]> git.sesse.net Git - nageru/blob - audio_mixer.cpp
Add mute buttons.
[nageru] / audio_mixer.cpp
1 #include "audio_mixer.h"
2
3 #include <assert.h>
4 #include <endian.h>
5 #include <bmusb/bmusb.h>
6 #include <stdio.h>
7 #include <endian.h>
8 #include <cmath>
9 #include <limits>
10 #ifdef __SSE__
11 #include <immintrin.h>
12 #endif
13
14 #include "db.h"
15 #include "flags.h"
16 #include "mixer.h"
17 #include "state.pb.h"
18 #include "timebase.h"
19
20 using namespace bmusb;
21 using namespace std;
22 using namespace std::placeholders;
23
24 namespace {
25
26 // TODO: If these prove to be a bottleneck, they can be SSSE3-optimized
27 // (usually including multiple channels at a time).
28
29 void convert_fixed16_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
30                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
31                              size_t num_samples)
32 {
33         assert(in_channel < in_num_channels);
34         assert(out_channel < out_num_channels);
35         src += in_channel * 2;
36         dst += out_channel;
37
38         for (size_t i = 0; i < num_samples; ++i) {
39                 int16_t s = le16toh(*(int16_t *)src);
40                 *dst = s * (1.0f / 32768.0f);
41
42                 src += 2 * in_num_channels;
43                 dst += out_num_channels;
44         }
45 }
46
47 void convert_fixed24_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
48                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
49                              size_t num_samples)
50 {
51         assert(in_channel < in_num_channels);
52         assert(out_channel < out_num_channels);
53         src += in_channel * 3;
54         dst += out_channel;
55
56         for (size_t i = 0; i < num_samples; ++i) {
57                 uint32_t s1 = src[0];
58                 uint32_t s2 = src[1];
59                 uint32_t s3 = src[2];
60                 uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
61                 *dst = int(s) * (1.0f / 2147483648.0f);
62
63                 src += 3 * in_num_channels;
64                 dst += out_num_channels;
65         }
66 }
67
68 void convert_fixed32_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
69                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
70                              size_t num_samples)
71 {
72         assert(in_channel < in_num_channels);
73         assert(out_channel < out_num_channels);
74         src += in_channel * 4;
75         dst += out_channel;
76
77         for (size_t i = 0; i < num_samples; ++i) {
78                 int32_t s = le32toh(*(int32_t *)src);
79                 *dst = s * (1.0f / 2147483648.0f);
80
81                 src += 4 * in_num_channels;
82                 dst += out_num_channels;
83         }
84 }
85
86 float find_peak_plain(const float *samples, size_t num_samples) __attribute__((unused));
87
88 float find_peak_plain(const float *samples, size_t num_samples)
89 {
90         float m = fabs(samples[0]);
91         for (size_t i = 1; i < num_samples; ++i) {
92                 m = max(m, fabs(samples[i]));
93         }
94         return m;
95 }
96
97 #ifdef __SSE__
98 static inline float horizontal_max(__m128 m)
99 {
100         __m128 tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 0, 3, 2));
101         m = _mm_max_ps(m, tmp);
102         tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 3, 0, 1));
103         m = _mm_max_ps(m, tmp);
104         return _mm_cvtss_f32(m);
105 }
106
107 float find_peak(const float *samples, size_t num_samples)
108 {
109         const __m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffffu));
110         __m128 m = _mm_setzero_ps();
111         for (size_t i = 0; i < (num_samples & ~3); i += 4) {
112                 __m128 x = _mm_loadu_ps(samples + i);
113                 x = _mm_and_ps(x, abs_mask);
114                 m = _mm_max_ps(m, x);
115         }
116         float result = horizontal_max(m);
117
118         for (size_t i = (num_samples & ~3); i < num_samples; ++i) {
119                 result = max(result, fabs(samples[i]));
120         }
121
122 #if 0
123         // Self-test. We should be bit-exact the same.
124         float reference_result = find_peak_plain(samples, num_samples);
125         if (result != reference_result) {
126                 fprintf(stderr, "Error: Peak is %f [%f %f %f %f]; should be %f.\n",
127                         result,
128                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(0, 0, 0, 0))),
129                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 1, 1, 1))),
130                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 2, 2, 2))),
131                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(3, 3, 3, 3))),
132                         reference_result);
133                 abort();
134         }
135 #endif
136         return result;
137 }
138 #else
139 float find_peak(const float *samples, size_t num_samples)
140 {
141         return find_peak_plain(samples, num_samples);
142 }
143 #endif
144
145 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
146 {
147         size_t num_samples = in.size() / 2;
148         out_l->resize(num_samples);
149         out_r->resize(num_samples);
150
151         const float *inptr = in.data();
152         float *lptr = &(*out_l)[0];
153         float *rptr = &(*out_r)[0];
154         for (size_t i = 0; i < num_samples; ++i) {
155                 *lptr++ = *inptr++;
156                 *rptr++ = *inptr++;
157         }
158 }
159
160 }  // namespace
161
162 AudioMixer::AudioMixer(unsigned num_cards)
163         : num_cards(num_cards),
164           limiter(OUTPUT_FREQUENCY),
165           correlation(OUTPUT_FREQUENCY)
166 {
167         global_audio_mixer = this;
168
169         for (unsigned bus_index = 0; bus_index < MAX_BUSES; ++bus_index) {
170                 locut[bus_index].init(FILTER_HPF, 2);
171                 eq[bus_index][EQ_BAND_BASS].init(FILTER_LOW_SHELF, 1);
172                 // Note: EQ_BAND_MID isn't used (see comments in apply_eq()).
173                 eq[bus_index][EQ_BAND_TREBLE].init(FILTER_HIGH_SHELF, 1);
174                 compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
175                 level_compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
176
177                 set_bus_settings(bus_index, get_default_bus_settings());
178         }
179         set_limiter_enabled(global_flags.limiter_enabled);
180         set_final_makeup_gain_auto(global_flags.final_makeup_gain_auto);
181         alsa_pool.init();
182
183         if (!global_flags.input_mapping_filename.empty()) {
184                 current_mapping_mode = MappingMode::MULTICHANNEL;
185                 InputMapping new_input_mapping;
186                 if (!load_input_mapping_from_file(get_devices(),
187                                                   global_flags.input_mapping_filename,
188                                                   &new_input_mapping)) {
189                         fprintf(stderr, "Failed to load input mapping from '%s', exiting.\n",
190                                 global_flags.input_mapping_filename.c_str());
191                         exit(1);
192                 }
193                 set_input_mapping(new_input_mapping);
194         } else {
195                 set_simple_input(/*card_index=*/0);
196                 if (global_flags.multichannel_mapping_mode) {
197                         current_mapping_mode = MappingMode::MULTICHANNEL;
198                 }
199         }
200
201         r128.init(2, OUTPUT_FREQUENCY);
202         r128.integr_start();
203
204         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
205         // and there's a limit to how important the peak meter is.
206         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
207 }
208
209 void AudioMixer::reset_resampler(DeviceSpec device_spec)
210 {
211         lock_guard<timed_mutex> lock(audio_mutex);
212         reset_resampler_mutex_held(device_spec);
213 }
214
215 void AudioMixer::reset_resampler_mutex_held(DeviceSpec device_spec)
216 {
217         AudioDevice *device = find_audio_device(device_spec);
218
219         if (device->interesting_channels.empty()) {
220                 device->resampling_queue.reset();
221         } else {
222                 // TODO: ResamplingQueue should probably take the full device spec.
223                 // (It's only used for console output, though.)
224                 device->resampling_queue.reset(new ResamplingQueue(device_spec.index, device->capture_frequency, OUTPUT_FREQUENCY, device->interesting_channels.size()));
225         }
226         device->next_local_pts = 0;
227 }
228
229 bool AudioMixer::add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, AudioFormat audio_format, int64_t frame_length)
230 {
231         AudioDevice *device = find_audio_device(device_spec);
232
233         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
234         if (!lock.try_lock_for(chrono::milliseconds(10))) {
235                 return false;
236         }
237         if (device->resampling_queue == nullptr) {
238                 // No buses use this device; throw it away.
239                 return true;
240         }
241
242         unsigned num_channels = device->interesting_channels.size();
243         assert(num_channels > 0);
244
245         // Convert the audio to fp32.
246         unique_ptr<float[]> audio(new float[num_samples * num_channels]);
247         unsigned channel_index = 0;
248         for (auto channel_it = device->interesting_channels.cbegin(); channel_it != device->interesting_channels.end(); ++channel_it, ++channel_index) {
249                 switch (audio_format.bits_per_sample) {
250                 case 0:
251                         assert(num_samples == 0);
252                         break;
253                 case 16:
254                         convert_fixed16_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
255                         break;
256                 case 24:
257                         convert_fixed24_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
258                         break;
259                 case 32:
260                         convert_fixed32_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
261                         break;
262                 default:
263                         fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
264                         assert(false);
265                 }
266         }
267
268         // Now add it.
269         int64_t local_pts = device->next_local_pts;
270         device->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.get(), num_samples);
271         device->next_local_pts = local_pts + frame_length;
272         return true;
273 }
274
275 bool AudioMixer::add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length)
276 {
277         AudioDevice *device = find_audio_device(device_spec);
278
279         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
280         if (!lock.try_lock_for(chrono::milliseconds(10))) {
281                 return false;
282         }
283         if (device->resampling_queue == nullptr) {
284                 // No buses use this device; throw it away.
285                 return true;
286         }
287
288         unsigned num_channels = device->interesting_channels.size();
289         assert(num_channels > 0);
290
291         vector<float> silence(samples_per_frame * num_channels, 0.0f);
292         for (unsigned i = 0; i < num_frames; ++i) {
293                 device->resampling_queue->add_input_samples(device->next_local_pts / double(TIMEBASE), silence.data(), samples_per_frame);
294                 // Note that if the format changed in the meantime, we have
295                 // no way of detecting that; we just have to assume the frame length
296                 // is always the same.
297                 device->next_local_pts += frame_length;
298         }
299         return true;
300 }
301
302 bool AudioMixer::silence_card(DeviceSpec device_spec, bool silence)
303 {
304         AudioDevice *device = find_audio_device(device_spec);
305
306         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
307         if (!lock.try_lock_for(chrono::milliseconds(10))) {
308                 return false;
309         }
310
311         if (device->silenced && !silence) {
312                 reset_resampler_mutex_held(device_spec);
313         }
314         device->silenced = silence;
315         return true;
316 }
317
318 AudioMixer::BusSettings AudioMixer::get_default_bus_settings()
319 {
320         BusSettings settings;
321         settings.fader_volume_db = 0.0f;
322         settings.muted = false;
323         settings.locut_enabled = global_flags.locut_enabled;
324         for (unsigned band_index = 0; band_index < NUM_EQ_BANDS; ++band_index) {
325                 settings.eq_level_db[band_index] = 0.0f;
326         }
327         settings.gain_staging_db = global_flags.initial_gain_staging_db;
328         settings.level_compressor_enabled = global_flags.gain_staging_auto;
329         settings.compressor_threshold_dbfs = ref_level_dbfs - 12.0f;  // -12 dB.
330         settings.compressor_enabled = global_flags.compressor_enabled;
331         return settings;
332 }
333
334 AudioMixer::BusSettings AudioMixer::get_bus_settings(unsigned bus_index) const
335 {
336         lock_guard<timed_mutex> lock(audio_mutex);
337         BusSettings settings;
338         settings.fader_volume_db = fader_volume_db[bus_index];
339         settings.muted = mute[bus_index];
340         settings.locut_enabled = locut_enabled[bus_index];
341         for (unsigned band_index = 0; band_index < NUM_EQ_BANDS; ++band_index) {
342                 settings.eq_level_db[band_index] = eq_level_db[bus_index][band_index];
343         }
344         settings.gain_staging_db = gain_staging_db[bus_index];
345         settings.level_compressor_enabled = level_compressor_enabled[bus_index];
346         settings.compressor_threshold_dbfs = compressor_threshold_dbfs[bus_index];
347         settings.compressor_enabled = compressor_enabled[bus_index];
348         return settings;
349 }
350
351 void AudioMixer::set_bus_settings(unsigned bus_index, const AudioMixer::BusSettings &settings)
352 {
353         lock_guard<timed_mutex> lock(audio_mutex);
354         fader_volume_db[bus_index] = settings.fader_volume_db;
355         mute[bus_index] = settings.muted;
356         locut_enabled[bus_index] = settings.locut_enabled;
357         for (unsigned band_index = 0; band_index < NUM_EQ_BANDS; ++band_index) {
358                 eq_level_db[bus_index][band_index] = settings.eq_level_db[band_index];
359         }
360         gain_staging_db[bus_index] = settings.gain_staging_db;
361         last_gain_staging_db[bus_index] = gain_staging_db[bus_index];
362         level_compressor_enabled[bus_index] = settings.level_compressor_enabled;
363         compressor_threshold_dbfs[bus_index] = settings.compressor_threshold_dbfs;
364         compressor_enabled[bus_index] = settings.compressor_enabled;
365 }
366
367 AudioMixer::AudioDevice *AudioMixer::find_audio_device(DeviceSpec device)
368 {
369         switch (device.type) {
370         case InputSourceType::CAPTURE_CARD:
371                 return &video_cards[device.index];
372         case InputSourceType::ALSA_INPUT:
373                 return &alsa_inputs[device.index];
374         case InputSourceType::SILENCE:
375         default:
376                 assert(false);
377         }
378         return nullptr;
379 }
380
381 // Get a pointer to the given channel from the given device.
382 // The channel must be picked out earlier and resampled.
383 void AudioMixer::find_sample_src_from_device(const map<DeviceSpec, vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride)
384 {
385         static float zero = 0.0f;
386         if (source_channel == -1 || device_spec.type == InputSourceType::SILENCE) {
387                 *srcptr = &zero;
388                 *stride = 0;
389                 return;
390         }
391         AudioDevice *device = find_audio_device(device_spec);
392         assert(device->interesting_channels.count(source_channel) != 0);
393         unsigned channel_index = 0;
394         for (int channel : device->interesting_channels) {
395                 if (channel == source_channel) break;
396                 ++channel_index;
397         }
398         assert(channel_index < device->interesting_channels.size());
399         const auto it = samples_card.find(device_spec);
400         assert(it != samples_card.end());
401         *srcptr = &(it->second)[channel_index];
402         *stride = device->interesting_channels.size();
403 }
404
405 // TODO: Can be SSSE3-optimized if need be.
406 void AudioMixer::fill_audio_bus(const map<DeviceSpec, vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output)
407 {
408         if (bus.device.type == InputSourceType::SILENCE) {
409                 memset(output, 0, num_samples * 2 * sizeof(*output));
410         } else {
411                 assert(bus.device.type == InputSourceType::CAPTURE_CARD ||
412                        bus.device.type == InputSourceType::ALSA_INPUT);
413                 const float *lsrc, *rsrc;
414                 unsigned lstride, rstride;
415                 float *dptr = output;
416                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[0], &lsrc, &lstride);
417                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[1], &rsrc, &rstride);
418                 for (unsigned i = 0; i < num_samples; ++i) {
419                         *dptr++ = *lsrc;
420                         *dptr++ = *rsrc;
421                         lsrc += lstride;
422                         rsrc += rstride;
423                 }
424         }
425 }
426
427 vector<DeviceSpec> AudioMixer::get_active_devices() const
428 {
429         vector<DeviceSpec> ret;
430         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
431                 const DeviceSpec device_spec{InputSourceType::CAPTURE_CARD, card_index};
432                 if (!find_audio_device(device_spec)->interesting_channels.empty()) {
433                         ret.push_back(device_spec);
434                 }
435         }
436         for (unsigned card_index = 0; card_index < MAX_ALSA_CARDS; ++card_index) {
437                 const DeviceSpec device_spec{InputSourceType::ALSA_INPUT, card_index};
438                 if (!find_audio_device(device_spec)->interesting_channels.empty()) {
439                         ret.push_back(device_spec);
440                 }
441         }
442         return ret;
443 }
444
445 namespace {
446
447 void apply_gain(float db, float last_db, vector<float> *samples)
448 {
449         if (fabs(db - last_db) < 1e-3) {
450                 // Constant over this frame.
451                 const float gain = from_db(db);
452                 for (size_t i = 0; i < samples->size(); ++i) {
453                         (*samples)[i] *= gain;
454                 }
455         } else {
456                 // We need to do a fade.
457                 unsigned num_samples = samples->size() / 2;
458                 float gain = from_db(last_db);
459                 const float gain_inc = pow(from_db(db - last_db), 1.0 / num_samples);
460                 for (size_t i = 0; i < num_samples; ++i) {
461                         (*samples)[i * 2 + 0] *= gain;
462                         (*samples)[i * 2 + 1] *= gain;
463                         gain *= gain_inc;
464                 }
465         }
466 }
467
468 }  // namespace
469
470 vector<float> AudioMixer::get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy)
471 {
472         map<DeviceSpec, vector<float>> samples_card;
473         vector<float> samples_bus;
474
475         lock_guard<timed_mutex> lock(audio_mutex);
476
477         // Pick out all the interesting channels from all the cards.
478         for (const DeviceSpec &device_spec : get_active_devices()) {
479                 AudioDevice *device = find_audio_device(device_spec);
480                 samples_card[device_spec].resize(num_samples * device->interesting_channels.size());
481                 if (device->silenced) {
482                         memset(&samples_card[device_spec][0], 0, samples_card[device_spec].size() * sizeof(float));
483                 } else {
484                         device->resampling_queue->get_output_samples(
485                                 pts,
486                                 &samples_card[device_spec][0],
487                                 num_samples,
488                                 rate_adjustment_policy);
489                 }
490         }
491
492         vector<float> samples_out, left, right;
493         samples_out.resize(num_samples * 2);
494         samples_bus.resize(num_samples * 2);
495         for (unsigned bus_index = 0; bus_index < input_mapping.buses.size(); ++bus_index) {
496                 fill_audio_bus(samples_card, input_mapping.buses[bus_index], num_samples, &samples_bus[0]);
497                 apply_eq(bus_index, &samples_bus);
498
499                 {
500                         lock_guard<mutex> lock(compressor_mutex);
501
502                         // Apply a level compressor to get the general level right.
503                         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
504                         // (or more precisely, near it, since we don't use infinite ratio),
505                         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
506                         // entirely arbitrary, but from practical tests with speech, it seems to
507                         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
508                         if (level_compressor_enabled[bus_index]) {
509                                 float threshold = 0.01f;   // -40 dBFS.
510                                 float ratio = 20.0f;
511                                 float attack_time = 0.5f;
512                                 float release_time = 20.0f;
513                                 float makeup_gain = from_db(ref_level_dbfs - (-40.0f));  // +26 dB.
514                                 level_compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
515                                 gain_staging_db[bus_index] = to_db(level_compressor[bus_index]->get_attenuation() * makeup_gain);
516                         } else {
517                                 // Just apply the gain we already had.
518                                 float db = gain_staging_db[bus_index];
519                                 float last_db = last_gain_staging_db[bus_index];
520                                 apply_gain(db, last_db, &samples_bus);
521                         }
522                         last_gain_staging_db[bus_index] = gain_staging_db[bus_index];
523
524 #if 0
525                         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
526                                 level_compressor.get_level(), to_db(level_compressor.get_level()),
527                                 level_compressor.get_attenuation(), to_db(level_compressor.get_attenuation()),
528                                 to_db(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
529 #endif
530
531                         // The real compressor.
532                         if (compressor_enabled[bus_index]) {
533                                 float threshold = from_db(compressor_threshold_dbfs[bus_index]);
534                                 float ratio = 20.0f;
535                                 float attack_time = 0.005f;
536                                 float release_time = 0.040f;
537                                 float makeup_gain = 2.0f;  // +6 dB.
538                                 compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
539                 //              compressor_att = compressor.get_attenuation();
540                         }
541                 }
542
543                 add_bus_to_master(bus_index, samples_bus, &samples_out);
544                 deinterleave_samples(samples_bus, &left, &right);
545                 measure_bus_levels(bus_index, left, right);
546         }
547
548         {
549                 lock_guard<mutex> lock(compressor_mutex);
550
551                 // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
552                 // Note that since ratio is not infinite, we could go slightly higher than this.
553                 if (limiter_enabled) {
554                         float threshold = from_db(limiter_threshold_dbfs);
555                         float ratio = 30.0f;
556                         float attack_time = 0.0f;  // Instant.
557                         float release_time = 0.020f;
558                         float makeup_gain = 1.0f;  // 0 dB.
559                         limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
560         //              limiter_att = limiter.get_attenuation();
561                 }
562
563         //      printf("limiter=%+5.1f  compressor=%+5.1f\n", to_db(limiter_att), to_db(compressor_att));
564         }
565
566         // At this point, we are most likely close to +0 LU (at least if the
567         // faders sum to 0 dB and the compressors are on), but all of our
568         // measurements have been on raw sample values, not R128 values.
569         // So we have a final makeup gain to get us to +0 LU; the gain
570         // adjustments required should be relatively small, and also, the
571         // offset shouldn't change much (only if the type of audio changes
572         // significantly). Thus, we shoot for updating this value basically
573         // “whenever we process buffers”, since the R128 calculation isn't exactly
574         // something we get out per-sample.
575         //
576         // Note that there's a feedback loop here, so we choose a very slow filter
577         // (half-time of 30 seconds).
578         double target_loudness_factor, alpha;
579         double loudness_lu = r128.loudness_M() - ref_level_lufs;
580         double current_makeup_lu = to_db(final_makeup_gain);
581         target_loudness_factor = final_makeup_gain * from_db(-loudness_lu);
582
583         // If we're outside +/- 5 LU uncorrected, we don't count it as
584         // a normal signal (probably silence) and don't change the
585         // correction factor; just apply what we already have.
586         if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
587                 alpha = 0.0;
588         } else {
589                 // Formula adapted from
590                 // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
591                 const double half_time_s = 30.0;
592                 const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
593                 alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
594         }
595
596         {
597                 lock_guard<mutex> lock(compressor_mutex);
598                 double m = final_makeup_gain;
599                 for (size_t i = 0; i < samples_out.size(); i += 2) {
600                         samples_out[i + 0] *= m;
601                         samples_out[i + 1] *= m;
602                         m += (target_loudness_factor - m) * alpha;
603                 }
604                 final_makeup_gain = m;
605         }
606
607         update_meters(samples_out);
608
609         return samples_out;
610 }
611
612 namespace {
613
614 void apply_filter_fade(StereoFilter *filter, float *data, unsigned num_samples, float cutoff_hz, float db, float last_db)
615 {
616         // A granularity of 32 samples is an okay tradeoff between speed and
617         // smoothness; recalculating the filters is pretty expensive, so it's
618         // good that we don't do this all the time.
619         static constexpr unsigned filter_granularity_samples = 32;
620
621         const float cutoff_linear = cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY;
622         if (fabs(db - last_db) < 1e-3) {
623                 // Constant over this frame.
624                 if (fabs(db) > 0.01f) {
625                         filter->render(data, num_samples, cutoff_linear, 0.5f, db / 40.0f);
626                 }
627         } else {
628                 // We need to do a fade. (Rounding up avoids division by zero.)
629                 unsigned num_blocks = (num_samples + filter_granularity_samples - 1) / filter_granularity_samples;
630                 const float inc_db_norm = (db - last_db) / 40.0f / num_blocks;
631                 float db_norm = db / 40.0f;
632                 for (size_t i = 0; i < num_samples; i += filter_granularity_samples) {
633                         size_t samples_this_block = std::min<size_t>(num_samples - i, filter_granularity_samples);
634                         filter->render(data + i * 2, samples_this_block, cutoff_linear, 0.5f, db_norm);
635                         db_norm += inc_db_norm;
636                 }
637         }
638 }
639
640 }  // namespace
641
642 void AudioMixer::apply_eq(unsigned bus_index, vector<float> *samples_bus)
643 {
644         constexpr float bass_freq_hz = 200.0f;
645         constexpr float treble_freq_hz = 4700.0f;
646
647         // Cut away everything under 120 Hz (or whatever the cutoff is);
648         // we don't need it for voice, and it will reduce headroom
649         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
650         // should be dampened.)
651         if (locut_enabled[bus_index]) {
652                 locut[bus_index].render(samples_bus->data(), samples_bus->size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
653         }
654
655         // Apply the rest of the EQ. Since we only have a simple three-band EQ,
656         // we can implement it with two shelf filters. We use a simple gain to
657         // set the mid-level filter, and then offset the low and high bands
658         // from that if we need to. (We could perhaps have folded the gain into
659         // the next part, but it's so cheap that the trouble isn't worth it.)
660         //
661         // If any part of the EQ has changed appreciably since last frame,
662         // we fade smoothly during the course of this frame.
663         const float bass_db = eq_level_db[bus_index][EQ_BAND_BASS];
664         const float mid_db = eq_level_db[bus_index][EQ_BAND_MID];
665         const float treble_db = eq_level_db[bus_index][EQ_BAND_TREBLE];
666
667         const float last_bass_db = last_eq_level_db[bus_index][EQ_BAND_BASS];
668         const float last_mid_db = last_eq_level_db[bus_index][EQ_BAND_MID];
669         const float last_treble_db = last_eq_level_db[bus_index][EQ_BAND_TREBLE];
670
671         assert(samples_bus->size() % 2 == 0);
672         const unsigned num_samples = samples_bus->size() / 2;
673
674         apply_gain(mid_db, last_mid_db, samples_bus);
675
676         apply_filter_fade(&eq[bus_index][EQ_BAND_BASS], samples_bus->data(), num_samples, bass_freq_hz, bass_db - mid_db, last_bass_db - last_mid_db);
677         apply_filter_fade(&eq[bus_index][EQ_BAND_TREBLE], samples_bus->data(), num_samples, treble_freq_hz, treble_db - mid_db, last_treble_db - last_mid_db);
678
679         last_eq_level_db[bus_index][EQ_BAND_BASS] = bass_db;
680         last_eq_level_db[bus_index][EQ_BAND_MID] = mid_db;
681         last_eq_level_db[bus_index][EQ_BAND_TREBLE] = treble_db;
682 }
683
684 void AudioMixer::add_bus_to_master(unsigned bus_index, const vector<float> &samples_bus, vector<float> *samples_out)
685 {
686         assert(samples_bus.size() == samples_out->size());
687         assert(samples_bus.size() % 2 == 0);
688         unsigned num_samples = samples_bus.size() / 2;
689         const float new_volume_db = mute[bus_index] ? -90.0f : fader_volume_db[bus_index].load();
690         if (fabs(new_volume_db - last_fader_volume_db[bus_index]) > 1e-3) {
691                 // The volume has changed; do a fade over the course of this frame.
692                 // (We might have some numerical issues here, but it seems to sound OK.)
693                 // For the purpose of fading here, the silence floor is set to -90 dB
694                 // (the fader only goes to -84).
695                 float old_volume = from_db(max<float>(last_fader_volume_db[bus_index], -90.0f));
696                 float volume = from_db(max<float>(new_volume_db, -90.0f));
697
698                 float volume_inc = pow(volume / old_volume, 1.0 / num_samples);
699                 volume = old_volume;
700                 if (bus_index == 0) {
701                         for (unsigned i = 0; i < num_samples; ++i) {
702                                 (*samples_out)[i * 2 + 0] = samples_bus[i * 2 + 0] * volume;
703                                 (*samples_out)[i * 2 + 1] = samples_bus[i * 2 + 1] * volume;
704                                 volume *= volume_inc;
705                         }
706                 } else {
707                         for (unsigned i = 0; i < num_samples; ++i) {
708                                 (*samples_out)[i * 2 + 0] += samples_bus[i * 2 + 0] * volume;
709                                 (*samples_out)[i * 2 + 1] += samples_bus[i * 2 + 1] * volume;
710                                 volume *= volume_inc;
711                         }
712                 }
713         } else if (new_volume_db > -90.0f) {
714                 float volume = from_db(new_volume_db);
715                 if (bus_index == 0) {
716                         for (unsigned i = 0; i < num_samples; ++i) {
717                                 (*samples_out)[i * 2 + 0] = samples_bus[i * 2 + 0] * volume;
718                                 (*samples_out)[i * 2 + 1] = samples_bus[i * 2 + 1] * volume;
719                         }
720                 } else {
721                         for (unsigned i = 0; i < num_samples; ++i) {
722                                 (*samples_out)[i * 2 + 0] += samples_bus[i * 2 + 0] * volume;
723                                 (*samples_out)[i * 2 + 1] += samples_bus[i * 2 + 1] * volume;
724                         }
725                 }
726         }
727
728         last_fader_volume_db[bus_index] = new_volume_db;
729 }
730
731 void AudioMixer::measure_bus_levels(unsigned bus_index, const vector<float> &left, const vector<float> &right)
732 {
733         assert(left.size() == right.size());
734         const float volume = mute[bus_index] ? 0.0f : from_db(fader_volume_db[bus_index]);
735         const float peak_levels[2] = {
736                 find_peak(left.data(), left.size()) * volume,
737                 find_peak(right.data(), right.size()) * volume
738         };
739         for (unsigned channel = 0; channel < 2; ++channel) {
740                 // Compute the current value, including hold and falloff.
741                 // The constants are borrowed from zita-mu1 by Fons Adriaensen.
742                 static constexpr float hold_sec = 0.5f;
743                 static constexpr float falloff_db_sec = 15.0f;  // dB/sec falloff after hold.
744                 float current_peak;
745                 PeakHistory &history = peak_history[bus_index][channel];
746                 history.historic_peak = max(history.historic_peak, peak_levels[channel]);
747                 if (history.age_seconds < hold_sec) {
748                         current_peak = history.last_peak;
749                 } else {
750                         current_peak = history.last_peak * from_db(-falloff_db_sec * (history.age_seconds - hold_sec));
751                 }
752
753                 // See if we have a new peak to replace the old (possibly falling) one.
754                 if (peak_levels[channel] > current_peak) {
755                         history.last_peak = peak_levels[channel];
756                         history.age_seconds = 0.0f;  // Not 100% correct, but more than good enough given our frame sizes.
757                         current_peak = peak_levels[channel];
758                 } else {
759                         history.age_seconds += float(left.size()) / OUTPUT_FREQUENCY;
760                 }
761                 history.current_level = peak_levels[channel];
762                 history.current_peak = current_peak;
763         }
764 }
765
766 void AudioMixer::update_meters(const vector<float> &samples)
767 {
768         // Upsample 4x to find interpolated peak.
769         peak_resampler.inp_data = const_cast<float *>(samples.data());
770         peak_resampler.inp_count = samples.size() / 2;
771
772         vector<float> interpolated_samples;
773         interpolated_samples.resize(samples.size());
774         {
775                 lock_guard<mutex> lock(audio_measure_mutex);
776
777                 while (peak_resampler.inp_count > 0) {  // About four iterations.
778                         peak_resampler.out_data = &interpolated_samples[0];
779                         peak_resampler.out_count = interpolated_samples.size() / 2;
780                         peak_resampler.process();
781                         size_t out_stereo_samples = interpolated_samples.size() / 2 - peak_resampler.out_count;
782                         peak = max<float>(peak, find_peak(interpolated_samples.data(), out_stereo_samples * 2));
783                         peak_resampler.out_data = nullptr;
784                 }
785         }
786
787         // Find R128 levels and L/R correlation.
788         vector<float> left, right;
789         deinterleave_samples(samples, &left, &right);
790         float *ptrs[] = { left.data(), right.data() };
791         {
792                 lock_guard<mutex> lock(audio_measure_mutex);
793                 r128.process(left.size(), ptrs);
794                 correlation.process_samples(samples);
795         }
796
797         send_audio_level_callback();
798 }
799
800 void AudioMixer::reset_meters()
801 {
802         lock_guard<mutex> lock(audio_measure_mutex);
803         peak_resampler.reset();
804         peak = 0.0f;
805         r128.reset();
806         r128.integr_start();
807         correlation.reset();
808 }
809
810 void AudioMixer::send_audio_level_callback()
811 {
812         if (audio_level_callback == nullptr) {
813                 return;
814         }
815
816         lock_guard<mutex> lock(audio_measure_mutex);
817         double loudness_s = r128.loudness_S();
818         double loudness_i = r128.integrated();
819         double loudness_range_low = r128.range_min();
820         double loudness_range_high = r128.range_max();
821
822         vector<BusLevel> bus_levels;
823         bus_levels.resize(input_mapping.buses.size());
824         {
825                 lock_guard<mutex> lock(compressor_mutex);
826                 for (unsigned bus_index = 0; bus_index < bus_levels.size(); ++bus_index) {
827                         bus_levels[bus_index].current_level_dbfs[0] = to_db(peak_history[bus_index][0].current_level);
828                         bus_levels[bus_index].current_level_dbfs[1] = to_db(peak_history[bus_index][1].current_level);
829                         bus_levels[bus_index].peak_level_dbfs[0] = to_db(peak_history[bus_index][0].current_peak);
830                         bus_levels[bus_index].peak_level_dbfs[1] = to_db(peak_history[bus_index][1].current_peak);
831                         bus_levels[bus_index].historic_peak_dbfs = to_db(
832                                 max(peak_history[bus_index][0].historic_peak,
833                                     peak_history[bus_index][1].historic_peak));
834                         bus_levels[bus_index].gain_staging_db = gain_staging_db[bus_index];
835                         if (compressor_enabled[bus_index]) {
836                                 bus_levels[bus_index].compressor_attenuation_db = -to_db(compressor[bus_index]->get_attenuation());
837                         } else {
838                                 bus_levels[bus_index].compressor_attenuation_db = 0.0;
839                         }
840                 }
841         }
842
843         audio_level_callback(loudness_s, to_db(peak), bus_levels,
844                 loudness_i, loudness_range_low, loudness_range_high,
845                 to_db(final_makeup_gain),
846                 correlation.get_correlation());
847 }
848
849 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices()
850 {
851         lock_guard<timed_mutex> lock(audio_mutex);
852
853         map<DeviceSpec, DeviceInfo> devices;
854         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
855                 const DeviceSpec spec{ InputSourceType::CAPTURE_CARD, card_index };
856                 const AudioDevice *device = &video_cards[card_index];
857                 DeviceInfo info;
858                 info.display_name = device->display_name;
859                 info.num_channels = 8;
860                 devices.insert(make_pair(spec, info));
861         }
862         vector<ALSAPool::Device> available_alsa_devices = alsa_pool.get_devices();
863         for (unsigned card_index = 0; card_index < available_alsa_devices.size(); ++card_index) {
864                 const DeviceSpec spec{ InputSourceType::ALSA_INPUT, card_index };
865                 const ALSAPool::Device &device = available_alsa_devices[card_index];
866                 DeviceInfo info;
867                 info.display_name = device.display_name();
868                 info.num_channels = device.num_channels;
869                 info.alsa_name = device.name;
870                 info.alsa_info = device.info;
871                 info.alsa_address = device.address;
872                 devices.insert(make_pair(spec, info));
873         }
874         return devices;
875 }
876
877 void AudioMixer::set_display_name(DeviceSpec device_spec, const string &name)
878 {
879         AudioDevice *device = find_audio_device(device_spec);
880
881         lock_guard<timed_mutex> lock(audio_mutex);
882         device->display_name = name;
883 }
884
885 void AudioMixer::serialize_device(DeviceSpec device_spec, DeviceSpecProto *device_spec_proto)
886 {
887         lock_guard<timed_mutex> lock(audio_mutex);
888         switch (device_spec.type) {
889                 case InputSourceType::SILENCE:
890                         device_spec_proto->set_type(DeviceSpecProto::SILENCE);
891                         break;
892                 case InputSourceType::CAPTURE_CARD:
893                         device_spec_proto->set_type(DeviceSpecProto::CAPTURE_CARD);
894                         device_spec_proto->set_index(device_spec.index);
895                         device_spec_proto->set_display_name(video_cards[device_spec.index].display_name);
896                         break;
897                 case InputSourceType::ALSA_INPUT:
898                         alsa_pool.serialize_device(device_spec.index, device_spec_proto);
899                         break;
900         }
901 }
902
903 void AudioMixer::set_simple_input(unsigned card_index)
904 {
905         InputMapping new_input_mapping;
906         InputMapping::Bus input;
907         input.name = "Main";
908         input.device.type = InputSourceType::CAPTURE_CARD;
909         input.device.index = card_index;
910         input.source_channel[0] = 0;
911         input.source_channel[1] = 1;
912
913         new_input_mapping.buses.push_back(input);
914
915         lock_guard<timed_mutex> lock(audio_mutex);
916         current_mapping_mode = MappingMode::SIMPLE;
917         set_input_mapping_lock_held(new_input_mapping);
918         fader_volume_db[0] = 0.0f;
919 }
920
921 unsigned AudioMixer::get_simple_input() const
922 {
923         lock_guard<timed_mutex> lock(audio_mutex);
924         if (input_mapping.buses.size() == 1 &&
925             input_mapping.buses[0].device.type == InputSourceType::CAPTURE_CARD &&
926             input_mapping.buses[0].source_channel[0] == 0 &&
927             input_mapping.buses[0].source_channel[1] == 1) {
928                 return input_mapping.buses[0].device.index;
929         } else {
930                 return numeric_limits<unsigned>::max();
931         }
932 }
933
934 void AudioMixer::set_input_mapping(const InputMapping &new_input_mapping)
935 {
936         lock_guard<timed_mutex> lock(audio_mutex);
937         set_input_mapping_lock_held(new_input_mapping);
938         current_mapping_mode = MappingMode::MULTICHANNEL;
939 }
940
941 AudioMixer::MappingMode AudioMixer::get_mapping_mode() const
942 {
943         lock_guard<timed_mutex> lock(audio_mutex);
944         return current_mapping_mode;
945 }
946
947 void AudioMixer::set_input_mapping_lock_held(const InputMapping &new_input_mapping)
948 {
949         map<DeviceSpec, set<unsigned>> interesting_channels;
950         for (const InputMapping::Bus &bus : new_input_mapping.buses) {
951                 if (bus.device.type == InputSourceType::CAPTURE_CARD ||
952                     bus.device.type == InputSourceType::ALSA_INPUT) {
953                         for (unsigned channel = 0; channel < 2; ++channel) {
954                                 if (bus.source_channel[channel] != -1) {
955                                         interesting_channels[bus.device].insert(bus.source_channel[channel]);
956                                 }
957                         }
958                 }
959         }
960
961         // Reset resamplers for all cards that don't have the exact same state as before.
962         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
963                 const DeviceSpec device_spec{InputSourceType::CAPTURE_CARD, card_index};
964                 AudioDevice *device = find_audio_device(device_spec);
965                 if (device->interesting_channels != interesting_channels[device_spec]) {
966                         device->interesting_channels = interesting_channels[device_spec];
967                         reset_resampler_mutex_held(device_spec);
968                 }
969         }
970         for (unsigned card_index = 0; card_index < MAX_ALSA_CARDS; ++card_index) {
971                 const DeviceSpec device_spec{InputSourceType::ALSA_INPUT, card_index};
972                 AudioDevice *device = find_audio_device(device_spec);
973                 if (interesting_channels[device_spec].empty()) {
974                         alsa_pool.release_device(card_index);
975                 } else {
976                         alsa_pool.hold_device(card_index);
977                 }
978                 if (device->interesting_channels != interesting_channels[device_spec]) {
979                         device->interesting_channels = interesting_channels[device_spec];
980                         alsa_pool.reset_device(device_spec.index);
981                         reset_resampler_mutex_held(device_spec);
982                 }
983         }
984
985         input_mapping = new_input_mapping;
986 }
987
988 InputMapping AudioMixer::get_input_mapping() const
989 {
990         lock_guard<timed_mutex> lock(audio_mutex);
991         return input_mapping;
992 }
993
994 unsigned AudioMixer::num_buses() const
995 {
996         lock_guard<timed_mutex> lock(audio_mutex);
997         return input_mapping.buses.size();
998 }
999
1000 void AudioMixer::reset_peak(unsigned bus_index)
1001 {
1002         lock_guard<timed_mutex> lock(audio_mutex);
1003         for (unsigned channel = 0; channel < 2; ++channel) {
1004                 PeakHistory &history = peak_history[bus_index][channel];
1005                 history.current_level = 0.0f;
1006                 history.historic_peak = 0.0f;
1007                 history.current_peak = 0.0f;
1008                 history.last_peak = 0.0f;
1009                 history.age_seconds = 0.0f;
1010         }
1011 }
1012
1013 AudioMixer *global_audio_mixer = nullptr;