hold_sec = 0.5f;
739                 static constexpr float falloff_db_sec = 15.0f;  // dB/sec falloff after hold.
740                 float current_peak;
741                 PeakHistory &history = peak_history[bus_index][channel];
742                 history.historic_peak = max(history.historic_peak, peak_levels[channel]);
743                 if (history.age_seconds < hold_sec) {
744                         current_peak = history.last_peak;
745                 } else {
746                         current_peak = history.last_peak * from_db(-falloff_db_sec * (history.age_seconds - hold_sec));
747                 }
748
749                 // See if we have a new peak to replace the old (possibly falling) one.
750                 if (peak_levels[channel] > current_peak) {
751                         history.last_peak = peak_levels[channel];
752                         history.age_seconds = 0.0f;  // Not 100% correct, but more than good enough given our frame sizes.
753                         current_peak = peak_levels[channel];
754                 } else {
755                         history.age_seconds += float(left.size()) / OUTPUT_FREQUENCY;
756                 }
757                 history.current_level = peak_levels[channel];
758                 history.current_peak = current_peak;
759         }
760 }
761
762 void AudioMixer::update_meters(const vector<float> &samples)
763 {
764         // Upsample 4x to find interpolated peak.
765         peak_resampler.inp_data = const_cast<float *>(samples.data());
766         peak_resampler.inp_count = samples.size() / 2;
767
768         vector<float> interpolated_samples;
769         interpolated_samples.resize(samples.size());
770         {
771                 lock_guard<mutex> lock(audio_measure_mutex);
772
773                 while (peak_resampler.inp_count > 0) {  // About four iterations.
774                         peak_resampler.out_data = &interpolated_samples[0];
775                         peak_resampler.out_count = interpolated_samples.size() / 2;
776                         peak_resampler.process();
777                         size_t out_stereo_samples = interpolated_samples.size() / 2 - peak_resampler.out_count;
778                         peak = max<float>(peak, find_peak(interpolated_samples.data(), out_stereo_samples * 2));
779                         peak_resampler.out_data = nullptr;
780                 }
781         }
782
783         // Find R128 levels and L/R correlation.
784         vector<float> left, right;
785         deinterleave_samples(samples, &left, &right);
786         float *ptrs[] = { left.data(), right.data() };
787         {
788                 lock_guard<mutex> lock(audio_measure_mutex);
789                 r128.process(left.size(), ptrs);
790                 correlation.process_samples(samples);
791         }
792
793         send_audio_level_callback();
794 }
795
796 void AudioMixer::reset_meters()
797 {
798         lock_guard<mutex> lock(audio_measure_mutex);
799         peak_resampler.reset();
800         peak = 0.0f;
801         r128.reset();
802         r128.integr_start();
803         correlation.reset();
804 }
805
806 void AudioMixer::send_audio_level_callback()
807 {
808         if (audio_level_callback == nullptr) {
809                 return;
810         }
811
812         lock_guard<mutex> lock(audio_measure_mutex);
813         double loudness_s = r128.loudness_S();
814         double loudness_i = r128.integrated();
815         double loudness_range_low = r128.range_min();
816         double loudness_range_high = r128.range_max();
817
818         vector<BusLevel> bus_levels;
819         bus_levels.resize(input_mapping.buses.size());
820         {
821                 lock_guard<mutex> lock(compressor_mutex);
822                 for (unsigned bus_index = 0; bus_index < bus_levels.size(); ++bus_index) {
823                         bus_levels[bus_index].current_level_dbfs[0] = to_db(peak_history[bus_index][0].current_level);
824                         bus_levels[bus_index].current_level_dbfs[1] = to_db(peak_history[bus_index][1].current_level);
825                         bus_levels[bus_index].peak_level_dbfs[0] = to_db(peak_history[bus_index][0].current_peak);
826                         bus_levels[bus_index].peak_level_dbfs[1] = to_db(peak_history[bus_index][1].current_peak);
827                         bus_levels[bus_index].historic_peak_dbfs = to_db(
828                                 max(peak_history[bus_index][0].historic_peak,
829                                     peak_history[bus_index][1].historic_peak));
830                         bus_levels[bus_index].gain_staging_db = gain_staging_db[bus_index];
831                         if (compressor_enabled[bus_index]) {
832                                 bus_levels[bus_index].compressor_attenuation_db = -to_db(compressor[bus_index]->get_attenuation());
833                         } else {
834                                 bus_levels[bus_index].compressor_attenuation_db = 0.0;
835                         }
836                 }
837         }
838
839         audio_level_callback(loudness_s, to_db(peak), bus_levels,
840                 loudness_i, loudness_range_low, loudness_range_high,
841                 to_db(final_makeup_gain),
842                 correlation.get_correlation());
843 }
844
845 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices()
846 {
847         lock_guard<timed_mutex> lock(audio_mutex);
848
849         map<DeviceSpec, DeviceInfo> devices;
850         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
851                 const DeviceSpec spec{ InputSourceType::CAPTURE_CARD, card_index };
852                 const AudioDevice *device = &video_cards[card_index];
853                 DeviceInfo info;
854                 info.display_name = device->display_name;
855                 info.num_channels = 8;
856                 devices.insert(make_pair(spec, info));
857         }
858         vector<ALSAPool::Device> available_alsa_devices = alsa_pool.get_devices();
859         for (unsigned card_index = 0; card_index < available_alsa_devices.size(); ++card_index) {
860                 const DeviceSpec spec{ InputSourceType::ALSA_INPUT, card_index };
861                 const ALSAPool::Device &device = available_alsa_devices[card_index];
862                 DeviceInfo info;
863                 info.display_name = device.display_name();
864                 info.num_channels = device.num_channels;
865                 info.alsa_name = device.name;
866                 info.alsa_info = device.info;
867                 info.alsa_address = device.address;
868                 devices.insert(make_pair(spec, info));
869         }
870         return devices;
871 }
872
873 void AudioMixer::set_display_name(DeviceSpec device_spec, const string &name)
874 {
875         AudioDevice *device = find_audio_device(device_spec);
876
877         lock_guard<timed_mutex> lock(audio_mutex);
878         device->display_name = name;
879 }
880
881 void AudioMixer::serialize_device(DeviceSpec device_spec, DeviceSpecProto *device_spec_proto)
882 {
883         lock_guard<timed_mutex> lock(audio_mutex);
884         switch (device_spec.type) {
885                 case InputSourceType::SILENCE:
886                         device_spec_proto->set_type(DeviceSpecProto::SILENCE);
887                         break;
888                 case InputSourceType::CAPTURE_CARD:
889                         device_spec_proto->set_type(DeviceSpecProto::CAPTURE_CARD);
890                         device_spec_proto->set_index(device_spec.index);
891                         device_spec_proto->set_display_name(video_cards[device_spec.index].display_name);
892                         break;
893                 case InputSourceType::ALSA_INPUT:
894                         alsa_pool.serialize_device(device_spec.index, device_spec_proto);
895                         break;
896         }
897 }
898
899 void AudioMixer::set_simple_input(unsigned card_index)
900 {
901         InputMapping new_input_mapping;
902         InputMapping::Bus input;
903         input.name = "Main";
904         input.device.type = InputSourceType::CAPTURE_CARD;
905         input.device.index = card_index;
906         input.source_channel[0] = 0;
907         input.source_channel[1] = 1;
908
909         new_input_mapping.buses.push_back(input);
910
911         lock_guard<timed_mutex> lock(audio_mutex);
912         current_mapping_mode = MappingMode::SIMPLE;
913         set_input_mapping_lock_held(new_input_mapping);
914         fader_volume_db[0] = 0.0f;
915 }
916
917 unsigned AudioMixer::get_simple_input() const
918 {
919         lock_guard<timed_mutex> lock(audio_mutex);
920         if (input_mapping.buses.size() == 1 &&
921             input_mapping.buses[0].device.type == InputSourceType::CAPTURE_CARD &&
922             input_mapping.buses[0].source_channel[0] == 0 &&
923             input_mapping.buses[0].source_channel[1] == 1) {
924                 return input_mapping.buses[0].device.index;
925         } else {
926                 return numeric_limits<unsigned>::max();
927         }
928 }
929
930 void AudioMixer::set_input_mapping(const InputMapping &new_input_mapping)
931 {
932         lock_guard<timed_mutex> lock(audio_mutex);
933         set_input_mapping_lock_held(new_input_mapping);
934         current_mapping_mode = MappingMode::MULTICHANNEL;
935 }
936
937 AudioMixer::MappingMode AudioMixer::get_mapping_mode() const
938 {
939         lock_guard<timed_mutex> lock(audio_mutex);
940         return current_mapping_mode;
941 }
942
943 void AudioMixer::set_input_mapping_lock_held(const InputMapping &new_input_mapping)
944 {
945         map<DeviceSpec, set<unsigned>> interesting_channels;
946         for (const InputMapping::Bus &bus : new_input_mapping.buses) {
947                 if (bus.device.type == InputSourceType::CAPTURE_CARD ||
948                     bus.device.type == InputSourceType::ALSA_INPUT) {
949                         for (unsigned channel = 0; channel < 2; ++channel) {
950                                 if (bus.source_channel[channel] != -1) {
951                                         interesting_channels[bus.device].insert(bus.source_channel[channel]);
952                                 }
953                         }
954                 }
955         }
956
957         // Reset resamplers for all cards that don't have the exact same state as before.
958         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
959                 const DeviceSpec device_spec{InputSourceType::CAPTURE_CARD, card_index};
960                 AudioDevice *device = find_audio_device(device_spec);
961                 if (device->interesting_channels != interesting_channels[device_spec]) {
962                         device->interesting_channels = interesting_channels[device_spec];
963                         reset_resampler_mutex_held(device_spec);
964                 }
965         }
966         for (unsigned card_index = 0; card_index < MAX_ALSA_CARDS; ++card_index) {
967                 const DeviceSpec device_spec{InputSourceType::ALSA_INPUT, card_index};
968                 AudioDevice *device = find_audio_device(device_spec);
969                 if (interesting_channels[device_spec].empty()) {
970                         alsa_pool.release_device(card_index);
971                 } else {
972                         alsa_pool.hold_device(card_index);
973                 }
974                 if (device->interesting_channels != interesting_channels[device_spec]) {
975                         device->interesting_channels = interesting_channels[device_spec];
976                         alsa_pool.reset_device(device_spec.index);
977                         reset_resampler_mutex_held(device_spec);
978                 }
979         }
980
981         input_mapping = new_input_mapping;
982 }
983
984 InputMapping AudioMixer::get_input_mapping() const
985 {
986         lock_guard<timed_mutex> lock(audio_mutex);
987         return input_mapping;
988 }
989
990 void AudioMixer::reset_peak(unsigned bus_index)
991 {
992         lock_guard<timed_mutex> lock(audio_mutex);
993         for (unsigned channel = 0; channel < 2; ++channel) {
994                 PeakHistory &history = peak_history[bus_index][channel];
995                 history.current_level = 0.0f;
996                 history.historic_peak = 0.0f;
997                 history.current_peak = 0.0f;
998                 history.last_peak = 0.0f;
999                 history.age_seconds = 0.0f;
1000         }
1001 }
1002
1003 AudioMixer *global_audio_mixer = nullptr;