]> git.sesse.net Git - nageru/blob - audio_mixer.cpp
Add support for ALSA inputs to the mixer.
[nageru] / audio_mixer.cpp
1 #include "audio_mixer.h"
2
3 #include <assert.h>
4 #include <endian.h>
5 #include <bmusb/bmusb.h>
6 #include <stdio.h>
7 #include <endian.h>
8 #include <cmath>
9
10 #include "db.h"
11 #include "flags.h"
12 #include "timebase.h"
13
14 using namespace bmusb;
15 using namespace std;
16 using namespace std::placeholders;
17
18 namespace {
19
20 // TODO: If these prove to be a bottleneck, they can be SSSE3-optimized
21 // (usually including multiple channels at a time).
22
23 void convert_fixed16_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
24                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
25                              size_t num_samples)
26 {
27         assert(in_channel < in_num_channels);
28         assert(out_channel < out_num_channels);
29         src += in_channel * 2;
30         dst += out_channel;
31
32         for (size_t i = 0; i < num_samples; ++i) {
33                 int16_t s = le16toh(*(int16_t *)src);
34                 *dst = s * (1.0f / 32768.0f);
35
36                 src += 2 * in_num_channels;
37                 dst += out_num_channels;
38         }
39 }
40
41 void convert_fixed24_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
42                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
43                              size_t num_samples)
44 {
45         assert(in_channel < in_num_channels);
46         assert(out_channel < out_num_channels);
47         src += in_channel * 3;
48         dst += out_channel;
49
50         for (size_t i = 0; i < num_samples; ++i) {
51                 uint32_t s1 = src[0];
52                 uint32_t s2 = src[1];
53                 uint32_t s3 = src[2];
54                 uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
55                 *dst = int(s) * (1.0f / 2147483648.0f);
56
57                 src += 3 * in_num_channels;
58                 dst += out_num_channels;
59         }
60 }
61
62 void convert_fixed32_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
63                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
64                              size_t num_samples)
65 {
66         assert(in_channel < in_num_channels);
67         assert(out_channel < out_num_channels);
68         src += in_channel * 4;
69         dst += out_channel;
70
71         for (size_t i = 0; i < num_samples; ++i) {
72                 int32_t s = le32toh(*(int32_t *)src);
73                 *dst = s * (1.0f / 2147483648.0f);
74
75                 src += 4 * in_num_channels;
76                 dst += out_num_channels;
77         }
78 }
79
80 }  // namespace
81
82 AudioMixer::AudioMixer(unsigned num_cards)
83         : num_cards(num_cards),
84           level_compressor(OUTPUT_FREQUENCY),
85           limiter(OUTPUT_FREQUENCY),
86           compressor(OUTPUT_FREQUENCY)
87 {
88         locut.init(FILTER_HPF, 2);
89
90         set_locut_enabled(global_flags.locut_enabled);
91         set_gain_staging_db(global_flags.initial_gain_staging_db);
92         set_gain_staging_auto(global_flags.gain_staging_auto);
93         set_compressor_enabled(global_flags.compressor_enabled);
94         set_limiter_enabled(global_flags.limiter_enabled);
95         set_final_makeup_gain_auto(global_flags.final_makeup_gain_auto);
96
97         // Generate a very simple, default input mapping.
98         InputMapping::Bus input;
99         input.name = "Main";
100         input.device.type = InputSourceType::CAPTURE_CARD;
101         input.device.index = 0;
102         input.source_channel[0] = 0;
103         input.source_channel[1] = 1;
104
105         InputMapping new_input_mapping;
106         new_input_mapping.buses.push_back(input);
107         set_input_mapping(new_input_mapping);
108
109         // Look for ALSA cards.
110         available_alsa_cards = ALSAInput::enumerate_devices();
111 }
112
113 AudioMixer::~AudioMixer()
114 {
115         for (unsigned card_index = 0; card_index < available_alsa_cards.size(); ++card_index) {
116                 const AudioDevice &device = alsa_inputs[card_index];
117                 if (device.alsa_device != nullptr) {
118                         device.alsa_device->stop_capture_thread();
119                 }
120         }
121 }
122
123
124 void AudioMixer::reset_resampler(DeviceSpec device_spec)
125 {
126         lock_guard<mutex> lock(audio_mutex);
127         reset_resampler_mutex_held(device_spec);
128 }
129
130 void AudioMixer::reset_resampler_mutex_held(DeviceSpec device_spec)
131 {
132         AudioDevice *device = find_audio_device(device_spec);
133
134         if (device->interesting_channels.empty()) {
135                 device->resampling_queue.reset();
136         } else {
137                 // TODO: ResamplingQueue should probably take the full device spec.
138                 // (It's only used for console output, though.)
139                 device->resampling_queue.reset(new ResamplingQueue(device_spec.index, device->capture_frequency, OUTPUT_FREQUENCY, device->interesting_channels.size()));
140         }
141         device->next_local_pts = 0;
142 }
143
144 void AudioMixer::reset_alsa_mutex_held(DeviceSpec device_spec)
145 {
146         assert(device_spec.type == InputSourceType::ALSA_INPUT);
147         unsigned card_index = device_spec.index;
148         AudioDevice *device = find_audio_device(device_spec);
149
150         if (device->alsa_device != nullptr) {
151                 device->alsa_device->stop_capture_thread();
152         }
153         if (device->interesting_channels.empty()) {
154                 device->alsa_device.reset();
155         } else {
156                 device->alsa_device.reset(new ALSAInput(available_alsa_cards[card_index].address.c_str(), OUTPUT_FREQUENCY, 2, bind(&AudioMixer::add_audio, this, device_spec, _1, _2, _3, _4)));
157                 device->capture_frequency = device->alsa_device->get_sample_rate();
158                 device->alsa_device->start_capture_thread();
159         }
160 }
161
162 void AudioMixer::add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, AudioFormat audio_format, int64_t frame_length)
163 {
164         AudioDevice *device = find_audio_device(device_spec);
165
166         lock_guard<mutex> lock(audio_mutex);
167         if (device->resampling_queue == nullptr) {
168                 // No buses use this device; throw it away.
169                 return;
170         }
171
172         unsigned num_channels = device->interesting_channels.size();
173         assert(num_channels > 0);
174
175         // Convert the audio to fp32.
176         vector<float> audio;
177         audio.resize(num_samples * num_channels);
178         unsigned channel_index = 0;
179         for (auto channel_it = device->interesting_channels.cbegin(); channel_it != device->interesting_channels.end(); ++channel_it, ++channel_index) {
180                 switch (audio_format.bits_per_sample) {
181                 case 0:
182                         assert(num_samples == 0);
183                         break;
184                 case 16:
185                         convert_fixed16_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
186                         break;
187                 case 24:
188                         convert_fixed24_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
189                         break;
190                 case 32:
191                         convert_fixed32_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
192                         break;
193                 default:
194                         fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
195                         assert(false);
196                 }
197         }
198
199         // Now add it.
200         int64_t local_pts = device->next_local_pts;
201         device->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
202         device->next_local_pts = local_pts + frame_length;
203 }
204
205 void AudioMixer::add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length)
206 {
207         AudioDevice *device = find_audio_device(device_spec);
208
209         lock_guard<mutex> lock(audio_mutex);
210         if (device->resampling_queue == nullptr) {
211                 // No buses use this device; throw it away.
212                 return;
213         }
214
215         unsigned num_channels = device->interesting_channels.size();
216         assert(num_channels > 0);
217
218         vector<float> silence(samples_per_frame * num_channels, 0.0f);
219         for (unsigned i = 0; i < num_frames; ++i) {
220                 device->resampling_queue->add_input_samples(device->next_local_pts / double(TIMEBASE), silence.data(), samples_per_frame);
221                 // Note that if the format changed in the meantime, we have
222                 // no way of detecting that; we just have to assume the frame length
223                 // is always the same.
224                 device->next_local_pts += frame_length;
225         }
226 }
227
228 AudioMixer::AudioDevice *AudioMixer::find_audio_device(DeviceSpec device)
229 {
230         switch (device.type) {
231         case InputSourceType::CAPTURE_CARD:
232                 return &video_cards[device.index];
233         case InputSourceType::ALSA_INPUT:
234                 return &alsa_inputs[device.index];
235         case InputSourceType::SILENCE:
236         default:
237                 assert(false);
238         }
239         return nullptr;
240 }
241
242 // Get a pointer to the given channel from the given device.
243 // The channel must be picked out earlier and resampled.
244 void AudioMixer::find_sample_src_from_device(const map<DeviceSpec, vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride)
245 {
246         static float zero = 0.0f;
247         if (source_channel == -1 || device_spec.type == InputSourceType::SILENCE) {
248                 *srcptr = &zero;
249                 *stride = 0;
250                 return;
251         }
252         AudioDevice *device = find_audio_device(device_spec);
253         assert(device->interesting_channels.count(source_channel) != 0);
254         unsigned channel_index = 0;
255         for (int channel : device->interesting_channels) {
256                 if (channel == source_channel) break;
257                 ++channel_index;
258         }
259         assert(channel_index < device->interesting_channels.size());
260         const auto it = samples_card.find(device_spec);
261         assert(it != samples_card.end());
262         *srcptr = &(it->second)[channel_index];
263         *stride = device->interesting_channels.size();
264 }
265
266 // TODO: Can be SSSE3-optimized if need be.
267 void AudioMixer::fill_audio_bus(const map<DeviceSpec, vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output)
268 {
269         if (bus.device.type == InputSourceType::SILENCE) {
270                 memset(output, 0, num_samples * sizeof(*output));
271         } else {
272                 assert(bus.device.type == InputSourceType::CAPTURE_CARD ||
273                        bus.device.type == InputSourceType::ALSA_INPUT);
274                 const float *lsrc, *rsrc;
275                 unsigned lstride, rstride;
276                 float *dptr = output;
277                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[0], &lsrc, &lstride);
278                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[1], &rsrc, &rstride);
279                 for (unsigned i = 0; i < num_samples; ++i) {
280                         *dptr++ = *lsrc;
281                         *dptr++ = *rsrc;
282                         lsrc += lstride;
283                         rsrc += rstride;
284                 }
285         }
286 }
287
288 vector<float> AudioMixer::get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy)
289 {
290         map<DeviceSpec, vector<float>> samples_card;
291         vector<float> samples_bus;
292
293         lock_guard<mutex> lock(audio_mutex);
294
295         // Pick out all the interesting channels from all the cards.
296         // TODO: If the card has been hotswapped, the number of channels
297         // might have changed; if so, we need to do some sort of remapping
298         // to silence.
299         for (const auto &spec_and_info : get_devices_mutex_held()) {
300                 const DeviceSpec &device_spec = spec_and_info.first;
301                 AudioDevice *device = find_audio_device(device_spec);
302                 if (!device->interesting_channels.empty()) {
303                         samples_card[device_spec].resize(num_samples * device->interesting_channels.size());
304                         device->resampling_queue->get_output_samples(
305                                 pts,
306                                 &samples_card[device_spec][0],
307                                 num_samples,
308                                 rate_adjustment_policy);
309                 }
310         }
311
312         // TODO: Move lo-cut etc. into each bus.
313         vector<float> samples_out;
314         samples_out.resize(num_samples * 2);
315         samples_bus.resize(num_samples * 2);
316         for (unsigned bus_index = 0; bus_index < input_mapping.buses.size(); ++bus_index) {
317                 fill_audio_bus(samples_card, input_mapping.buses[bus_index], num_samples, &samples_bus[0]);
318
319                 float volume = from_db(fader_volume_db[bus_index]);
320                 if (bus_index == 0) {
321                         for (unsigned i = 0; i < num_samples * 2; ++i) {
322                                 samples_out[i] = samples_bus[i] * volume;
323                         }
324                 } else {
325                         for (unsigned i = 0; i < num_samples * 2; ++i) {
326                                 samples_out[i] += samples_bus[i] * volume;
327                         }
328                 }
329         }
330
331         // Cut away everything under 120 Hz (or whatever the cutoff is);
332         // we don't need it for voice, and it will reduce headroom
333         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
334         // should be dampened.)
335         if (locut_enabled) {
336                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
337         }
338
339         {
340                 lock_guard<mutex> lock(compressor_mutex);
341
342                 // Apply a level compressor to get the general level right.
343                 // Basically, if it's over about -40 dBFS, we squeeze it down to that level
344                 // (or more precisely, near it, since we don't use infinite ratio),
345                 // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
346                 // entirely arbitrary, but from practical tests with speech, it seems to
347                 // put ut around -23 LUFS, so it's a reasonable starting point for later use.
348                 {
349                         if (level_compressor_enabled) {
350                                 float threshold = 0.01f;   // -40 dBFS.
351                                 float ratio = 20.0f;
352                                 float attack_time = 0.5f;
353                                 float release_time = 20.0f;
354                                 float makeup_gain = from_db(ref_level_dbfs - (-40.0f));  // +26 dB.
355                                 level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
356                                 gain_staging_db = to_db(level_compressor.get_attenuation() * makeup_gain);
357                         } else {
358                                 // Just apply the gain we already had.
359                                 float g = from_db(gain_staging_db);
360                                 for (size_t i = 0; i < samples_out.size(); ++i) {
361                                         samples_out[i] *= g;
362                                 }
363                         }
364                 }
365
366         #if 0
367                 printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
368                         level_compressor.get_level(), to_db(level_compressor.get_level()),
369                         level_compressor.get_attenuation(), to_db(level_compressor.get_attenuation()),
370                         to_db(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
371         #endif
372
373         //      float limiter_att, compressor_att;
374
375                 // The real compressor.
376                 if (compressor_enabled) {
377                         float threshold = from_db(compressor_threshold_dbfs);
378                         float ratio = 20.0f;
379                         float attack_time = 0.005f;
380                         float release_time = 0.040f;
381                         float makeup_gain = 2.0f;  // +6 dB.
382                         compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
383         //              compressor_att = compressor.get_attenuation();
384                 }
385
386                 // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
387                 // Note that since ratio is not infinite, we could go slightly higher than this.
388                 if (limiter_enabled) {
389                         float threshold = from_db(limiter_threshold_dbfs);
390                         float ratio = 30.0f;
391                         float attack_time = 0.0f;  // Instant.
392                         float release_time = 0.020f;
393                         float makeup_gain = 1.0f;  // 0 dB.
394                         limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
395         //              limiter_att = limiter.get_attenuation();
396                 }
397
398         //      printf("limiter=%+5.1f  compressor=%+5.1f\n", to_db(limiter_att), to_db(compressor_att));
399         }
400
401         // At this point, we are most likely close to +0 LU, but all of our
402         // measurements have been on raw sample values, not R128 values.
403         // So we have a final makeup gain to get us to +0 LU; the gain
404         // adjustments required should be relatively small, and also, the
405         // offset shouldn't change much (only if the type of audio changes
406         // significantly). Thus, we shoot for updating this value basically
407         // “whenever we process buffers”, since the R128 calculation isn't exactly
408         // something we get out per-sample.
409         //
410         // Note that there's a feedback loop here, so we choose a very slow filter
411         // (half-time of 30 seconds).
412         double target_loudness_factor, alpha;
413         double loudness_lu = loudness_lufs - ref_level_lufs;
414         double current_makeup_lu = to_db(final_makeup_gain);
415         target_loudness_factor = final_makeup_gain * from_db(-loudness_lu);
416
417         // If we're outside +/- 5 LU uncorrected, we don't count it as
418         // a normal signal (probably silence) and don't change the
419         // correction factor; just apply what we already have.
420         if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
421                 alpha = 0.0;
422         } else {
423                 // Formula adapted from
424                 // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
425                 const double half_time_s = 30.0;
426                 const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
427                 alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
428         }
429
430         {
431                 lock_guard<mutex> lock(compressor_mutex);
432                 double m = final_makeup_gain;
433                 for (size_t i = 0; i < samples_out.size(); i += 2) {
434                         samples_out[i + 0] *= m;
435                         samples_out[i + 1] *= m;
436                         m += (target_loudness_factor - m) * alpha;
437                 }
438                 final_makeup_gain = m;
439         }
440
441         return samples_out;
442 }
443
444 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices() const
445 {
446         lock_guard<mutex> lock(audio_mutex);
447         return get_devices_mutex_held();
448 }
449
450 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices_mutex_held() const
451 {
452         map<DeviceSpec, DeviceInfo> devices;
453         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
454                 const DeviceSpec spec{ InputSourceType::CAPTURE_CARD, card_index };
455                 const AudioDevice *device = &video_cards[card_index];
456                 DeviceInfo info;
457                 info.name = device->name;
458                 info.num_channels = 8;  // FIXME: This is wrong for fake cards.
459                 devices.insert(make_pair(spec, info));
460         }
461         for (unsigned card_index = 0; card_index < available_alsa_cards.size(); ++card_index) {
462                 const DeviceSpec spec{ InputSourceType::ALSA_INPUT, card_index };
463                 const ALSAInput::Device &device = available_alsa_cards[card_index];
464                 DeviceInfo info;
465                 info.name = device.name + " (" + device.info + ")";
466                 info.num_channels = device.num_channels;
467                 devices.insert(make_pair(spec, info));
468         }
469         return devices;
470 }
471
472 void AudioMixer::set_name(DeviceSpec device_spec, const string &name)
473 {
474         AudioDevice *device = find_audio_device(device_spec);
475
476         lock_guard<mutex> lock(audio_mutex);
477         device->name = name;
478 }
479
480 void AudioMixer::set_input_mapping(const InputMapping &new_input_mapping)
481 {
482         lock_guard<mutex> lock(audio_mutex);
483
484         map<DeviceSpec, set<unsigned>> interesting_channels;
485         for (const InputMapping::Bus &bus : new_input_mapping.buses) {
486                 if (bus.device.type == InputSourceType::CAPTURE_CARD ||
487                     bus.device.type == InputSourceType::ALSA_INPUT) {
488                         for (unsigned channel = 0; channel < 2; ++channel) {
489                                 if (bus.source_channel[channel] != -1) {
490                                         interesting_channels[bus.device].insert(bus.source_channel[channel]);
491                                 }
492                         }
493                 }
494         }
495
496         // Reset resamplers for all cards that don't have the exact same state as before.
497         for (const auto &spec_and_info : get_devices_mutex_held()) {
498                 const DeviceSpec &device_spec = spec_and_info.first;
499                 AudioDevice *device = find_audio_device(device_spec);
500                 if (device->interesting_channels != interesting_channels[device_spec]) {
501                         device->interesting_channels = interesting_channels[device_spec];
502                         if (device_spec.type == InputSourceType::ALSA_INPUT) {
503                                 reset_alsa_mutex_held(device_spec);
504                         }
505                         reset_resampler_mutex_held(device_spec);
506                 }
507         }
508
509         input_mapping = new_input_mapping;
510 }
511
512 InputMapping AudioMixer::get_input_mapping() const
513 {
514         lock_guard<mutex> lock(audio_mutex);
515         return input_mapping;
516 }