]> git.sesse.net Git - nageru/blob - audio_mixer.cpp
Make it possible to load/save input mappings.
[nageru] / audio_mixer.cpp
1 #include "audio_mixer.h"
2
3 #include <assert.h>
4 #include <endian.h>
5 #include <bmusb/bmusb.h>
6 #include <stdio.h>
7 #include <endian.h>
8 #include <cmath>
9 #ifdef __SSE__
10 #include <immintrin.h>
11 #endif
12
13 #include "db.h"
14 #include "flags.h"
15 #include "mixer.h"
16 #include "state.pb.h"
17 #include "timebase.h"
18
19 using namespace bmusb;
20 using namespace std;
21 using namespace std::placeholders;
22
23 namespace {
24
25 // TODO: If these prove to be a bottleneck, they can be SSSE3-optimized
26 // (usually including multiple channels at a time).
27
28 void convert_fixed16_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
29                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
30                              size_t num_samples)
31 {
32         assert(in_channel < in_num_channels);
33         assert(out_channel < out_num_channels);
34         src += in_channel * 2;
35         dst += out_channel;
36
37         for (size_t i = 0; i < num_samples; ++i) {
38                 int16_t s = le16toh(*(int16_t *)src);
39                 *dst = s * (1.0f / 32768.0f);
40
41                 src += 2 * in_num_channels;
42                 dst += out_num_channels;
43         }
44 }
45
46 void convert_fixed24_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
47                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
48                              size_t num_samples)
49 {
50         assert(in_channel < in_num_channels);
51         assert(out_channel < out_num_channels);
52         src += in_channel * 3;
53         dst += out_channel;
54
55         for (size_t i = 0; i < num_samples; ++i) {
56                 uint32_t s1 = src[0];
57                 uint32_t s2 = src[1];
58                 uint32_t s3 = src[2];
59                 uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
60                 *dst = int(s) * (1.0f / 2147483648.0f);
61
62                 src += 3 * in_num_channels;
63                 dst += out_num_channels;
64         }
65 }
66
67 void convert_fixed32_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
68                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
69                              size_t num_samples)
70 {
71         assert(in_channel < in_num_channels);
72         assert(out_channel < out_num_channels);
73         src += in_channel * 4;
74         dst += out_channel;
75
76         for (size_t i = 0; i < num_samples; ++i) {
77                 int32_t s = le32toh(*(int32_t *)src);
78                 *dst = s * (1.0f / 2147483648.0f);
79
80                 src += 4 * in_num_channels;
81                 dst += out_num_channels;
82         }
83 }
84
85 float find_peak_plain(const float *samples, size_t num_samples) __attribute__((unused));
86
87 float find_peak_plain(const float *samples, size_t num_samples)
88 {
89         float m = fabs(samples[0]);
90         for (size_t i = 1; i < num_samples; ++i) {
91                 m = max(m, fabs(samples[i]));
92         }
93         return m;
94 }
95
96 #ifdef __SSE__
97 static inline float horizontal_max(__m128 m)
98 {
99         __m128 tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 0, 3, 2));
100         m = _mm_max_ps(m, tmp);
101         tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 3, 0, 1));
102         m = _mm_max_ps(m, tmp);
103         return _mm_cvtss_f32(m);
104 }
105
106 float find_peak(const float *samples, size_t num_samples)
107 {
108         const __m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffffu));
109         __m128 m = _mm_setzero_ps();
110         for (size_t i = 0; i < (num_samples & ~3); i += 4) {
111                 __m128 x = _mm_loadu_ps(samples + i);
112                 x = _mm_and_ps(x, abs_mask);
113                 m = _mm_max_ps(m, x);
114         }
115         float result = horizontal_max(m);
116
117         for (size_t i = (num_samples & ~3); i < num_samples; ++i) {
118                 result = max(result, fabs(samples[i]));
119         }
120
121 #if 0
122         // Self-test. We should be bit-exact the same.
123         float reference_result = find_peak_plain(samples, num_samples);
124         if (result != reference_result) {
125                 fprintf(stderr, "Error: Peak is %f [%f %f %f %f]; should be %f.\n",
126                         result,
127                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(0, 0, 0, 0))),
128                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 1, 1, 1))),
129                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 2, 2, 2))),
130                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(3, 3, 3, 3))),
131                         reference_result);
132                 abort();
133         }
134 #endif
135         return result;
136 }
137 #else
138 float find_peak(const float *samples, size_t num_samples)
139 {
140         return find_peak_plain(samples, num_samples);
141 }
142 #endif
143
144 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
145 {
146         size_t num_samples = in.size() / 2;
147         out_l->resize(num_samples);
148         out_r->resize(num_samples);
149
150         const float *inptr = in.data();
151         float *lptr = &(*out_l)[0];
152         float *rptr = &(*out_r)[0];
153         for (size_t i = 0; i < num_samples; ++i) {
154                 *lptr++ = *inptr++;
155                 *rptr++ = *inptr++;
156         }
157 }
158
159 }  // namespace
160
161 AudioMixer::AudioMixer(unsigned num_cards)
162         : num_cards(num_cards),
163           limiter(OUTPUT_FREQUENCY),
164           correlation(OUTPUT_FREQUENCY)
165 {
166         global_audio_mixer = this;
167
168         for (unsigned bus_index = 0; bus_index < MAX_BUSES; ++bus_index) {
169                 locut[bus_index].init(FILTER_HPF, 2);
170                 locut_enabled[bus_index] = global_flags.locut_enabled;
171                 eq[bus_index][EQ_BAND_BASS].init(FILTER_LOW_SHELF, 1);
172                 // Note: EQ_BAND_MID isn't used (see comments in apply_eq()).
173                 eq[bus_index][EQ_BAND_TREBLE].init(FILTER_HIGH_SHELF, 1);
174
175                 gain_staging_db[bus_index] = global_flags.initial_gain_staging_db;
176                 compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
177                 compressor_threshold_dbfs[bus_index] = ref_level_dbfs - 12.0f;  // -12 dB.
178                 compressor_enabled[bus_index] = global_flags.compressor_enabled;
179                 level_compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
180                 level_compressor_enabled[bus_index] = global_flags.gain_staging_auto;
181         }
182         set_limiter_enabled(global_flags.limiter_enabled);
183         set_final_makeup_gain_auto(global_flags.final_makeup_gain_auto);
184
185         // Generate a very simple, default input mapping.
186         InputMapping::Bus input;
187         input.name = "Main";
188         input.device.type = InputSourceType::CAPTURE_CARD;
189         input.device.index = 0;
190         input.source_channel[0] = 0;
191         input.source_channel[1] = 1;
192
193         InputMapping new_input_mapping;
194         new_input_mapping.buses.push_back(input);
195         set_input_mapping(new_input_mapping);
196
197         alsa_pool.init();
198
199         r128.init(2, OUTPUT_FREQUENCY);
200         r128.integr_start();
201
202         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
203         // and there's a limit to how important the peak meter is.
204         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
205 }
206
207 void AudioMixer::reset_resampler(DeviceSpec device_spec)
208 {
209         lock_guard<timed_mutex> lock(audio_mutex);
210         reset_resampler_mutex_held(device_spec);
211 }
212
213 void AudioMixer::reset_resampler_mutex_held(DeviceSpec device_spec)
214 {
215         AudioDevice *device = find_audio_device(device_spec);
216
217         if (device->interesting_channels.empty()) {
218                 device->resampling_queue.reset();
219         } else {
220                 // TODO: ResamplingQueue should probably take the full device spec.
221                 // (It's only used for console output, though.)
222                 device->resampling_queue.reset(new ResamplingQueue(device_spec.index, device->capture_frequency, OUTPUT_FREQUENCY, device->interesting_channels.size()));
223         }
224         device->next_local_pts = 0;
225 }
226
227 bool AudioMixer::add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, AudioFormat audio_format, int64_t frame_length)
228 {
229         AudioDevice *device = find_audio_device(device_spec);
230
231         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
232         if (!lock.try_lock_for(chrono::milliseconds(10))) {
233                 return false;
234         }
235         if (device->resampling_queue == nullptr) {
236                 // No buses use this device; throw it away.
237                 return true;
238         }
239
240         unsigned num_channels = device->interesting_channels.size();
241         assert(num_channels > 0);
242
243         // Convert the audio to fp32.
244         unique_ptr<float[]> audio(new float[num_samples * num_channels]);
245         unsigned channel_index = 0;
246         for (auto channel_it = device->interesting_channels.cbegin(); channel_it != device->interesting_channels.end(); ++channel_it, ++channel_index) {
247                 switch (audio_format.bits_per_sample) {
248                 case 0:
249                         assert(num_samples == 0);
250                         break;
251                 case 16:
252                         convert_fixed16_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
253                         break;
254                 case 24:
255                         convert_fixed24_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
256                         break;
257                 case 32:
258                         convert_fixed32_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
259                         break;
260                 default:
261                         fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
262                         assert(false);
263                 }
264         }
265
266         // Now add it.
267         int64_t local_pts = device->next_local_pts;
268         device->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.get(), num_samples);
269         device->next_local_pts = local_pts + frame_length;
270         return true;
271 }
272
273 bool AudioMixer::add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length)
274 {
275         AudioDevice *device = find_audio_device(device_spec);
276
277         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
278         if (!lock.try_lock_for(chrono::milliseconds(10))) {
279                 return false;
280         }
281         if (device->resampling_queue == nullptr) {
282                 // No buses use this device; throw it away.
283                 return true;
284         }
285
286         unsigned num_channels = device->interesting_channels.size();
287         assert(num_channels > 0);
288
289         vector<float> silence(samples_per_frame * num_channels, 0.0f);
290         for (unsigned i = 0; i < num_frames; ++i) {
291                 device->resampling_queue->add_input_samples(device->next_local_pts / double(TIMEBASE), silence.data(), samples_per_frame);
292                 // Note that if the format changed in the meantime, we have
293                 // no way of detecting that; we just have to assume the frame length
294                 // is always the same.
295                 device->next_local_pts += frame_length;
296         }
297         return true;
298 }
299
300 bool AudioMixer::silence_card(DeviceSpec device_spec, bool silence)
301 {
302         AudioDevice *device = find_audio_device(device_spec);
303
304         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
305         if (!lock.try_lock_for(chrono::milliseconds(10))) {
306                 return false;
307         }
308
309         if (device->silenced && !silence) {
310                 reset_resampler_mutex_held(device_spec);
311         }
312         device->silenced = silence;
313         return true;
314 }
315
316 AudioMixer::AudioDevice *AudioMixer::find_audio_device(DeviceSpec device)
317 {
318         switch (device.type) {
319         case InputSourceType::CAPTURE_CARD:
320                 return &video_cards[device.index];
321         case InputSourceType::ALSA_INPUT:
322                 return &alsa_inputs[device.index];
323         case InputSourceType::SILENCE:
324         default:
325                 assert(false);
326         }
327         return nullptr;
328 }
329
330 // Get a pointer to the given channel from the given device.
331 // The channel must be picked out earlier and resampled.
332 void AudioMixer::find_sample_src_from_device(const map<DeviceSpec, vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride)
333 {
334         static float zero = 0.0f;
335         if (source_channel == -1 || device_spec.type == InputSourceType::SILENCE) {
336                 *srcptr = &zero;
337                 *stride = 0;
338                 return;
339         }
340         AudioDevice *device = find_audio_device(device_spec);
341         assert(device->interesting_channels.count(source_channel) != 0);
342         unsigned channel_index = 0;
343         for (int channel : device->interesting_channels) {
344                 if (channel == source_channel) break;
345                 ++channel_index;
346         }
347         assert(channel_index < device->interesting_channels.size());
348         const auto it = samples_card.find(device_spec);
349         assert(it != samples_card.end());
350         *srcptr = &(it->second)[channel_index];
351         *stride = device->interesting_channels.size();
352 }
353
354 // TODO: Can be SSSE3-optimized if need be.
355 void AudioMixer::fill_audio_bus(const map<DeviceSpec, vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output)
356 {
357         if (bus.device.type == InputSourceType::SILENCE) {
358                 memset(output, 0, num_samples * sizeof(*output));
359         } else {
360                 assert(bus.device.type == InputSourceType::CAPTURE_CARD ||
361                        bus.device.type == InputSourceType::ALSA_INPUT);
362                 const float *lsrc, *rsrc;
363                 unsigned lstride, rstride;
364                 float *dptr = output;
365                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[0], &lsrc, &lstride);
366                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[1], &rsrc, &rstride);
367                 for (unsigned i = 0; i < num_samples; ++i) {
368                         *dptr++ = *lsrc;
369                         *dptr++ = *rsrc;
370                         lsrc += lstride;
371                         rsrc += rstride;
372                 }
373         }
374 }
375
376 vector<DeviceSpec> AudioMixer::get_active_devices() const
377 {
378         vector<DeviceSpec> ret;
379         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
380                 const DeviceSpec device_spec{InputSourceType::CAPTURE_CARD, card_index};
381                 if (!find_audio_device(device_spec)->interesting_channels.empty()) {
382                         ret.push_back(device_spec);
383                 }
384         }
385         for (unsigned card_index = 0; card_index < MAX_ALSA_CARDS; ++card_index) {
386                 const DeviceSpec device_spec{InputSourceType::ALSA_INPUT, card_index};
387                 if (!find_audio_device(device_spec)->interesting_channels.empty()) {
388                         ret.push_back(device_spec);
389                 }
390         }
391         return ret;
392 }
393
394 vector<float> AudioMixer::get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy)
395 {
396         map<DeviceSpec, vector<float>> samples_card;
397         vector<float> samples_bus;
398
399         lock_guard<timed_mutex> lock(audio_mutex);
400
401         // Pick out all the interesting channels from all the cards.
402         for (const DeviceSpec &device_spec : get_active_devices()) {
403                 AudioDevice *device = find_audio_device(device_spec);
404                 samples_card[device_spec].resize(num_samples * device->interesting_channels.size());
405                 if (device->silenced) {
406                         memset(&samples_card[device_spec][0], 0, samples_card[device_spec].size() * sizeof(float));
407                 } else {
408                         device->resampling_queue->get_output_samples(
409                                 pts,
410                                 &samples_card[device_spec][0],
411                                 num_samples,
412                                 rate_adjustment_policy);
413                 }
414         }
415
416         vector<float> samples_out, left, right;
417         samples_out.resize(num_samples * 2);
418         samples_bus.resize(num_samples * 2);
419         for (unsigned bus_index = 0; bus_index < input_mapping.buses.size(); ++bus_index) {
420                 fill_audio_bus(samples_card, input_mapping.buses[bus_index], num_samples, &samples_bus[0]);
421                 apply_eq(bus_index, &samples_bus);
422
423                 {
424                         lock_guard<mutex> lock(compressor_mutex);
425
426                         // Apply a level compressor to get the general level right.
427                         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
428                         // (or more precisely, near it, since we don't use infinite ratio),
429                         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
430                         // entirely arbitrary, but from practical tests with speech, it seems to
431                         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
432                         if (level_compressor_enabled[bus_index]) {
433                                 float threshold = 0.01f;   // -40 dBFS.
434                                 float ratio = 20.0f;
435                                 float attack_time = 0.5f;
436                                 float release_time = 20.0f;
437                                 float makeup_gain = from_db(ref_level_dbfs - (-40.0f));  // +26 dB.
438                                 level_compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
439                                 gain_staging_db[bus_index] = to_db(level_compressor[bus_index]->get_attenuation() * makeup_gain);
440                         } else {
441                                 // Just apply the gain we already had.
442                                 float g = from_db(gain_staging_db[bus_index]);
443                                 for (size_t i = 0; i < samples_bus.size(); ++i) {
444                                         samples_bus[i] *= g;
445                                 }
446                         }
447
448 #if 0
449                         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
450                                 level_compressor.get_level(), to_db(level_compressor.get_level()),
451                                 level_compressor.get_attenuation(), to_db(level_compressor.get_attenuation()),
452                                 to_db(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
453 #endif
454
455                         // The real compressor.
456                         if (compressor_enabled[bus_index]) {
457                                 float threshold = from_db(compressor_threshold_dbfs[bus_index]);
458                                 float ratio = 20.0f;
459                                 float attack_time = 0.005f;
460                                 float release_time = 0.040f;
461                                 float makeup_gain = 2.0f;  // +6 dB.
462                                 compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
463                 //              compressor_att = compressor.get_attenuation();
464                         }
465                 }
466
467                 add_bus_to_master(bus_index, samples_bus, &samples_out);
468                 deinterleave_samples(samples_bus, &left, &right);
469                 measure_bus_levels(bus_index, left, right);
470         }
471
472         {
473                 lock_guard<mutex> lock(compressor_mutex);
474
475                 // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
476                 // Note that since ratio is not infinite, we could go slightly higher than this.
477                 if (limiter_enabled) {
478                         float threshold = from_db(limiter_threshold_dbfs);
479                         float ratio = 30.0f;
480                         float attack_time = 0.0f;  // Instant.
481                         float release_time = 0.020f;
482                         float makeup_gain = 1.0f;  // 0 dB.
483                         limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
484         //              limiter_att = limiter.get_attenuation();
485                 }
486
487         //      printf("limiter=%+5.1f  compressor=%+5.1f\n", to_db(limiter_att), to_db(compressor_att));
488         }
489
490         // At this point, we are most likely close to +0 LU (at least if the
491         // faders sum to 0 dB and the compressors are on), but all of our
492         // measurements have been on raw sample values, not R128 values.
493         // So we have a final makeup gain to get us to +0 LU; the gain
494         // adjustments required should be relatively small, and also, the
495         // offset shouldn't change much (only if the type of audio changes
496         // significantly). Thus, we shoot for updating this value basically
497         // “whenever we process buffers”, since the R128 calculation isn't exactly
498         // something we get out per-sample.
499         //
500         // Note that there's a feedback loop here, so we choose a very slow filter
501         // (half-time of 30 seconds).
502         double target_loudness_factor, alpha;
503         double loudness_lu = r128.loudness_M() - ref_level_lufs;
504         double current_makeup_lu = to_db(final_makeup_gain);
505         target_loudness_factor = final_makeup_gain * from_db(-loudness_lu);
506
507         // If we're outside +/- 5 LU uncorrected, we don't count it as
508         // a normal signal (probably silence) and don't change the
509         // correction factor; just apply what we already have.
510         if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
511                 alpha = 0.0;
512         } else {
513                 // Formula adapted from
514                 // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
515                 const double half_time_s = 30.0;
516                 const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
517                 alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
518         }
519
520         {
521                 lock_guard<mutex> lock(compressor_mutex);
522                 double m = final_makeup_gain;
523                 for (size_t i = 0; i < samples_out.size(); i += 2) {
524                         samples_out[i + 0] *= m;
525                         samples_out[i + 1] *= m;
526                         m += (target_loudness_factor - m) * alpha;
527                 }
528                 final_makeup_gain = m;
529         }
530
531         update_meters(samples_out);
532
533         return samples_out;
534 }
535
536 void AudioMixer::apply_eq(unsigned bus_index, vector<float> *samples_bus)
537 {
538         constexpr float bass_freq_hz = 200.0f;
539         constexpr float treble_freq_hz = 4700.0f;
540
541         // Cut away everything under 120 Hz (or whatever the cutoff is);
542         // we don't need it for voice, and it will reduce headroom
543         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
544         // should be dampened.)
545         if (locut_enabled[bus_index]) {
546                 locut[bus_index].render(samples_bus->data(), samples_bus->size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
547         }
548
549         // Apply the rest of the EQ. Since we only have a simple three-band EQ,
550         // we can implement it with two shelf filters. We use a simple gain to
551         // set the mid-level filter, and then offset the low and high bands
552         // from that if we need to. (We could perhaps have folded the gain into
553         // the next part, but it's so cheap that the trouble isn't worth it.)
554         if (fabs(eq_level_db[bus_index][EQ_BAND_MID]) > 0.01f) {
555                 float g = from_db(eq_level_db[bus_index][EQ_BAND_MID]);
556                 for (size_t i = 0; i < samples_bus->size(); ++i) {
557                         (*samples_bus)[i] *= g;
558                 }
559         }
560
561         float bass_adj_db = eq_level_db[bus_index][EQ_BAND_BASS] - eq_level_db[bus_index][EQ_BAND_MID];
562         if (fabs(bass_adj_db) > 0.01f) {
563                 eq[bus_index][EQ_BAND_BASS].render(samples_bus->data(), samples_bus->size() / 2,
564                         bass_freq_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f, bass_adj_db / 40.0f);
565         }
566
567         float treble_adj_db = eq_level_db[bus_index][EQ_BAND_TREBLE] - eq_level_db[bus_index][EQ_BAND_MID];
568         if (fabs(treble_adj_db) > 0.01f) {
569                 eq[bus_index][EQ_BAND_TREBLE].render(samples_bus->data(), samples_bus->size() / 2,
570                         treble_freq_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f, treble_adj_db / 40.0f);
571         }
572 }
573
574 void AudioMixer::add_bus_to_master(unsigned bus_index, const vector<float> &samples_bus, vector<float> *samples_out)
575 {
576         assert(samples_bus.size() == samples_out->size());
577         assert(samples_bus.size() % 2 == 0);
578         unsigned num_samples = samples_bus.size() / 2;
579         if (fabs(fader_volume_db[bus_index] - last_fader_volume_db[bus_index]) > 1e-3) {
580                 // The volume has changed; do a fade over the course of this frame.
581                 // (We might have some numerical issues here, but it seems to sound OK.)
582                 // For the purpose of fading here, the silence floor is set to -90 dB
583                 // (the fader only goes to -84).
584                 float old_volume = from_db(max<float>(last_fader_volume_db[bus_index], -90.0f));
585                 float volume = from_db(max<float>(fader_volume_db[bus_index], -90.0f));
586
587                 float volume_inc = pow(volume / old_volume, 1.0 / num_samples);
588                 volume = old_volume;
589                 if (bus_index == 0) {
590                         for (unsigned i = 0; i < num_samples; ++i) {
591                                 (*samples_out)[i * 2 + 0] = samples_bus[i * 2 + 0] * volume;
592                                 (*samples_out)[i * 2 + 1] = samples_bus[i * 2 + 1] * volume;
593                                 volume *= volume_inc;
594                         }
595                 } else {
596                         for (unsigned i = 0; i < num_samples; ++i) {
597                                 (*samples_out)[i * 2 + 0] += samples_bus[i * 2 + 0] * volume;
598                                 (*samples_out)[i * 2 + 1] += samples_bus[i * 2 + 1] * volume;
599                                 volume *= volume_inc;
600                         }
601                 }
602         } else {
603                 float volume = from_db(fader_volume_db[bus_index]);
604                 if (bus_index == 0) {
605                         for (unsigned i = 0; i < num_samples; ++i) {
606                                 (*samples_out)[i * 2 + 0] = samples_bus[i * 2 + 0] * volume;
607                                 (*samples_out)[i * 2 + 1] = samples_bus[i * 2 + 1] * volume;
608                         }
609                 } else {
610                         for (unsigned i = 0; i < num_samples; ++i) {
611                                 (*samples_out)[i * 2 + 0] += samples_bus[i * 2 + 0] * volume;
612                                 (*samples_out)[i * 2 + 1] += samples_bus[i * 2 + 1] * volume;
613                         }
614                 }
615         }
616
617         last_fader_volume_db[bus_index] = fader_volume_db[bus_index];
618 }
619
620 void AudioMixer::measure_bus_levels(unsigned bus_index, const vector<float> &left, const vector<float> &right)
621 {
622         assert(left.size() == right.size());
623         const float volume = from_db(fader_volume_db[bus_index]);
624         const float peak_levels[2] = {
625                 find_peak(left.data(), left.size()) * volume,
626                 find_peak(right.data(), right.size()) * volume
627         };
628         for (unsigned channel = 0; channel < 2; ++channel) {
629                 // Compute the current value, including hold and falloff.
630                 // The constants are borrowed from zita-mu1 by Fons Adriaensen.
631                 static constexpr float hold_sec = 0.5f;
632                 static constexpr float falloff_db_sec = 15.0f;  // dB/sec falloff after hold.
633                 float current_peak;
634                 PeakHistory &history = peak_history[bus_index][channel];
635                 history.historic_peak = max(history.historic_peak, peak_levels[channel]);
636                 if (history.age_seconds < hold_sec) {
637                         current_peak = history.last_peak;
638                 } else {
639                         current_peak = history.last_peak * from_db(-falloff_db_sec * (history.age_seconds - hold_sec));
640                 }
641
642                 // See if we have a new peak to replace the old (possibly falling) one.
643                 if (peak_levels[channel] > current_peak) {
644                         history.last_peak = peak_levels[channel];
645                         history.age_seconds = 0.0f;  // Not 100% correct, but more than good enough given our frame sizes.
646                         current_peak = peak_levels[channel];
647                 } else {
648                         history.age_seconds += float(left.size()) / OUTPUT_FREQUENCY;
649                 }
650                 history.current_level = peak_levels[channel];
651                 history.current_peak = current_peak;
652         }
653 }
654
655 void AudioMixer::update_meters(const vector<float> &samples)
656 {
657         // Upsample 4x to find interpolated peak.
658         peak_resampler.inp_data = const_cast<float *>(samples.data());
659         peak_resampler.inp_count = samples.size() / 2;
660
661         vector<float> interpolated_samples;
662         interpolated_samples.resize(samples.size());
663         {
664                 lock_guard<mutex> lock(audio_measure_mutex);
665
666                 while (peak_resampler.inp_count > 0) {  // About four iterations.
667                         peak_resampler.out_data = &interpolated_samples[0];
668                         peak_resampler.out_count = interpolated_samples.size() / 2;
669                         peak_resampler.process();
670                         size_t out_stereo_samples = interpolated_samples.size() / 2 - peak_resampler.out_count;
671                         peak = max<float>(peak, find_peak(interpolated_samples.data(), out_stereo_samples * 2));
672                         peak_resampler.out_data = nullptr;
673                 }
674         }
675
676         // Find R128 levels and L/R correlation.
677         vector<float> left, right;
678         deinterleave_samples(samples, &left, &right);
679         float *ptrs[] = { left.data(), right.data() };
680         {
681                 lock_guard<mutex> lock(audio_measure_mutex);
682                 r128.process(left.size(), ptrs);
683                 correlation.process_samples(samples);
684         }
685
686         send_audio_level_callback();
687 }
688
689 void AudioMixer::reset_meters()
690 {
691         lock_guard<mutex> lock(audio_measure_mutex);
692         peak_resampler.reset();
693         peak = 0.0f;
694         r128.reset();
695         r128.integr_start();
696         correlation.reset();
697 }
698
699 void AudioMixer::send_audio_level_callback()
700 {
701         if (audio_level_callback == nullptr) {
702                 return;
703         }
704
705         lock_guard<mutex> lock(audio_measure_mutex);
706         double loudness_s = r128.loudness_S();
707         double loudness_i = r128.integrated();
708         double loudness_range_low = r128.range_min();
709         double loudness_range_high = r128.range_max();
710
711         vector<BusLevel> bus_levels;
712         bus_levels.resize(input_mapping.buses.size());
713         {
714                 lock_guard<mutex> lock(compressor_mutex);
715                 for (unsigned bus_index = 0; bus_index < bus_levels.size(); ++bus_index) {
716                         bus_levels[bus_index].current_level_dbfs[0] = to_db(peak_history[bus_index][0].current_level);
717                         bus_levels[bus_index].current_level_dbfs[1] = to_db(peak_history[bus_index][1].current_level);
718                         bus_levels[bus_index].peak_level_dbfs[0] = to_db(peak_history[bus_index][0].current_peak);
719                         bus_levels[bus_index].peak_level_dbfs[1] = to_db(peak_history[bus_index][1].current_peak);
720                         bus_levels[bus_index].historic_peak_dbfs = to_db(
721                                 max(peak_history[bus_index][0].historic_peak,
722                                     peak_history[bus_index][1].historic_peak));
723                         bus_levels[bus_index].gain_staging_db = gain_staging_db[bus_index];
724                         if (compressor_enabled[bus_index]) {
725                                 bus_levels[bus_index].compressor_attenuation_db = -to_db(compressor[bus_index]->get_attenuation());
726                         } else {
727                                 bus_levels[bus_index].compressor_attenuation_db = 0.0;
728                         }
729                 }
730         }
731
732         audio_level_callback(loudness_s, to_db(peak), bus_levels,
733                 loudness_i, loudness_range_low, loudness_range_high,
734                 to_db(final_makeup_gain),
735                 correlation.get_correlation());
736 }
737
738 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices()
739 {
740         lock_guard<timed_mutex> lock(audio_mutex);
741
742         map<DeviceSpec, DeviceInfo> devices;
743         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
744                 const DeviceSpec spec{ InputSourceType::CAPTURE_CARD, card_index };
745                 const AudioDevice *device = &video_cards[card_index];
746                 DeviceInfo info;
747                 info.display_name = device->display_name;
748                 info.num_channels = 8;
749                 devices.insert(make_pair(spec, info));
750         }
751         vector<ALSAPool::Device> available_alsa_devices = alsa_pool.get_devices();
752         for (unsigned card_index = 0; card_index < available_alsa_devices.size(); ++card_index) {
753                 const DeviceSpec spec{ InputSourceType::ALSA_INPUT, card_index };
754                 const ALSAPool::Device &device = available_alsa_devices[card_index];
755                 DeviceInfo info;
756                 info.display_name = device.display_name();
757                 info.num_channels = device.num_channels;
758                 info.alsa_name = device.name;
759                 info.alsa_info = device.info;
760                 info.alsa_address = device.address;
761                 devices.insert(make_pair(spec, info));
762         }
763         return devices;
764 }
765
766 void AudioMixer::set_display_name(DeviceSpec device_spec, const string &name)
767 {
768         AudioDevice *device = find_audio_device(device_spec);
769
770         lock_guard<timed_mutex> lock(audio_mutex);
771         device->display_name = name;
772 }
773
774 void AudioMixer::serialize_device(DeviceSpec device_spec, DeviceSpecProto *device_spec_proto)
775 {
776         lock_guard<timed_mutex> lock(audio_mutex);
777         switch (device_spec.type) {
778                 case InputSourceType::SILENCE:
779                         device_spec_proto->set_type(DeviceSpecProto::SILENCE);
780                         break;
781                 case InputSourceType::CAPTURE_CARD:
782                         device_spec_proto->set_type(DeviceSpecProto::CAPTURE_CARD);
783                         device_spec_proto->set_index(device_spec.index);
784                         device_spec_proto->set_display_name(video_cards[device_spec.index].display_name);
785                         break;
786                 case InputSourceType::ALSA_INPUT:
787                         alsa_pool.serialize_device(device_spec.index, device_spec_proto);
788                         break;
789         }
790 }
791
792 void AudioMixer::set_input_mapping(const InputMapping &new_input_mapping)
793 {
794         lock_guard<timed_mutex> lock(audio_mutex);
795
796         map<DeviceSpec, set<unsigned>> interesting_channels;
797         for (const InputMapping::Bus &bus : new_input_mapping.buses) {
798                 if (bus.device.type == InputSourceType::CAPTURE_CARD ||
799                     bus.device.type == InputSourceType::ALSA_INPUT) {
800                         for (unsigned channel = 0; channel < 2; ++channel) {
801                                 if (bus.source_channel[channel] != -1) {
802                                         interesting_channels[bus.device].insert(bus.source_channel[channel]);
803                                 }
804                         }
805                 }
806         }
807
808         // Reset resamplers for all cards that don't have the exact same state as before.
809         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
810                 const DeviceSpec device_spec{InputSourceType::CAPTURE_CARD, card_index};
811                 AudioDevice *device = find_audio_device(device_spec);
812                 if (device->interesting_channels != interesting_channels[device_spec]) {
813                         device->interesting_channels = interesting_channels[device_spec];
814                         reset_resampler_mutex_held(device_spec);
815                 }
816         }
817         for (unsigned card_index = 0; card_index < MAX_ALSA_CARDS; ++card_index) {
818                 const DeviceSpec device_spec{InputSourceType::ALSA_INPUT, card_index};
819                 AudioDevice *device = find_audio_device(device_spec);
820                 if (interesting_channels[device_spec].empty()) {
821                         alsa_pool.release_device(card_index);
822                 } else {
823                         alsa_pool.hold_device(card_index);
824                 }
825                 if (device->interesting_channels != interesting_channels[device_spec]) {
826                         device->interesting_channels = interesting_channels[device_spec];
827                         alsa_pool.reset_device(device_spec.index);
828                         reset_resampler_mutex_held(device_spec);
829                 }
830         }
831
832         input_mapping = new_input_mapping;
833 }
834
835 InputMapping AudioMixer::get_input_mapping() const
836 {
837         lock_guard<timed_mutex> lock(audio_mutex);
838         return input_mapping;
839 }
840
841 void AudioMixer::reset_peak(unsigned bus_index)
842 {
843         lock_guard<timed_mutex> lock(audio_mutex);
844         for (unsigned channel = 0; channel < 2; ++channel) {
845                 PeakHistory &history = peak_history[bus_index][channel];
846                 history.current_level = 0.0f;
847                 history.historic_peak = 0.0f;
848                 history.current_peak = 0.0f;
849                 history.last_peak = 0.0f;
850                 history.age_seconds = 0.0f;
851         }
852 }
853
854 AudioMixer *global_audio_mixer = nullptr;