]> git.sesse.net Git - nageru/blob - audio_mixer.cpp
Prepare for inputs of another frequency than the capture frequency.
[nageru] / audio_mixer.cpp
1 #include "audio_mixer.h"
2
3 #include <assert.h>
4 #include <endian.h>
5 #include <bmusb/bmusb.h>
6 #include <stdio.h>
7 #include <endian.h>
8 #include <cmath>
9
10 #include "db.h"
11 #include "flags.h"
12 #include "timebase.h"
13
14 using namespace bmusb;
15 using namespace std;
16
17 namespace {
18
19 // TODO: If these prove to be a bottleneck, they can be SSSE3-optimized
20 // (usually including multiple channels at a time).
21
22 void convert_fixed16_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
23                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
24                              size_t num_samples)
25 {
26         assert(in_channel < in_num_channels);
27         assert(out_channel < out_num_channels);
28         src += in_channel * 2;
29         dst += out_channel;
30
31         for (size_t i = 0; i < num_samples; ++i) {
32                 int16_t s = le16toh(*(int16_t *)src);
33                 *dst = s * (1.0f / 32768.0f);
34
35                 src += 2 * in_num_channels;
36                 dst += out_num_channels;
37         }
38 }
39
40 void convert_fixed24_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
41                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
42                              size_t num_samples)
43 {
44         assert(in_channel < in_num_channels);
45         assert(out_channel < out_num_channels);
46         src += in_channel * 3;
47         dst += out_channel;
48
49         for (size_t i = 0; i < num_samples; ++i) {
50                 uint32_t s1 = src[0];
51                 uint32_t s2 = src[1];
52                 uint32_t s3 = src[2];
53                 uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
54                 *dst = int(s) * (1.0f / 2147483648.0f);
55
56                 src += 3 * in_num_channels;
57                 dst += out_num_channels;
58         }
59 }
60
61 void convert_fixed32_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
62                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
63                              size_t num_samples)
64 {
65         assert(in_channel < in_num_channels);
66         assert(out_channel < out_num_channels);
67         src += in_channel * 4;
68         dst += out_channel;
69
70         for (size_t i = 0; i < num_samples; ++i) {
71                 int32_t s = le32toh(*(int32_t *)src);
72                 *dst = s * (1.0f / 2147483648.0f);
73
74                 src += 4 * in_num_channels;
75                 dst += out_num_channels;
76         }
77 }
78
79 }  // namespace
80
81 AudioMixer::AudioMixer(unsigned num_cards)
82         : num_cards(num_cards),
83           level_compressor(OUTPUT_FREQUENCY),
84           limiter(OUTPUT_FREQUENCY),
85           compressor(OUTPUT_FREQUENCY)
86 {
87         locut.init(FILTER_HPF, 2);
88
89         set_locut_enabled(global_flags.locut_enabled);
90         set_gain_staging_db(global_flags.initial_gain_staging_db);
91         set_gain_staging_auto(global_flags.gain_staging_auto);
92         set_compressor_enabled(global_flags.compressor_enabled);
93         set_limiter_enabled(global_flags.limiter_enabled);
94         set_final_makeup_gain_auto(global_flags.final_makeup_gain_auto);
95
96         // Generate a very simple, default input mapping.
97         InputMapping::Bus input;
98         input.name = "Main";
99         input.device.type = InputSourceType::CAPTURE_CARD;
100         input.device.index = 0;
101         input.source_channel[0] = 0;
102         input.source_channel[1] = 1;
103
104         InputMapping new_input_mapping;
105         new_input_mapping.buses.push_back(input);
106         set_input_mapping(new_input_mapping);
107 }
108
109 void AudioMixer::reset_device(DeviceSpec device_spec)
110 {
111         lock_guard<mutex> lock(audio_mutex);
112         reset_device_mutex_held(device_spec);
113 }
114
115 void AudioMixer::reset_device_mutex_held(DeviceSpec device_spec)
116 {
117         AudioDevice *device = find_audio_device(device_spec);
118         if (device->interesting_channels.empty()) {
119                 device->resampling_queue.reset();
120         } else {
121                 // TODO: ResamplingQueue should probably take the full device spec.
122                 // (It's only used for console output, though.)
123                 device->resampling_queue.reset(new ResamplingQueue(device_spec.index, device->capture_frequency, OUTPUT_FREQUENCY, device->interesting_channels.size()));
124         }
125         device->next_local_pts = 0;
126 }
127
128 void AudioMixer::add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, AudioFormat audio_format, int64_t frame_length)
129 {
130         AudioDevice *device = find_audio_device(device_spec);
131
132         lock_guard<mutex> lock(audio_mutex);
133         if (device->resampling_queue == nullptr) {
134                 // No buses use this device; throw it away.
135                 return;
136         }
137
138         unsigned num_channels = device->interesting_channels.size();
139         assert(num_channels > 0);
140
141         // Convert the audio to fp32.
142         vector<float> audio;
143         audio.resize(num_samples * num_channels);
144         unsigned channel_index = 0;
145         for (auto channel_it = device->interesting_channels.cbegin(); channel_it != device->interesting_channels.end(); ++channel_it, ++channel_index) {
146                 switch (audio_format.bits_per_sample) {
147                 case 0:
148                         assert(num_samples == 0);
149                         break;
150                 case 16:
151                         convert_fixed16_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
152                         break;
153                 case 24:
154                         convert_fixed24_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
155                         break;
156                 case 32:
157                         convert_fixed32_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
158                         break;
159                 default:
160                         fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
161                         assert(false);
162                 }
163         }
164
165         // Now add it.
166         int64_t local_pts = device->next_local_pts;
167         device->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
168         device->next_local_pts = local_pts + frame_length;
169 }
170
171 void AudioMixer::add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length)
172 {
173         AudioDevice *device = find_audio_device(device_spec);
174
175         lock_guard<mutex> lock(audio_mutex);
176         if (device->resampling_queue == nullptr) {
177                 // No buses use this device; throw it away.
178                 return;
179         }
180
181         unsigned num_channels = device->interesting_channels.size();
182         assert(num_channels > 0);
183
184         vector<float> silence(samples_per_frame * num_channels, 0.0f);
185         for (unsigned i = 0; i < num_frames; ++i) {
186                 device->resampling_queue->add_input_samples(device->next_local_pts / double(TIMEBASE), silence.data(), samples_per_frame);
187                 // Note that if the format changed in the meantime, we have
188                 // no way of detecting that; we just have to assume the frame length
189                 // is always the same.
190                 device->next_local_pts += frame_length;
191         }
192 }
193
194 AudioMixer::AudioDevice *AudioMixer::find_audio_device(DeviceSpec device)
195 {
196         switch (device.type) {
197         case InputSourceType::CAPTURE_CARD:
198                 return &cards[device.index];
199                 break;
200         case InputSourceType::SILENCE:
201         default:
202                 assert(false);
203         }
204         return nullptr;
205 }
206
207 void AudioMixer::find_sample_src_from_device(const vector<float> *samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride)
208 {
209         static float zero = 0.0f;
210         if (source_channel == -1 || device_spec.type == InputSourceType::SILENCE) {
211                 *srcptr = &zero;
212                 *stride = 0;
213                 return;
214         }
215         AudioDevice *device = find_audio_device(device_spec);
216         unsigned channel_index = 0;
217         for (int channel : device->interesting_channels) {
218                 if (channel == source_channel) break;
219                 ++channel_index;
220         }
221         assert(channel_index < device->interesting_channels.size());
222         *srcptr = &samples_card[device_spec.index][channel_index];
223         *stride = device->interesting_channels.size();
224 }
225
226 // TODO: Can be SSSE3-optimized if need be.
227 void AudioMixer::fill_audio_bus(const vector<float> *samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output)
228 {
229         if (bus.device.type == InputSourceType::SILENCE) {
230                 memset(output, 0, num_samples * sizeof(*output));
231         } else {
232                 assert(bus.device.type == InputSourceType::CAPTURE_CARD);
233                 const float *lsrc, *rsrc;
234                 unsigned lstride, rstride;
235                 float *dptr = output;
236                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[0], &lsrc, &lstride);
237                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[1], &rsrc, &rstride);
238                 for (unsigned i = 0; i < num_samples; ++i) {
239                         *dptr++ = *lsrc;
240                         *dptr++ = *rsrc;
241                         lsrc += lstride;
242                         rsrc += rstride;
243                 }
244         }
245 }
246
247 vector<float> AudioMixer::get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy)
248 {
249         vector<float> samples_card[MAX_CARDS];  // TODO: Needs room for other kinds of capture cards.
250         vector<float> samples_bus;
251
252         lock_guard<mutex> lock(audio_mutex);
253
254         // Pick out all the interesting channels from all the cards.
255         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
256                 AudioDevice *device = &cards[card_index];
257                 if (!device->interesting_channels.empty()) {
258                         samples_card[card_index].resize(num_samples * device->interesting_channels.size());
259                         device->resampling_queue->get_output_samples(
260                                 pts,
261                                 &samples_card[card_index][0],
262                                 num_samples,
263                                 rate_adjustment_policy);
264                 }
265         }
266
267         // TODO: Move lo-cut etc. into each bus.
268         vector<float> samples_out;
269         samples_out.resize(num_samples * 2);
270         samples_bus.resize(num_samples * 2);
271         for (unsigned bus_index = 0; bus_index < input_mapping.buses.size(); ++bus_index) {
272                 fill_audio_bus(samples_card, input_mapping.buses[bus_index], num_samples, &samples_bus[0]);
273
274                 float volume = from_db(fader_volume_db[bus_index]);
275                 if (bus_index == 0) {
276                         for (unsigned i = 0; i < num_samples * 2; ++i) {
277                                 samples_out[i] = samples_bus[i] * volume;
278                         }
279                 } else {
280                         for (unsigned i = 0; i < num_samples * 2; ++i) {
281                                 samples_out[i] += samples_bus[i] * volume;
282                         }
283                 }
284         }
285
286         // Cut away everything under 120 Hz (or whatever the cutoff is);
287         // we don't need it for voice, and it will reduce headroom
288         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
289         // should be dampened.)
290         if (locut_enabled) {
291                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
292         }
293
294         {
295                 lock_guard<mutex> lock(compressor_mutex);
296
297                 // Apply a level compressor to get the general level right.
298                 // Basically, if it's over about -40 dBFS, we squeeze it down to that level
299                 // (or more precisely, near it, since we don't use infinite ratio),
300                 // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
301                 // entirely arbitrary, but from practical tests with speech, it seems to
302                 // put ut around -23 LUFS, so it's a reasonable starting point for later use.
303                 {
304                         if (level_compressor_enabled) {
305                                 float threshold = 0.01f;   // -40 dBFS.
306                                 float ratio = 20.0f;
307                                 float attack_time = 0.5f;
308                                 float release_time = 20.0f;
309                                 float makeup_gain = from_db(ref_level_dbfs - (-40.0f));  // +26 dB.
310                                 level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
311                                 gain_staging_db = to_db(level_compressor.get_attenuation() * makeup_gain);
312                         } else {
313                                 // Just apply the gain we already had.
314                                 float g = from_db(gain_staging_db);
315                                 for (size_t i = 0; i < samples_out.size(); ++i) {
316                                         samples_out[i] *= g;
317                                 }
318                         }
319                 }
320
321         #if 0
322                 printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
323                         level_compressor.get_level(), to_db(level_compressor.get_level()),
324                         level_compressor.get_attenuation(), to_db(level_compressor.get_attenuation()),
325                         to_db(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
326         #endif
327
328         //      float limiter_att, compressor_att;
329
330                 // The real compressor.
331                 if (compressor_enabled) {
332                         float threshold = from_db(compressor_threshold_dbfs);
333                         float ratio = 20.0f;
334                         float attack_time = 0.005f;
335                         float release_time = 0.040f;
336                         float makeup_gain = 2.0f;  // +6 dB.
337                         compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
338         //              compressor_att = compressor.get_attenuation();
339                 }
340
341                 // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
342                 // Note that since ratio is not infinite, we could go slightly higher than this.
343                 if (limiter_enabled) {
344                         float threshold = from_db(limiter_threshold_dbfs);
345                         float ratio = 30.0f;
346                         float attack_time = 0.0f;  // Instant.
347                         float release_time = 0.020f;
348                         float makeup_gain = 1.0f;  // 0 dB.
349                         limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
350         //              limiter_att = limiter.get_attenuation();
351                 }
352
353         //      printf("limiter=%+5.1f  compressor=%+5.1f\n", to_db(limiter_att), to_db(compressor_att));
354         }
355
356         // At this point, we are most likely close to +0 LU, but all of our
357         // measurements have been on raw sample values, not R128 values.
358         // So we have a final makeup gain to get us to +0 LU; the gain
359         // adjustments required should be relatively small, and also, the
360         // offset shouldn't change much (only if the type of audio changes
361         // significantly). Thus, we shoot for updating this value basically
362         // “whenever we process buffers”, since the R128 calculation isn't exactly
363         // something we get out per-sample.
364         //
365         // Note that there's a feedback loop here, so we choose a very slow filter
366         // (half-time of 30 seconds).
367         double target_loudness_factor, alpha;
368         double loudness_lu = loudness_lufs - ref_level_lufs;
369         double current_makeup_lu = to_db(final_makeup_gain);
370         target_loudness_factor = final_makeup_gain * from_db(-loudness_lu);
371
372         // If we're outside +/- 5 LU uncorrected, we don't count it as
373         // a normal signal (probably silence) and don't change the
374         // correction factor; just apply what we already have.
375         if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
376                 alpha = 0.0;
377         } else {
378                 // Formula adapted from
379                 // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
380                 const double half_time_s = 30.0;
381                 const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
382                 alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
383         }
384
385         {
386                 lock_guard<mutex> lock(compressor_mutex);
387                 double m = final_makeup_gain;
388                 for (size_t i = 0; i < samples_out.size(); i += 2) {
389                         samples_out[i + 0] *= m;
390                         samples_out[i + 1] *= m;
391                         m += (target_loudness_factor - m) * alpha;
392                 }
393                 final_makeup_gain = m;
394         }
395
396         return samples_out;
397 }
398
399 vector<string> AudioMixer::get_names() const
400 {
401         lock_guard<mutex> lock(audio_mutex);
402         vector<string> names;
403         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
404                 const AudioDevice *device = &cards[card_index];
405                 names.push_back(device->name);
406         }
407         return names;
408 }
409
410 void AudioMixer::set_name(DeviceSpec device_spec, const string &name)
411 {
412         AudioDevice *device = find_audio_device(device_spec);
413
414         lock_guard<mutex> lock(audio_mutex);
415         device->name = name;
416 }
417
418 void AudioMixer::set_input_mapping(const InputMapping &new_input_mapping)
419 {
420         lock_guard<mutex> lock(audio_mutex);
421
422         // FIXME: This needs to be keyed on DeviceSpec.
423         map<unsigned, set<unsigned>> interesting_channels;
424         for (const InputMapping::Bus &bus : new_input_mapping.buses) {
425                 if (bus.device.type == InputSourceType::CAPTURE_CARD) {
426                         for (unsigned channel = 0; channel < 2; ++channel) {
427                                 if (bus.source_channel[channel] != -1) {
428                                         interesting_channels[bus.device.index].insert(bus.source_channel[channel]);
429                                 }
430                         }
431                 }
432         }
433
434         // Reset resamplers for all cards that don't have the exact same state as before.
435         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
436                 AudioDevice *device = &cards[card_index];
437                 if (device->interesting_channels != interesting_channels[card_index]) {
438                         device->interesting_channels = interesting_channels[card_index];
439                         reset_device_mutex_held(DeviceSpec{InputSourceType::CAPTURE_CARD, card_index});
440                 }
441         }
442
443         input_mapping = new_input_mapping;
444 }
445
446 InputMapping AudioMixer::get_input_mapping() const
447 {
448         lock_guard<mutex> lock(audio_mutex);
449         return input_mapping;
450 }