]> git.sesse.net Git - nageru/blob - audio_mixer.cpp
Tiny audio optimization (~1%) by making an SSE version of find_peak(); mostly to...
[nageru] / audio_mixer.cpp
1 #include "audio_mixer.h"
2
3 #include <assert.h>
4 #include <endian.h>
5 #include <bmusb/bmusb.h>
6 #include <stdio.h>
7 #include <endian.h>
8 #include <cmath>
9 #ifdef __SSE__
10 #include <immintrin.h>
11 #endif
12
13 #include "db.h"
14 #include "flags.h"
15 #include "timebase.h"
16
17 using namespace bmusb;
18 using namespace std;
19 using namespace std::placeholders;
20
21 namespace {
22
23 // TODO: If these prove to be a bottleneck, they can be SSSE3-optimized
24 // (usually including multiple channels at a time).
25
26 void convert_fixed16_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
27                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
28                              size_t num_samples)
29 {
30         assert(in_channel < in_num_channels);
31         assert(out_channel < out_num_channels);
32         src += in_channel * 2;
33         dst += out_channel;
34
35         for (size_t i = 0; i < num_samples; ++i) {
36                 int16_t s = le16toh(*(int16_t *)src);
37                 *dst = s * (1.0f / 32768.0f);
38
39                 src += 2 * in_num_channels;
40                 dst += out_num_channels;
41         }
42 }
43
44 void convert_fixed24_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
45                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
46                              size_t num_samples)
47 {
48         assert(in_channel < in_num_channels);
49         assert(out_channel < out_num_channels);
50         src += in_channel * 3;
51         dst += out_channel;
52
53         for (size_t i = 0; i < num_samples; ++i) {
54                 uint32_t s1 = src[0];
55                 uint32_t s2 = src[1];
56                 uint32_t s3 = src[2];
57                 uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
58                 *dst = int(s) * (1.0f / 2147483648.0f);
59
60                 src += 3 * in_num_channels;
61                 dst += out_num_channels;
62         }
63 }
64
65 void convert_fixed32_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
66                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
67                              size_t num_samples)
68 {
69         assert(in_channel < in_num_channels);
70         assert(out_channel < out_num_channels);
71         src += in_channel * 4;
72         dst += out_channel;
73
74         for (size_t i = 0; i < num_samples; ++i) {
75                 int32_t s = le32toh(*(int32_t *)src);
76                 *dst = s * (1.0f / 2147483648.0f);
77
78                 src += 4 * in_num_channels;
79                 dst += out_num_channels;
80         }
81 }
82
83 float find_peak_plain(const float *samples, size_t num_samples) __attribute__((unused));
84
85 float find_peak_plain(const float *samples, size_t num_samples)
86 {
87         float m = fabs(samples[0]);
88         for (size_t i = 1; i < num_samples; ++i) {
89                 m = max(m, fabs(samples[i]));
90         }
91         return m;
92 }
93
94 #ifdef __SSE__
95 static inline float horizontal_max(__m128 m)
96 {
97         __m128 tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 0, 3, 2));
98         m = _mm_max_ps(m, tmp);
99         tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 3, 0, 1));
100         m = _mm_max_ps(m, tmp);
101         return _mm_cvtss_f32(m);
102 }
103
104 float find_peak(const float *samples, size_t num_samples)
105 {
106         const __m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffffu));
107         __m128 m = _mm_setzero_ps();
108         for (size_t i = 0; i < (num_samples & ~3); i += 4) {
109                 __m128 x = _mm_loadu_ps(samples + i);
110                 x = _mm_and_ps(x, abs_mask);
111                 m = _mm_max_ps(m, x);
112         }
113         float result = horizontal_max(m);
114
115         for (size_t i = (num_samples & ~3); i < num_samples; ++i) {
116                 result = max(result, fabs(samples[i]));
117         }
118
119 #if 0
120         // Self-test. We should be bit-exact the same.
121         float reference_result = find_peak_plain(samples, num_samples);
122         if (result != reference_result) {
123                 fprintf(stderr, "Error: Peak is %f [%f %f %f %f]; should be %f.\n",
124                         result,
125                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(0, 0, 0, 0))),
126                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 1, 1, 1))),
127                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 2, 2, 2))),
128                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(3, 3, 3, 3))),
129                         reference_result);
130                 abort();
131         }
132 #endif
133         return result;
134 }
135 #else
136 float find_peak(const float *samples, size_t num_samples)
137 {
138         return find_peak_plain(samples, num_samples);
139 }
140 #endif
141
142 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
143 {
144         size_t num_samples = in.size() / 2;
145         out_l->resize(num_samples);
146         out_r->resize(num_samples);
147
148         const float *inptr = in.data();
149         float *lptr = &(*out_l)[0];
150         float *rptr = &(*out_r)[0];
151         for (size_t i = 0; i < num_samples; ++i) {
152                 *lptr++ = *inptr++;
153                 *rptr++ = *inptr++;
154         }
155 }
156
157 }  // namespace
158
159 AudioMixer::AudioMixer(unsigned num_cards)
160         : num_cards(num_cards),
161           limiter(OUTPUT_FREQUENCY),
162           correlation(OUTPUT_FREQUENCY)
163 {
164         for (unsigned bus_index = 0; bus_index < MAX_BUSES; ++bus_index) {
165                 locut[bus_index].init(FILTER_HPF, 2);
166                 locut_enabled[bus_index] = global_flags.locut_enabled;
167                 gain_staging_db[bus_index] = global_flags.initial_gain_staging_db;
168                 compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
169                 compressor_threshold_dbfs[bus_index] = ref_level_dbfs - 12.0f;  // -12 dB.
170                 compressor_enabled[bus_index] = global_flags.compressor_enabled;
171                 level_compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
172                 level_compressor_enabled[bus_index] = global_flags.gain_staging_auto;
173         }
174         set_limiter_enabled(global_flags.limiter_enabled);
175         set_final_makeup_gain_auto(global_flags.final_makeup_gain_auto);
176
177         // Generate a very simple, default input mapping.
178         InputMapping::Bus input;
179         input.name = "Main";
180         input.device.type = InputSourceType::CAPTURE_CARD;
181         input.device.index = 0;
182         input.source_channel[0] = 0;
183         input.source_channel[1] = 1;
184
185         InputMapping new_input_mapping;
186         new_input_mapping.buses.push_back(input);
187         set_input_mapping(new_input_mapping);
188
189         // Look for ALSA cards.
190         available_alsa_cards = ALSAInput::enumerate_devices();
191
192         r128.init(2, OUTPUT_FREQUENCY);
193         r128.integr_start();
194
195         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
196         // and there's a limit to how important the peak meter is.
197         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
198 }
199
200 AudioMixer::~AudioMixer()
201 {
202         for (unsigned card_index = 0; card_index < available_alsa_cards.size(); ++card_index) {
203                 const AudioDevice &device = alsa_inputs[card_index];
204                 if (device.alsa_device != nullptr) {
205                         device.alsa_device->stop_capture_thread();
206                 }
207         }
208 }
209
210
211 void AudioMixer::reset_resampler(DeviceSpec device_spec)
212 {
213         lock_guard<timed_mutex> lock(audio_mutex);
214         reset_resampler_mutex_held(device_spec);
215 }
216
217 void AudioMixer::reset_resampler_mutex_held(DeviceSpec device_spec)
218 {
219         AudioDevice *device = find_audio_device(device_spec);
220
221         if (device->interesting_channels.empty()) {
222                 device->resampling_queue.reset();
223         } else {
224                 // TODO: ResamplingQueue should probably take the full device spec.
225                 // (It's only used for console output, though.)
226                 device->resampling_queue.reset(new ResamplingQueue(device_spec.index, device->capture_frequency, OUTPUT_FREQUENCY, device->interesting_channels.size()));
227         }
228         device->next_local_pts = 0;
229 }
230
231 void AudioMixer::reset_alsa_mutex_held(DeviceSpec device_spec)
232 {
233         assert(device_spec.type == InputSourceType::ALSA_INPUT);
234         unsigned card_index = device_spec.index;
235         AudioDevice *device = find_audio_device(device_spec);
236
237         if (device->alsa_device != nullptr) {
238                 device->alsa_device->stop_capture_thread();
239         }
240         if (device->interesting_channels.empty()) {
241                 device->alsa_device.reset();
242         } else {
243                 const ALSAInput::Device &alsa_dev = available_alsa_cards[card_index];
244                 device->alsa_device.reset(new ALSAInput(alsa_dev.address.c_str(), OUTPUT_FREQUENCY, alsa_dev.num_channels, bind(&AudioMixer::add_audio, this, device_spec, _1, _2, _3, _4)));
245                 device->capture_frequency = device->alsa_device->get_sample_rate();
246                 device->alsa_device->start_capture_thread();
247         }
248 }
249
250 bool AudioMixer::add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, AudioFormat audio_format, int64_t frame_length)
251 {
252         AudioDevice *device = find_audio_device(device_spec);
253
254         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
255         if (!lock.try_lock_for(chrono::milliseconds(10))) {
256                 return false;
257         }
258         if (device->resampling_queue == nullptr) {
259                 // No buses use this device; throw it away.
260                 return true;
261         }
262
263         unsigned num_channels = device->interesting_channels.size();
264         assert(num_channels > 0);
265
266         // Convert the audio to fp32.
267         vector<float> audio;
268         audio.resize(num_samples * num_channels);
269         unsigned channel_index = 0;
270         for (auto channel_it = device->interesting_channels.cbegin(); channel_it != device->interesting_channels.end(); ++channel_it, ++channel_index) {
271                 switch (audio_format.bits_per_sample) {
272                 case 0:
273                         assert(num_samples == 0);
274                         break;
275                 case 16:
276                         convert_fixed16_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
277                         break;
278                 case 24:
279                         convert_fixed24_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
280                         break;
281                 case 32:
282                         convert_fixed32_to_fp32(&audio[0], channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
283                         break;
284                 default:
285                         fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
286                         assert(false);
287                 }
288         }
289
290         // Now add it.
291         int64_t local_pts = device->next_local_pts;
292         device->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
293         device->next_local_pts = local_pts + frame_length;
294         return true;
295 }
296
297 bool AudioMixer::add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length)
298 {
299         AudioDevice *device = find_audio_device(device_spec);
300
301         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
302         if (!lock.try_lock_for(chrono::milliseconds(10))) {
303                 return false;
304         }
305         if (device->resampling_queue == nullptr) {
306                 // No buses use this device; throw it away.
307                 return true;
308         }
309
310         unsigned num_channels = device->interesting_channels.size();
311         assert(num_channels > 0);
312
313         vector<float> silence(samples_per_frame * num_channels, 0.0f);
314         for (unsigned i = 0; i < num_frames; ++i) {
315                 device->resampling_queue->add_input_samples(device->next_local_pts / double(TIMEBASE), silence.data(), samples_per_frame);
316                 // Note that if the format changed in the meantime, we have
317                 // no way of detecting that; we just have to assume the frame length
318                 // is always the same.
319                 device->next_local_pts += frame_length;
320         }
321         return true;
322 }
323
324 AudioMixer::AudioDevice *AudioMixer::find_audio_device(DeviceSpec device)
325 {
326         switch (device.type) {
327         case InputSourceType::CAPTURE_CARD:
328                 return &video_cards[device.index];
329         case InputSourceType::ALSA_INPUT:
330                 return &alsa_inputs[device.index];
331         case InputSourceType::SILENCE:
332         default:
333                 assert(false);
334         }
335         return nullptr;
336 }
337
338 // Get a pointer to the given channel from the given device.
339 // The channel must be picked out earlier and resampled.
340 void AudioMixer::find_sample_src_from_device(const map<DeviceSpec, vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride)
341 {
342         static float zero = 0.0f;
343         if (source_channel == -1 || device_spec.type == InputSourceType::SILENCE) {
344                 *srcptr = &zero;
345                 *stride = 0;
346                 return;
347         }
348         AudioDevice *device = find_audio_device(device_spec);
349         assert(device->interesting_channels.count(source_channel) != 0);
350         unsigned channel_index = 0;
351         for (int channel : device->interesting_channels) {
352                 if (channel == source_channel) break;
353                 ++channel_index;
354         }
355         assert(channel_index < device->interesting_channels.size());
356         const auto it = samples_card.find(device_spec);
357         assert(it != samples_card.end());
358         *srcptr = &(it->second)[channel_index];
359         *stride = device->interesting_channels.size();
360 }
361
362 // TODO: Can be SSSE3-optimized if need be.
363 void AudioMixer::fill_audio_bus(const map<DeviceSpec, vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output)
364 {
365         if (bus.device.type == InputSourceType::SILENCE) {
366                 memset(output, 0, num_samples * sizeof(*output));
367         } else {
368                 assert(bus.device.type == InputSourceType::CAPTURE_CARD ||
369                        bus.device.type == InputSourceType::ALSA_INPUT);
370                 const float *lsrc, *rsrc;
371                 unsigned lstride, rstride;
372                 float *dptr = output;
373                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[0], &lsrc, &lstride);
374                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[1], &rsrc, &rstride);
375                 for (unsigned i = 0; i < num_samples; ++i) {
376                         *dptr++ = *lsrc;
377                         *dptr++ = *rsrc;
378                         lsrc += lstride;
379                         rsrc += rstride;
380                 }
381         }
382 }
383
384 vector<float> AudioMixer::get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy)
385 {
386         map<DeviceSpec, vector<float>> samples_card;
387         vector<float> samples_bus;
388
389         lock_guard<timed_mutex> lock(audio_mutex);
390
391         // Pick out all the interesting channels from all the cards.
392         // TODO: If the card has been hotswapped, the number of channels
393         // might have changed; if so, we need to do some sort of remapping
394         // to silence.
395         for (const auto &spec_and_info : get_devices_mutex_held()) {
396                 const DeviceSpec &device_spec = spec_and_info.first;
397                 AudioDevice *device = find_audio_device(device_spec);
398                 if (!device->interesting_channels.empty()) {
399                         samples_card[device_spec].resize(num_samples * device->interesting_channels.size());
400                         device->resampling_queue->get_output_samples(
401                                 pts,
402                                 &samples_card[device_spec][0],
403                                 num_samples,
404                                 rate_adjustment_policy);
405                 }
406         }
407
408         vector<float> samples_out, left, right;
409         samples_out.resize(num_samples * 2);
410         samples_bus.resize(num_samples * 2);
411         for (unsigned bus_index = 0; bus_index < input_mapping.buses.size(); ++bus_index) {
412                 fill_audio_bus(samples_card, input_mapping.buses[bus_index], num_samples, &samples_bus[0]);
413
414                 // Cut away everything under 120 Hz (or whatever the cutoff is);
415                 // we don't need it for voice, and it will reduce headroom
416                 // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
417                 // should be dampened.)
418                 if (locut_enabled[bus_index]) {
419                         locut[bus_index].render(samples_bus.data(), samples_bus.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
420                 }
421
422                 {
423                         lock_guard<mutex> lock(compressor_mutex);
424
425                         // Apply a level compressor to get the general level right.
426                         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
427                         // (or more precisely, near it, since we don't use infinite ratio),
428                         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
429                         // entirely arbitrary, but from practical tests with speech, it seems to
430                         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
431                         if (level_compressor_enabled[bus_index]) {
432                                 float threshold = 0.01f;   // -40 dBFS.
433                                 float ratio = 20.0f;
434                                 float attack_time = 0.5f;
435                                 float release_time = 20.0f;
436                                 float makeup_gain = from_db(ref_level_dbfs - (-40.0f));  // +26 dB.
437                                 level_compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
438                                 gain_staging_db[bus_index] = to_db(level_compressor[bus_index]->get_attenuation() * makeup_gain);
439                         } else {
440                                 // Just apply the gain we already had.
441                                 float g = from_db(gain_staging_db[bus_index]);
442                                 for (size_t i = 0; i < samples_bus.size(); ++i) {
443                                         samples_bus[i] *= g;
444                                 }
445                         }
446
447 #if 0
448                         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
449                                 level_compressor.get_level(), to_db(level_compressor.get_level()),
450                                 level_compressor.get_attenuation(), to_db(level_compressor.get_attenuation()),
451                                 to_db(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
452 #endif
453
454                         // The real compressor.
455                         if (compressor_enabled[bus_index]) {
456                                 float threshold = from_db(compressor_threshold_dbfs[bus_index]);
457                                 float ratio = 20.0f;
458                                 float attack_time = 0.005f;
459                                 float release_time = 0.040f;
460                                 float makeup_gain = 2.0f;  // +6 dB.
461                                 compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
462                 //              compressor_att = compressor.get_attenuation();
463                         }
464                 }
465
466                 // TODO: We should measure post-fader.
467                 deinterleave_samples(samples_bus, &left, &right);
468                 measure_bus_levels(bus_index, left, right);
469
470                 float volume = from_db(fader_volume_db[bus_index]);
471                 if (bus_index == 0) {
472                         for (unsigned i = 0; i < num_samples * 2; ++i) {
473                                 samples_out[i] = samples_bus[i] * volume;
474                         }
475                 } else {
476                         for (unsigned i = 0; i < num_samples * 2; ++i) {
477                                 samples_out[i] += samples_bus[i] * volume;
478                         }
479                 }
480         }
481
482         {
483                 lock_guard<mutex> lock(compressor_mutex);
484
485                 // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
486                 // Note that since ratio is not infinite, we could go slightly higher than this.
487                 if (limiter_enabled) {
488                         float threshold = from_db(limiter_threshold_dbfs);
489                         float ratio = 30.0f;
490                         float attack_time = 0.0f;  // Instant.
491                         float release_time = 0.020f;
492                         float makeup_gain = 1.0f;  // 0 dB.
493                         limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
494         //              limiter_att = limiter.get_attenuation();
495                 }
496
497         //      printf("limiter=%+5.1f  compressor=%+5.1f\n", to_db(limiter_att), to_db(compressor_att));
498         }
499
500         // At this point, we are most likely close to +0 LU (at least if the
501         // faders sum to 0 dB and the compressors are on), but all of our
502         // measurements have been on raw sample values, not R128 values.
503         // So we have a final makeup gain to get us to +0 LU; the gain
504         // adjustments required should be relatively small, and also, the
505         // offset shouldn't change much (only if the type of audio changes
506         // significantly). Thus, we shoot for updating this value basically
507         // “whenever we process buffers”, since the R128 calculation isn't exactly
508         // something we get out per-sample.
509         //
510         // Note that there's a feedback loop here, so we choose a very slow filter
511         // (half-time of 30 seconds).
512         double target_loudness_factor, alpha;
513         double loudness_lu = r128.loudness_M() - ref_level_lufs;
514         double current_makeup_lu = to_db(final_makeup_gain);
515         target_loudness_factor = final_makeup_gain * from_db(-loudness_lu);
516
517         // If we're outside +/- 5 LU uncorrected, we don't count it as
518         // a normal signal (probably silence) and don't change the
519         // correction factor; just apply what we already have.
520         if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
521                 alpha = 0.0;
522         } else {
523                 // Formula adapted from
524                 // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
525                 const double half_time_s = 30.0;
526                 const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
527                 alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
528         }
529
530         {
531                 lock_guard<mutex> lock(compressor_mutex);
532                 double m = final_makeup_gain;
533                 for (size_t i = 0; i < samples_out.size(); i += 2) {
534                         samples_out[i + 0] *= m;
535                         samples_out[i + 1] *= m;
536                         m += (target_loudness_factor - m) * alpha;
537                 }
538                 final_makeup_gain = m;
539         }
540
541         update_meters(samples_out);
542
543         return samples_out;
544 }
545
546 void AudioMixer::measure_bus_levels(unsigned bus_index, const vector<float> &left, const vector<float> &right)
547 {
548         const float *ptrs[] = { left.data(), right.data() };
549         {
550                 lock_guard<mutex> lock(audio_measure_mutex);
551                 bus_r128[bus_index]->process(left.size(), const_cast<float **>(ptrs));
552         }
553 }
554
555 void AudioMixer::update_meters(const vector<float> &samples)
556 {
557         // Upsample 4x to find interpolated peak.
558         peak_resampler.inp_data = const_cast<float *>(samples.data());
559         peak_resampler.inp_count = samples.size() / 2;
560
561         vector<float> interpolated_samples;
562         interpolated_samples.resize(samples.size());
563         {
564                 lock_guard<mutex> lock(audio_measure_mutex);
565
566                 while (peak_resampler.inp_count > 0) {  // About four iterations.
567                         peak_resampler.out_data = &interpolated_samples[0];
568                         peak_resampler.out_count = interpolated_samples.size() / 2;
569                         peak_resampler.process();
570                         size_t out_stereo_samples = interpolated_samples.size() / 2 - peak_resampler.out_count;
571                         peak = max<float>(peak, find_peak(interpolated_samples.data(), out_stereo_samples * 2));
572                         peak_resampler.out_data = nullptr;
573                 }
574         }
575
576         // Find R128 levels and L/R correlation.
577         vector<float> left, right;
578         deinterleave_samples(samples, &left, &right);
579         float *ptrs[] = { left.data(), right.data() };
580         {
581                 lock_guard<mutex> lock(audio_measure_mutex);
582                 r128.process(left.size(), ptrs);
583                 correlation.process_samples(samples);
584         }
585
586         send_audio_level_callback();
587 }
588
589 void AudioMixer::reset_meters()
590 {
591         lock_guard<mutex> lock(audio_measure_mutex);
592         peak_resampler.reset();
593         peak = 0.0f;
594         r128.reset();
595         r128.integr_start();
596         correlation.reset();
597 }
598
599 void AudioMixer::send_audio_level_callback()
600 {
601         if (audio_level_callback == nullptr) {
602                 return;
603         }
604
605         lock_guard<mutex> lock(audio_measure_mutex);
606         double loudness_s = r128.loudness_S();
607         double loudness_i = r128.integrated();
608         double loudness_range_low = r128.range_min();
609         double loudness_range_high = r128.range_max();
610
611         vector<BusLevel> bus_levels;
612         bus_levels.resize(input_mapping.buses.size());
613         {
614                 lock_guard<mutex> lock(compressor_mutex);
615                 for (unsigned bus_index = 0; bus_index < bus_r128.size(); ++bus_index) {
616                         bus_levels[bus_index].loudness_lufs = bus_r128[bus_index]->loudness_S();
617                         bus_levels[bus_index].gain_staging_db = gain_staging_db[bus_index];
618                         if (compressor_enabled[bus_index]) {
619                                 bus_levels[bus_index].compressor_attenuation_db = -to_db(compressor[bus_index]->get_attenuation());
620                         } else {
621                                 bus_levels[bus_index].compressor_attenuation_db = 0.0;
622                         }
623                 }
624         }
625
626         audio_level_callback(loudness_s, to_db(peak), bus_levels,
627                 loudness_i, loudness_range_low, loudness_range_high,
628                 to_db(final_makeup_gain),
629                 correlation.get_correlation());
630 }
631
632 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices() const
633 {
634         lock_guard<timed_mutex> lock(audio_mutex);
635         return get_devices_mutex_held();
636 }
637
638 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices_mutex_held() const
639 {
640         map<DeviceSpec, DeviceInfo> devices;
641         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
642                 const DeviceSpec spec{ InputSourceType::CAPTURE_CARD, card_index };
643                 const AudioDevice *device = &video_cards[card_index];
644                 DeviceInfo info;
645                 info.name = device->name;
646                 info.num_channels = 8;  // FIXME: This is wrong for fake cards.
647                 devices.insert(make_pair(spec, info));
648         }
649         for (unsigned card_index = 0; card_index < available_alsa_cards.size(); ++card_index) {
650                 const DeviceSpec spec{ InputSourceType::ALSA_INPUT, card_index };
651                 const ALSAInput::Device &device = available_alsa_cards[card_index];
652                 DeviceInfo info;
653                 info.name = device.name + " (" + device.info + ")";
654                 info.num_channels = device.num_channels;
655                 devices.insert(make_pair(spec, info));
656         }
657         return devices;
658 }
659
660 void AudioMixer::set_name(DeviceSpec device_spec, const string &name)
661 {
662         AudioDevice *device = find_audio_device(device_spec);
663
664         lock_guard<timed_mutex> lock(audio_mutex);
665         device->name = name;
666 }
667
668 void AudioMixer::set_input_mapping(const InputMapping &new_input_mapping)
669 {
670         lock_guard<timed_mutex> lock(audio_mutex);
671
672         map<DeviceSpec, set<unsigned>> interesting_channels;
673         for (const InputMapping::Bus &bus : new_input_mapping.buses) {
674                 if (bus.device.type == InputSourceType::CAPTURE_CARD ||
675                     bus.device.type == InputSourceType::ALSA_INPUT) {
676                         for (unsigned channel = 0; channel < 2; ++channel) {
677                                 if (bus.source_channel[channel] != -1) {
678                                         interesting_channels[bus.device].insert(bus.source_channel[channel]);
679                                 }
680                         }
681                 }
682         }
683
684         // Reset resamplers for all cards that don't have the exact same state as before.
685         for (const auto &spec_and_info : get_devices_mutex_held()) {
686                 const DeviceSpec &device_spec = spec_and_info.first;
687                 AudioDevice *device = find_audio_device(device_spec);
688                 if (device->interesting_channels != interesting_channels[device_spec]) {
689                         device->interesting_channels = interesting_channels[device_spec];
690                         if (device_spec.type == InputSourceType::ALSA_INPUT) {
691                                 reset_alsa_mutex_held(device_spec);
692                         }
693                         reset_resampler_mutex_held(device_spec);
694                 }
695         }
696
697         {
698                 lock_guard<mutex> lock(audio_measure_mutex);
699                 bus_r128.resize(new_input_mapping.buses.size());
700                 for (unsigned bus_index = 0; bus_index < bus_r128.size(); ++bus_index) {
701                         if (bus_r128[bus_index] == nullptr) {
702                                 bus_r128[bus_index].reset(new Ebu_r128_proc);
703                         }
704                         bus_r128[bus_index]->init(2, OUTPUT_FREQUENCY);
705                 }
706         }
707
708         input_mapping = new_input_mapping;
709 }
710
711 InputMapping AudioMixer::get_input_mapping() const
712 {
713         lock_guard<timed_mutex> lock(audio_mutex);
714         return input_mapping;
715 }