]> git.sesse.net Git - nageru/blob - audio_mixer.cpp
Make the samples_card array capable of storing samples from multiple kinds of cards.
[nageru] / audio_mixer.cpp
1 #include "audio_mixer.h"
2
3 #include <assert.h>
4 #include <endian.h>
5 #include <bmusb/bmusb.h>
6 #include <stdio.h>
7 #include <endian.h>
8 #include <cmath>
9
10 #include "db.h"
11 #include "flags.h"
12 #include "timebase.h"
13
14 using namespace bmusb;
15 using namespace std;
16
17 namespace {
18
19 // TODO: If these prove to be a bottleneck, they can be SSSE3-optimized
20 // (usually including multiple channels at a time).
21
22 void convert_fixed16_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
23                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
24                              size_t num_samples)
25 {
26         assert(in_channel < in_num_channels);
27         assert(out_channel < out_num_channels);
28         src += in_channel * 2;
29         dst += out_channel;
30
31         for (size_t i = 0; i < num_samples; ++i) {
32                 int16_t s = le16toh(*(int16_t *)src);
33                 *dst = s * (1.0f / 32768.0f);
34
35                 src += 2 * in_num_channels;
36                 dst += out_num_channels;
37         }
38 }
39
40 void convert_fixed24_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
41                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
42                              size_t num_samples)
43 {
44         assert(in_channel < in_num_channels);
45         assert(out_channel < out_num_channels);
46         src += in_channel * 3;
47         dst += out_channel;
48
49         for (size_t i = 0; i < num_samples; ++i) {
50                 uint32_t s1 = src[0];
51                 uint32_t s2 = src[1];
52                 uint32_t s3 = src[2];
53                 uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
54                 *dst = int(s) * (1.0f / 2147483648.0f);
55
56                 src += 3 * in_num_channels;
57                 dst += out_num_channels;
58         }
59 }
60
61 void convert_fixed32_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
62                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
63                              size_t num_samples)
64 {
65         assert(in_channel < in_num_channels);
66         assert(out_channel < out_num_channels);
67         src += in_channel * 4;
68         dst += out_channel;
69
70         for (size_t i = 0; i < num_samples; ++i) {
71                 int32_t s = le32toh(*(int32_t *)src);
72                 *dst = s * (1.0f / 2147483648.0f);
73
74                 src += 4 * in_num_channels;
75                 dst += out_num_channels;
76         }
77 }
78
79 }  // namespace
80
81 AudioMixer::AudioMixer(unsigned num_cards)
82         : num_cards(num_cards),
83           level_compressor(OUTPUT_FREQUENCY),
84           limiter(OUTPUT_FREQUENCY),
85           compressor(OUTPUT_FREQUENCY)
86 {
87         locut.init(FILTER_HPF, 2);
88
89         set_locut_enabled(global_flags.locut_enabled);
90         set_gain_staging_db(global_flags.initial_gain_staging_db);
91         set_gain_staging_auto(global_flags.gain_staging_auto);
92         set_compressor_enabled(global_flags.compressor_enabled);
93         set_limiter_enabled(global_flags.limiter_enabled);
94         set_final_makeup_gain_auto(global_flags.final_makeup_gain_auto);
95
96         // Generate a very simple, default input mapping.
97         InputMapping::Bus input;
98         input.name = "Main";
99         input.device.type = InputSourceType::CAPTURE_CARD;
100         input.device.index = 0;
101         input.source_channel[0] = 0;
102         input.source_channel[1] = 1;
103
104         InputMapping new_input_mapping;
105         new_input_mapping.buses.push_back(input);
106         set_input_mapping(new_input_mapping);
107 }
108
109 void AudioMixer::reset_device(DeviceSpec device_spec)
110 {
111         lock_guard<mutex> lock(audio_mutex);
112         reset_device_mutex_held(device_spec);
113 }
114
115 void AudioMixer::reset_device_mutex_held(DeviceSpec device_spec)
116 {
117         AudioDevice *device = find_audio_device(device_spec);
118         if (device->interesting_channels.empty()) {
119                 device->resampling_queue.reset();
120         } else {
121                 // TODO: ResamplingQueue should probably take the full device spec.
122                 // (It's only used for console output, though.)
123                 device->resampling_queue.reset(new ResamplingQueue(device_spec.index, device->capture_frequency, OUTPUT_FREQUENCY, device->interesting_channels.size()));
124         }
125         device->next_local_pts = 0;
126 }
127
128 void AudioMixer::add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, AudioFormat audio_format, int64_t frame_length)
129 {
130         AudioDevice *device = find_audio_device(device_spec);
131
132         lock_guard<mutex> lock(audio_mutex);
133         if (device->resampling_queue == nullptr) {
134                 // No buses use this device; throw it away.
135                 return;
136         }
137
138         unsigned num_channels = device->interesting_channels.size();
139         assert(num_channels > 0);
140
141         // Convert the audio to fp32.
142         vector<float> audio;
143         audio.resize(num_samples * num_channels);
144         unsigned channel_index = 0;
145         for (auto channel_it = device->interesting_channels.cbegin(); channel_it != device->interesting_channels.end(); ++channel_it, ++channel_index) {
146                 switch (audio_format.bits_per_sample) {
147                 case 0:
148                         assert(num_samples == 0);
149                         break;
150                 case 16:
151                         convert_fixed16_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
152                         break;
153                 case 24:
154                         convert_fixed24_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
155                         break;
156                 case 32:
157                         convert_fixed32_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
158                         break;
159                 default:
160                         fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
161                         assert(false);
162                 }
163         }
164
165         // Now add it.
166         int64_t local_pts = device->next_local_pts;
167         device->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
168         device->next_local_pts = local_pts + frame_length;
169 }
170
171 void AudioMixer::add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length)
172 {
173         AudioDevice *device = find_audio_device(device_spec);
174
175         lock_guard<mutex> lock(audio_mutex);
176         if (device->resampling_queue == nullptr) {
177                 // No buses use this device; throw it away.
178                 return;
179         }
180
181         unsigned num_channels = device->interesting_channels.size();
182         assert(num_channels > 0);
183
184         vector<float> silence(samples_per_frame * num_channels, 0.0f);
185         for (unsigned i = 0; i < num_frames; ++i) {
186                 device->resampling_queue->add_input_samples(device->next_local_pts / double(TIMEBASE), silence.data(), samples_per_frame);
187                 // Note that if the format changed in the meantime, we have
188                 // no way of detecting that; we just have to assume the frame length
189                 // is always the same.
190                 device->next_local_pts += frame_length;
191         }
192 }
193
194 AudioMixer::AudioDevice *AudioMixer::find_audio_device(DeviceSpec device)
195 {
196         switch (device.type) {
197         case InputSourceType::CAPTURE_CARD:
198                 return &video_cards[device.index];
199         case InputSourceType::SILENCE:
200         default:
201                 assert(false);
202         }
203         return nullptr;
204 }
205
206 void AudioMixer::find_sample_src_from_device(const map<DeviceSpec, vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride)
207 {
208         static float zero = 0.0f;
209         if (source_channel == -1 || device_spec.type == InputSourceType::SILENCE) {
210                 *srcptr = &zero;
211                 *stride = 0;
212                 return;
213         }
214         AudioDevice *device = find_audio_device(device_spec);
215         unsigned channel_index = 0;
216         for (int channel : device->interesting_channels) {
217                 if (channel == source_channel) break;
218                 ++channel_index;
219         }
220         assert(channel_index < device->interesting_channels.size());
221         const auto it = samples_card.find(device_spec);
222         assert(it != samples_card.end());
223         *srcptr = &(it->second)[channel_index];
224         *stride = device->interesting_channels.size();
225 }
226
227 // TODO: Can be SSSE3-optimized if need be.
228 void AudioMixer::fill_audio_bus(const map<DeviceSpec, vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output)
229 {
230         if (bus.device.type == InputSourceType::SILENCE) {
231                 memset(output, 0, num_samples * sizeof(*output));
232         } else {
233                 assert(bus.device.type == InputSourceType::CAPTURE_CARD);
234                 const float *lsrc, *rsrc;
235                 unsigned lstride, rstride;
236                 float *dptr = output;
237                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[0], &lsrc, &lstride);
238                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[1], &rsrc, &rstride);
239                 for (unsigned i = 0; i < num_samples; ++i) {
240                         *dptr++ = *lsrc;
241                         *dptr++ = *rsrc;
242                         lsrc += lstride;
243                         rsrc += rstride;
244                 }
245         }
246 }
247
248 vector<float> AudioMixer::get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy)
249 {
250         map<DeviceSpec, vector<float>> samples_card;
251         vector<float> samples_bus;
252
253         lock_guard<mutex> lock(audio_mutex);
254
255         // Pick out all the interesting channels from all the cards.
256         // TODO: If the card has been hotswapped, the number of channels
257         // might have changed; if so, we need to do some sort of remapping
258         // to silence.
259         for (const auto &spec_and_info : get_devices_mutex_held()) {
260                 const DeviceSpec &device_spec = spec_and_info.first;
261                 AudioDevice *device = find_audio_device(device_spec);
262                 if (!device->interesting_channels.empty()) {
263                         samples_card[device_spec].resize(num_samples * device->interesting_channels.size());
264                         device->resampling_queue->get_output_samples(
265                                 pts,
266                                 &samples_card[device_spec][0],
267                                 num_samples,
268                                 rate_adjustment_policy);
269                 }
270         }
271
272         // TODO: Move lo-cut etc. into each bus.
273         vector<float> samples_out;
274         samples_out.resize(num_samples * 2);
275         samples_bus.resize(num_samples * 2);
276         for (unsigned bus_index = 0; bus_index < input_mapping.buses.size(); ++bus_index) {
277                 fill_audio_bus(samples_card, input_mapping.buses[bus_index], num_samples, &samples_bus[0]);
278
279                 float volume = from_db(fader_volume_db[bus_index]);
280                 if (bus_index == 0) {
281                         for (unsigned i = 0; i < num_samples * 2; ++i) {
282                                 samples_out[i] = samples_bus[i] * volume;
283                         }
284                 } else {
285                         for (unsigned i = 0; i < num_samples * 2; ++i) {
286                                 samples_out[i] += samples_bus[i] * volume;
287                         }
288                 }
289         }
290
291         // Cut away everything under 120 Hz (or whatever the cutoff is);
292         // we don't need it for voice, and it will reduce headroom
293         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
294         // should be dampened.)
295         if (locut_enabled) {
296                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
297         }
298
299         {
300                 lock_guard<mutex> lock(compressor_mutex);
301
302                 // Apply a level compressor to get the general level right.
303                 // Basically, if it's over about -40 dBFS, we squeeze it down to that level
304                 // (or more precisely, near it, since we don't use infinite ratio),
305                 // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
306                 // entirely arbitrary, but from practical tests with speech, it seems to
307                 // put ut around -23 LUFS, so it's a reasonable starting point for later use.
308                 {
309                         if (level_compressor_enabled) {
310                                 float threshold = 0.01f;   // -40 dBFS.
311                                 float ratio = 20.0f;
312                                 float attack_time = 0.5f;
313                                 float release_time = 20.0f;
314                                 float makeup_gain = from_db(ref_level_dbfs - (-40.0f));  // +26 dB.
315                                 level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
316                                 gain_staging_db = to_db(level_compressor.get_attenuation() * makeup_gain);
317                         } else {
318                                 // Just apply the gain we already had.
319                                 float g = from_db(gain_staging_db);
320                                 for (size_t i = 0; i < samples_out.size(); ++i) {
321                                         samples_out[i] *= g;
322                                 }
323                         }
324                 }
325
326         #if 0
327                 printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
328                         level_compressor.get_level(), to_db(level_compressor.get_level()),
329                         level_compressor.get_attenuation(), to_db(level_compressor.get_attenuation()),
330                         to_db(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
331         #endif
332
333         //      float limiter_att, compressor_att;
334
335                 // The real compressor.
336                 if (compressor_enabled) {
337                         float threshold = from_db(compressor_threshold_dbfs);
338                         float ratio = 20.0f;
339                         float attack_time = 0.005f;
340                         float release_time = 0.040f;
341                         float makeup_gain = 2.0f;  // +6 dB.
342                         compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
343         //              compressor_att = compressor.get_attenuation();
344                 }
345
346                 // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
347                 // Note that since ratio is not infinite, we could go slightly higher than this.
348                 if (limiter_enabled) {
349                         float threshold = from_db(limiter_threshold_dbfs);
350                         float ratio = 30.0f;
351                         float attack_time = 0.0f;  // Instant.
352                         float release_time = 0.020f;
353                         float makeup_gain = 1.0f;  // 0 dB.
354                         limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
355         //              limiter_att = limiter.get_attenuation();
356                 }
357
358         //      printf("limiter=%+5.1f  compressor=%+5.1f\n", to_db(limiter_att), to_db(compressor_att));
359         }
360
361         // At this point, we are most likely close to +0 LU, but all of our
362         // measurements have been on raw sample values, not R128 values.
363         // So we have a final makeup gain to get us to +0 LU; the gain
364         // adjustments required should be relatively small, and also, the
365         // offset shouldn't change much (only if the type of audio changes
366         // significantly). Thus, we shoot for updating this value basically
367         // “whenever we process buffers”, since the R128 calculation isn't exactly
368         // something we get out per-sample.
369         //
370         // Note that there's a feedback loop here, so we choose a very slow filter
371         // (half-time of 30 seconds).
372         double target_loudness_factor, alpha;
373         double loudness_lu = loudness_lufs - ref_level_lufs;
374         double current_makeup_lu = to_db(final_makeup_gain);
375         target_loudness_factor = final_makeup_gain * from_db(-loudness_lu);
376
377         // If we're outside +/- 5 LU uncorrected, we don't count it as
378         // a normal signal (probably silence) and don't change the
379         // correction factor; just apply what we already have.
380         if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
381                 alpha = 0.0;
382         } else {
383                 // Formula adapted from
384                 // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
385                 const double half_time_s = 30.0;
386                 const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
387                 alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
388         }
389
390         {
391                 lock_guard<mutex> lock(compressor_mutex);
392                 double m = final_makeup_gain;
393                 for (size_t i = 0; i < samples_out.size(); i += 2) {
394                         samples_out[i + 0] *= m;
395                         samples_out[i + 1] *= m;
396                         m += (target_loudness_factor - m) * alpha;
397                 }
398                 final_makeup_gain = m;
399         }
400
401         return samples_out;
402 }
403
404 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices() const
405 {
406         lock_guard<mutex> lock(audio_mutex);
407         return get_devices_mutex_held();
408 }
409
410 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices_mutex_held() const
411 {
412         map<DeviceSpec, DeviceInfo> devices;
413         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
414                 const DeviceSpec spec{ InputSourceType::CAPTURE_CARD, card_index };
415                 const AudioDevice *device = &video_cards[card_index];
416                 DeviceInfo info;
417                 info.name = device->name;
418                 info.num_channels = 8;  // FIXME: This is wrong for fake cards.
419                 devices.insert(make_pair(spec, info));
420         }
421         return devices;
422 }
423
424 void AudioMixer::set_name(DeviceSpec device_spec, const string &name)
425 {
426         AudioDevice *device = find_audio_device(device_spec);
427
428         lock_guard<mutex> lock(audio_mutex);
429         device->name = name;
430 }
431
432 void AudioMixer::set_input_mapping(const InputMapping &new_input_mapping)
433 {
434         lock_guard<mutex> lock(audio_mutex);
435
436         map<DeviceSpec, set<unsigned>> interesting_channels;
437         for (const InputMapping::Bus &bus : new_input_mapping.buses) {
438                 if (bus.device.type == InputSourceType::CAPTURE_CARD) {
439                         for (unsigned channel = 0; channel < 2; ++channel) {
440                                 if (bus.source_channel[channel] != -1) {
441                                         interesting_channels[bus.device].insert(bus.source_channel[channel]);
442                                 }
443                         }
444                 }
445         }
446
447         // Reset resamplers for all cards that don't have the exact same state as before.
448         for (const auto &spec_and_info : get_devices_mutex_held()) {
449                 const DeviceSpec &device_spec = spec_and_info.first;
450                 AudioDevice *device = find_audio_device(device_spec);
451                 if (device->interesting_channels != interesting_channels[device_spec]) {
452                         device->interesting_channels = interesting_channels[device_spec];
453                         reset_device_mutex_held(device_spec);
454                 }
455         }
456
457         input_mapping = new_input_mapping;
458 }
459
460 InputMapping AudioMixer::get_input_mapping() const
461 {
462         lock_guard<mutex> lock(audio_mutex);
463         return input_mapping;
464 }