]> git.sesse.net Git - nageru/blob - audio_mixer.cpp
Re-run include-what-you-use.
[nageru] / audio_mixer.cpp
1 #include "audio_mixer.h"
2
3 #include <assert.h>
4 #include <bmusb/bmusb.h>
5 #include <endian.h>
6 #include <math.h>
7 #ifdef __SSE2__
8 #include <immintrin.h>
9 #endif
10 #include <stdbool.h>
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <algorithm>
15 #include <chrono>
16 #include <cmath>
17 #include <cstddef>
18 #include <limits>
19 #include <utility>
20
21 #include "db.h"
22 #include "flags.h"
23 #include "state.pb.h"
24 #include "timebase.h"
25
26 using namespace bmusb;
27 using namespace std;
28 using namespace std::placeholders;
29
30 namespace {
31
32 // TODO: If these prove to be a bottleneck, they can be SSSE3-optimized
33 // (usually including multiple channels at a time).
34
35 void convert_fixed16_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
36                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
37                              size_t num_samples)
38 {
39         assert(in_channel < in_num_channels);
40         assert(out_channel < out_num_channels);
41         src += in_channel * 2;
42         dst += out_channel;
43
44         for (size_t i = 0; i < num_samples; ++i) {
45                 int16_t s = le16toh(*(int16_t *)src);
46                 *dst = s * (1.0f / 32768.0f);
47
48                 src += 2 * in_num_channels;
49                 dst += out_num_channels;
50         }
51 }
52
53 void convert_fixed24_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
54                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
55                              size_t num_samples)
56 {
57         assert(in_channel < in_num_channels);
58         assert(out_channel < out_num_channels);
59         src += in_channel * 3;
60         dst += out_channel;
61
62         for (size_t i = 0; i < num_samples; ++i) {
63                 uint32_t s1 = src[0];
64                 uint32_t s2 = src[1];
65                 uint32_t s3 = src[2];
66                 uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
67                 *dst = int(s) * (1.0f / 2147483648.0f);
68
69                 src += 3 * in_num_channels;
70                 dst += out_num_channels;
71         }
72 }
73
74 void convert_fixed32_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
75                              const uint8_t *src, size_t in_channel, size_t in_num_channels,
76                              size_t num_samples)
77 {
78         assert(in_channel < in_num_channels);
79         assert(out_channel < out_num_channels);
80         src += in_channel * 4;
81         dst += out_channel;
82
83         for (size_t i = 0; i < num_samples; ++i) {
84                 int32_t s = le32toh(*(int32_t *)src);
85                 *dst = s * (1.0f / 2147483648.0f);
86
87                 src += 4 * in_num_channels;
88                 dst += out_num_channels;
89         }
90 }
91
92 float find_peak_plain(const float *samples, size_t num_samples) __attribute__((unused));
93
94 float find_peak_plain(const float *samples, size_t num_samples)
95 {
96         float m = fabs(samples[0]);
97         for (size_t i = 1; i < num_samples; ++i) {
98                 m = max(m, fabs(samples[i]));
99         }
100         return m;
101 }
102
103 #ifdef __SSE__
104 static inline float horizontal_max(__m128 m)
105 {
106         __m128 tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 0, 3, 2));
107         m = _mm_max_ps(m, tmp);
108         tmp = _mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 3, 0, 1));
109         m = _mm_max_ps(m, tmp);
110         return _mm_cvtss_f32(m);
111 }
112
113 float find_peak(const float *samples, size_t num_samples)
114 {
115         const __m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffffu));
116         __m128 m = _mm_setzero_ps();
117         for (size_t i = 0; i < (num_samples & ~3); i += 4) {
118                 __m128 x = _mm_loadu_ps(samples + i);
119                 x = _mm_and_ps(x, abs_mask);
120                 m = _mm_max_ps(m, x);
121         }
122         float result = horizontal_max(m);
123
124         for (size_t i = (num_samples & ~3); i < num_samples; ++i) {
125                 result = max(result, fabs(samples[i]));
126         }
127
128 #if 0
129         // Self-test. We should be bit-exact the same.
130         float reference_result = find_peak_plain(samples, num_samples);
131         if (result != reference_result) {
132                 fprintf(stderr, "Error: Peak is %f [%f %f %f %f]; should be %f.\n",
133                         result,
134                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(0, 0, 0, 0))),
135                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(1, 1, 1, 1))),
136                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(2, 2, 2, 2))),
137                         _mm_cvtss_f32(_mm_shuffle_ps(m, m, _MM_SHUFFLE(3, 3, 3, 3))),
138                         reference_result);
139                 abort();
140         }
141 #endif
142         return result;
143 }
144 #else
145 float find_peak(const float *samples, size_t num_samples)
146 {
147         return find_peak_plain(samples, num_samples);
148 }
149 #endif
150
151 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
152 {
153         size_t num_samples = in.size() / 2;
154         out_l->resize(num_samples);
155         out_r->resize(num_samples);
156
157         const float *inptr = in.data();
158         float *lptr = &(*out_l)[0];
159         float *rptr = &(*out_r)[0];
160         for (size_t i = 0; i < num_samples; ++i) {
161                 *lptr++ = *inptr++;
162                 *rptr++ = *inptr++;
163         }
164 }
165
166 }  // namespace
167
168 AudioMixer::AudioMixer(unsigned num_cards)
169         : num_cards(num_cards),
170           limiter(OUTPUT_FREQUENCY),
171           correlation(OUTPUT_FREQUENCY)
172 {
173         global_audio_mixer = this;
174
175         for (unsigned bus_index = 0; bus_index < MAX_BUSES; ++bus_index) {
176                 locut[bus_index].init(FILTER_HPF, 2);
177                 eq[bus_index][EQ_BAND_BASS].init(FILTER_LOW_SHELF, 1);
178                 // Note: EQ_BAND_MID isn't used (see comments in apply_eq()).
179                 eq[bus_index][EQ_BAND_TREBLE].init(FILTER_HIGH_SHELF, 1);
180                 compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
181                 level_compressor[bus_index].reset(new StereoCompressor(OUTPUT_FREQUENCY));
182
183                 set_bus_settings(bus_index, get_default_bus_settings());
184         }
185         set_limiter_enabled(global_flags.limiter_enabled);
186         set_final_makeup_gain_auto(global_flags.final_makeup_gain_auto);
187         alsa_pool.init();
188
189         if (!global_flags.input_mapping_filename.empty()) {
190                 current_mapping_mode = MappingMode::MULTICHANNEL;
191                 InputMapping new_input_mapping;
192                 if (!load_input_mapping_from_file(get_devices(),
193                                                   global_flags.input_mapping_filename,
194                                                   &new_input_mapping)) {
195                         fprintf(stderr, "Failed to load input mapping from '%s', exiting.\n",
196                                 global_flags.input_mapping_filename.c_str());
197                         exit(1);
198                 }
199                 set_input_mapping(new_input_mapping);
200         } else {
201                 set_simple_input(/*card_index=*/0);
202                 if (global_flags.multichannel_mapping_mode) {
203                         current_mapping_mode = MappingMode::MULTICHANNEL;
204                 }
205         }
206
207         r128.init(2, OUTPUT_FREQUENCY);
208         r128.integr_start();
209
210         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
211         // and there's a limit to how important the peak meter is.
212         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
213 }
214
215 void AudioMixer::reset_resampler(DeviceSpec device_spec)
216 {
217         lock_guard<timed_mutex> lock(audio_mutex);
218         reset_resampler_mutex_held(device_spec);
219 }
220
221 void AudioMixer::reset_resampler_mutex_held(DeviceSpec device_spec)
222 {
223         AudioDevice *device = find_audio_device(device_spec);
224
225         if (device->interesting_channels.empty()) {
226                 device->resampling_queue.reset();
227         } else {
228                 // TODO: ResamplingQueue should probably take the full device spec.
229                 // (It's only used for console output, though.)
230                 device->resampling_queue.reset(new ResamplingQueue(device_spec.index, device->capture_frequency, OUTPUT_FREQUENCY, device->interesting_channels.size()));
231         }
232         device->next_local_pts = 0;
233 }
234
235 bool AudioMixer::add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, AudioFormat audio_format, int64_t frame_length)
236 {
237         AudioDevice *device = find_audio_device(device_spec);
238
239         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
240         if (!lock.try_lock_for(chrono::milliseconds(10))) {
241                 return false;
242         }
243         if (device->resampling_queue == nullptr) {
244                 // No buses use this device; throw it away.
245                 return true;
246         }
247
248         unsigned num_channels = device->interesting_channels.size();
249         assert(num_channels > 0);
250
251         // Convert the audio to fp32.
252         unique_ptr<float[]> audio(new float[num_samples * num_channels]);
253         unsigned channel_index = 0;
254         for (auto channel_it = device->interesting_channels.cbegin(); channel_it != device->interesting_channels.end(); ++channel_it, ++channel_index) {
255                 switch (audio_format.bits_per_sample) {
256                 case 0:
257                         assert(num_samples == 0);
258                         break;
259                 case 16:
260                         convert_fixed16_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
261                         break;
262                 case 24:
263                         convert_fixed24_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
264                         break;
265                 case 32:
266                         convert_fixed32_to_fp32(audio.get(), channel_index, num_channels, data, *channel_it, audio_format.num_channels, num_samples);
267                         break;
268                 default:
269                         fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
270                         assert(false);
271                 }
272         }
273
274         // Now add it.
275         int64_t local_pts = device->next_local_pts;
276         device->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.get(), num_samples);
277         device->next_local_pts = local_pts + frame_length;
278         return true;
279 }
280
281 bool AudioMixer::add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length)
282 {
283         AudioDevice *device = find_audio_device(device_spec);
284
285         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
286         if (!lock.try_lock_for(chrono::milliseconds(10))) {
287                 return false;
288         }
289         if (device->resampling_queue == nullptr) {
290                 // No buses use this device; throw it away.
291                 return true;
292         }
293
294         unsigned num_channels = device->interesting_channels.size();
295         assert(num_channels > 0);
296
297         vector<float> silence(samples_per_frame * num_channels, 0.0f);
298         for (unsigned i = 0; i < num_frames; ++i) {
299                 device->resampling_queue->add_input_samples(device->next_local_pts / double(TIMEBASE), silence.data(), samples_per_frame);
300                 // Note that if the format changed in the meantime, we have
301                 // no way of detecting that; we just have to assume the frame length
302                 // is always the same.
303                 device->next_local_pts += frame_length;
304         }
305         return true;
306 }
307
308 bool AudioMixer::silence_card(DeviceSpec device_spec, bool silence)
309 {
310         AudioDevice *device = find_audio_device(device_spec);
311
312         unique_lock<timed_mutex> lock(audio_mutex, defer_lock);
313         if (!lock.try_lock_for(chrono::milliseconds(10))) {
314                 return false;
315         }
316
317         if (device->silenced && !silence) {
318                 reset_resampler_mutex_held(device_spec);
319         }
320         device->silenced = silence;
321         return true;
322 }
323
324 AudioMixer::BusSettings AudioMixer::get_default_bus_settings()
325 {
326         BusSettings settings;
327         settings.fader_volume_db = 0.0f;
328         settings.muted = false;
329         settings.locut_enabled = global_flags.locut_enabled;
330         for (unsigned band_index = 0; band_index < NUM_EQ_BANDS; ++band_index) {
331                 settings.eq_level_db[band_index] = 0.0f;
332         }
333         settings.gain_staging_db = global_flags.initial_gain_staging_db;
334         settings.level_compressor_enabled = global_flags.gain_staging_auto;
335         settings.compressor_threshold_dbfs = ref_level_dbfs - 12.0f;  // -12 dB.
336         settings.compressor_enabled = global_flags.compressor_enabled;
337         return settings;
338 }
339
340 AudioMixer::BusSettings AudioMixer::get_bus_settings(unsigned bus_index) const
341 {
342         lock_guard<timed_mutex> lock(audio_mutex);
343         BusSettings settings;
344         settings.fader_volume_db = fader_volume_db[bus_index];
345         settings.muted = mute[bus_index];
346         settings.locut_enabled = locut_enabled[bus_index];
347         for (unsigned band_index = 0; band_index < NUM_EQ_BANDS; ++band_index) {
348                 settings.eq_level_db[band_index] = eq_level_db[bus_index][band_index];
349         }
350         settings.gain_staging_db = gain_staging_db[bus_index];
351         settings.level_compressor_enabled = level_compressor_enabled[bus_index];
352         settings.compressor_threshold_dbfs = compressor_threshold_dbfs[bus_index];
353         settings.compressor_enabled = compressor_enabled[bus_index];
354         return settings;
355 }
356
357 void AudioMixer::set_bus_settings(unsigned bus_index, const AudioMixer::BusSettings &settings)
358 {
359         lock_guard<timed_mutex> lock(audio_mutex);
360         fader_volume_db[bus_index] = settings.fader_volume_db;
361         mute[bus_index] = settings.muted;
362         locut_enabled[bus_index] = settings.locut_enabled;
363         for (unsigned band_index = 0; band_index < NUM_EQ_BANDS; ++band_index) {
364                 eq_level_db[bus_index][band_index] = settings.eq_level_db[band_index];
365         }
366         gain_staging_db[bus_index] = settings.gain_staging_db;
367         last_gain_staging_db[bus_index] = gain_staging_db[bus_index];
368         level_compressor_enabled[bus_index] = settings.level_compressor_enabled;
369         compressor_threshold_dbfs[bus_index] = settings.compressor_threshold_dbfs;
370         compressor_enabled[bus_index] = settings.compressor_enabled;
371 }
372
373 AudioMixer::AudioDevice *AudioMixer::find_audio_device(DeviceSpec device)
374 {
375         switch (device.type) {
376         case InputSourceType::CAPTURE_CARD:
377                 return &video_cards[device.index];
378         case InputSourceType::ALSA_INPUT:
379                 return &alsa_inputs[device.index];
380         case InputSourceType::SILENCE:
381         default:
382                 assert(false);
383         }
384         return nullptr;
385 }
386
387 // Get a pointer to the given channel from the given device.
388 // The channel must be picked out earlier and resampled.
389 void AudioMixer::find_sample_src_from_device(const map<DeviceSpec, vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride)
390 {
391         static float zero = 0.0f;
392         if (source_channel == -1 || device_spec.type == InputSourceType::SILENCE) {
393                 *srcptr = &zero;
394                 *stride = 0;
395                 return;
396         }
397         AudioDevice *device = find_audio_device(device_spec);
398         assert(device->interesting_channels.count(source_channel) != 0);
399         unsigned channel_index = 0;
400         for (int channel : device->interesting_channels) {
401                 if (channel == source_channel) break;
402                 ++channel_index;
403         }
404         assert(channel_index < device->interesting_channels.size());
405         const auto it = samples_card.find(device_spec);
406         assert(it != samples_card.end());
407         *srcptr = &(it->second)[channel_index];
408         *stride = device->interesting_channels.size();
409 }
410
411 // TODO: Can be SSSE3-optimized if need be.
412 void AudioMixer::fill_audio_bus(const map<DeviceSpec, vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output)
413 {
414         if (bus.device.type == InputSourceType::SILENCE) {
415                 memset(output, 0, num_samples * 2 * sizeof(*output));
416         } else {
417                 assert(bus.device.type == InputSourceType::CAPTURE_CARD ||
418                        bus.device.type == InputSourceType::ALSA_INPUT);
419                 const float *lsrc, *rsrc;
420                 unsigned lstride, rstride;
421                 float *dptr = output;
422                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[0], &lsrc, &lstride);
423                 find_sample_src_from_device(samples_card, bus.device, bus.source_channel[1], &rsrc, &rstride);
424                 for (unsigned i = 0; i < num_samples; ++i) {
425                         *dptr++ = *lsrc;
426                         *dptr++ = *rsrc;
427                         lsrc += lstride;
428                         rsrc += rstride;
429                 }
430         }
431 }
432
433 vector<DeviceSpec> AudioMixer::get_active_devices() const
434 {
435         vector<DeviceSpec> ret;
436         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
437                 const DeviceSpec device_spec{InputSourceType::CAPTURE_CARD, card_index};
438                 if (!find_audio_device(device_spec)->interesting_channels.empty()) {
439                         ret.push_back(device_spec);
440                 }
441         }
442         for (unsigned card_index = 0; card_index < MAX_ALSA_CARDS; ++card_index) {
443                 const DeviceSpec device_spec{InputSourceType::ALSA_INPUT, card_index};
444                 if (!find_audio_device(device_spec)->interesting_channels.empty()) {
445                         ret.push_back(device_spec);
446                 }
447         }
448         return ret;
449 }
450
451 namespace {
452
453 void apply_gain(float db, float last_db, vector<float> *samples)
454 {
455         if (fabs(db - last_db) < 1e-3) {
456                 // Constant over this frame.
457                 const float gain = from_db(db);
458                 for (size_t i = 0; i < samples->size(); ++i) {
459                         (*samples)[i] *= gain;
460                 }
461         } else {
462                 // We need to do a fade.
463                 unsigned num_samples = samples->size() / 2;
464                 float gain = from_db(last_db);
465                 const float gain_inc = pow(from_db(db - last_db), 1.0 / num_samples);
466                 for (size_t i = 0; i < num_samples; ++i) {
467                         (*samples)[i * 2 + 0] *= gain;
468                         (*samples)[i * 2 + 1] *= gain;
469                         gain *= gain_inc;
470                 }
471         }
472 }
473
474 }  // namespace
475
476 vector<float> AudioMixer::get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy)
477 {
478         map<DeviceSpec, vector<float>> samples_card;
479         vector<float> samples_bus;
480
481         lock_guard<timed_mutex> lock(audio_mutex);
482
483         // Pick out all the interesting channels from all the cards.
484         for (const DeviceSpec &device_spec : get_active_devices()) {
485                 AudioDevice *device = find_audio_device(device_spec);
486                 samples_card[device_spec].resize(num_samples * device->interesting_channels.size());
487                 if (device->silenced) {
488                         memset(&samples_card[device_spec][0], 0, samples_card[device_spec].size() * sizeof(float));
489                 } else {
490                         device->resampling_queue->get_output_samples(
491                                 pts,
492                                 &samples_card[device_spec][0],
493                                 num_samples,
494                                 rate_adjustment_policy);
495                 }
496         }
497
498         vector<float> samples_out, left, right;
499         samples_out.resize(num_samples * 2);
500         samples_bus.resize(num_samples * 2);
501         for (unsigned bus_index = 0; bus_index < input_mapping.buses.size(); ++bus_index) {
502                 fill_audio_bus(samples_card, input_mapping.buses[bus_index], num_samples, &samples_bus[0]);
503                 apply_eq(bus_index, &samples_bus);
504
505                 {
506                         lock_guard<mutex> lock(compressor_mutex);
507
508                         // Apply a level compressor to get the general level right.
509                         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
510                         // (or more precisely, near it, since we don't use infinite ratio),
511                         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
512                         // entirely arbitrary, but from practical tests with speech, it seems to
513                         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
514                         if (level_compressor_enabled[bus_index]) {
515                                 float threshold = 0.01f;   // -40 dBFS.
516                                 float ratio = 20.0f;
517                                 float attack_time = 0.5f;
518                                 float release_time = 20.0f;
519                                 float makeup_gain = from_db(ref_level_dbfs - (-40.0f));  // +26 dB.
520                                 level_compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
521                                 gain_staging_db[bus_index] = to_db(level_compressor[bus_index]->get_attenuation() * makeup_gain);
522                         } else {
523                                 // Just apply the gain we already had.
524                                 float db = gain_staging_db[bus_index];
525                                 float last_db = last_gain_staging_db[bus_index];
526                                 apply_gain(db, last_db, &samples_bus);
527                         }
528                         last_gain_staging_db[bus_index] = gain_staging_db[bus_index];
529
530 #if 0
531                         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
532                                 level_compressor.get_level(), to_db(level_compressor.get_level()),
533                                 level_compressor.get_attenuation(), to_db(level_compressor.get_attenuation()),
534                                 to_db(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
535 #endif
536
537                         // The real compressor.
538                         if (compressor_enabled[bus_index]) {
539                                 float threshold = from_db(compressor_threshold_dbfs[bus_index]);
540                                 float ratio = 20.0f;
541                                 float attack_time = 0.005f;
542                                 float release_time = 0.040f;
543                                 float makeup_gain = 2.0f;  // +6 dB.
544                                 compressor[bus_index]->process(samples_bus.data(), samples_bus.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
545                 //              compressor_att = compressor.get_attenuation();
546                         }
547                 }
548
549                 add_bus_to_master(bus_index, samples_bus, &samples_out);
550                 deinterleave_samples(samples_bus, &left, &right);
551                 measure_bus_levels(bus_index, left, right);
552         }
553
554         {
555                 lock_guard<mutex> lock(compressor_mutex);
556
557                 // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
558                 // Note that since ratio is not infinite, we could go slightly higher than this.
559                 if (limiter_enabled) {
560                         float threshold = from_db(limiter_threshold_dbfs);
561                         float ratio = 30.0f;
562                         float attack_time = 0.0f;  // Instant.
563                         float release_time = 0.020f;
564                         float makeup_gain = 1.0f;  // 0 dB.
565                         limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
566         //              limiter_att = limiter.get_attenuation();
567                 }
568
569         //      printf("limiter=%+5.1f  compressor=%+5.1f\n", to_db(limiter_att), to_db(compressor_att));
570         }
571
572         // At this point, we are most likely close to +0 LU (at least if the
573         // faders sum to 0 dB and the compressors are on), but all of our
574         // measurements have been on raw sample values, not R128 values.
575         // So we have a final makeup gain to get us to +0 LU; the gain
576         // adjustments required should be relatively small, and also, the
577         // offset shouldn't change much (only if the type of audio changes
578         // significantly). Thus, we shoot for updating this value basically
579         // “whenever we process buffers”, since the R128 calculation isn't exactly
580         // something we get out per-sample.
581         //
582         // Note that there's a feedback loop here, so we choose a very slow filter
583         // (half-time of 30 seconds).
584         double target_loudness_factor, alpha;
585         double loudness_lu = r128.loudness_M() - ref_level_lufs;
586         double current_makeup_lu = to_db(final_makeup_gain);
587         target_loudness_factor = final_makeup_gain * from_db(-loudness_lu);
588
589         // If we're outside +/- 5 LU uncorrected, we don't count it as
590         // a normal signal (probably silence) and don't change the
591         // correction factor; just apply what we already have.
592         if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
593                 alpha = 0.0;
594         } else {
595                 // Formula adapted from
596                 // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
597                 const double half_time_s = 30.0;
598                 const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
599                 alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
600         }
601
602         {
603                 lock_guard<mutex> lock(compressor_mutex);
604                 double m = final_makeup_gain;
605                 for (size_t i = 0; i < samples_out.size(); i += 2) {
606                         samples_out[i + 0] *= m;
607                         samples_out[i + 1] *= m;
608                         m += (target_loudness_factor - m) * alpha;
609                 }
610                 final_makeup_gain = m;
611         }
612
613         update_meters(samples_out);
614
615         return samples_out;
616 }
617
618 namespace {
619
620 void apply_filter_fade(StereoFilter *filter, float *data, unsigned num_samples, float cutoff_hz, float db, float last_db)
621 {
622         // A granularity of 32 samples is an okay tradeoff between speed and
623         // smoothness; recalculating the filters is pretty expensive, so it's
624         // good that we don't do this all the time.
625         static constexpr unsigned filter_granularity_samples = 32;
626
627         const float cutoff_linear = cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY;
628         if (fabs(db - last_db) < 1e-3) {
629                 // Constant over this frame.
630                 if (fabs(db) > 0.01f) {
631                         filter->render(data, num_samples, cutoff_linear, 0.5f, db / 40.0f);
632                 }
633         } else {
634                 // We need to do a fade. (Rounding up avoids division by zero.)
635                 unsigned num_blocks = (num_samples + filter_granularity_samples - 1) / filter_granularity_samples;
636                 const float inc_db_norm = (db - last_db) / 40.0f / num_blocks;
637                 float db_norm = db / 40.0f;
638                 for (size_t i = 0; i < num_samples; i += filter_granularity_samples) {
639                         size_t samples_this_block = std::min<size_t>(num_samples - i, filter_granularity_samples);
640                         filter->render(data + i * 2, samples_this_block, cutoff_linear, 0.5f, db_norm);
641                         db_norm += inc_db_norm;
642                 }
643         }
644 }
645
646 }  // namespace
647
648 void AudioMixer::apply_eq(unsigned bus_index, vector<float> *samples_bus)
649 {
650         constexpr float bass_freq_hz = 200.0f;
651         constexpr float treble_freq_hz = 4700.0f;
652
653         // Cut away everything under 120 Hz (or whatever the cutoff is);
654         // we don't need it for voice, and it will reduce headroom
655         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
656         // should be dampened.)
657         if (locut_enabled[bus_index]) {
658                 locut[bus_index].render(samples_bus->data(), samples_bus->size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
659         }
660
661         // Apply the rest of the EQ. Since we only have a simple three-band EQ,
662         // we can implement it with two shelf filters. We use a simple gain to
663         // set the mid-level filter, and then offset the low and high bands
664         // from that if we need to. (We could perhaps have folded the gain into
665         // the next part, but it's so cheap that the trouble isn't worth it.)
666         //
667         // If any part of the EQ has changed appreciably since last frame,
668         // we fade smoothly during the course of this frame.
669         const float bass_db = eq_level_db[bus_index][EQ_BAND_BASS];
670         const float mid_db = eq_level_db[bus_index][EQ_BAND_MID];
671         const float treble_db = eq_level_db[bus_index][EQ_BAND_TREBLE];
672
673         const float last_bass_db = last_eq_level_db[bus_index][EQ_BAND_BASS];
674         const float last_mid_db = last_eq_level_db[bus_index][EQ_BAND_MID];
675         const float last_treble_db = last_eq_level_db[bus_index][EQ_BAND_TREBLE];
676
677         assert(samples_bus->size() % 2 == 0);
678         const unsigned num_samples = samples_bus->size() / 2;
679
680         apply_gain(mid_db, last_mid_db, samples_bus);
681
682         apply_filter_fade(&eq[bus_index][EQ_BAND_BASS], samples_bus->data(), num_samples, bass_freq_hz, bass_db - mid_db, last_bass_db - last_mid_db);
683         apply_filter_fade(&eq[bus_index][EQ_BAND_TREBLE], samples_bus->data(), num_samples, treble_freq_hz, treble_db - mid_db, last_treble_db - last_mid_db);
684
685         last_eq_level_db[bus_index][EQ_BAND_BASS] = bass_db;
686         last_eq_level_db[bus_index][EQ_BAND_MID] = mid_db;
687         last_eq_level_db[bus_index][EQ_BAND_TREBLE] = treble_db;
688 }
689
690 void AudioMixer::add_bus_to_master(unsigned bus_index, const vector<float> &samples_bus, vector<float> *samples_out)
691 {
692         assert(samples_bus.size() == samples_out->size());
693         assert(samples_bus.size() % 2 == 0);
694         unsigned num_samples = samples_bus.size() / 2;
695         const float new_volume_db = mute[bus_index] ? -90.0f : fader_volume_db[bus_index].load();
696         if (fabs(new_volume_db - last_fader_volume_db[bus_index]) > 1e-3) {
697                 // The volume has changed; do a fade over the course of this frame.
698                 // (We might have some numerical issues here, but it seems to sound OK.)
699                 // For the purpose of fading here, the silence floor is set to -90 dB
700                 // (the fader only goes to -84).
701                 float old_volume = from_db(max<float>(last_fader_volume_db[bus_index], -90.0f));
702                 float volume = from_db(max<float>(new_volume_db, -90.0f));
703
704                 float volume_inc = pow(volume / old_volume, 1.0 / num_samples);
705                 volume = old_volume;
706                 if (bus_index == 0) {
707                         for (unsigned i = 0; i < num_samples; ++i) {
708                                 (*samples_out)[i * 2 + 0] = samples_bus[i * 2 + 0] * volume;
709                                 (*samples_out)[i * 2 + 1] = samples_bus[i * 2 + 1] * volume;
710                                 volume *= volume_inc;
711                         }
712                 } else {
713                         for (unsigned i = 0; i < num_samples; ++i) {
714                                 (*samples_out)[i * 2 + 0] += samples_bus[i * 2 + 0] * volume;
715                                 (*samples_out)[i * 2 + 1] += samples_bus[i * 2 + 1] * volume;
716                                 volume *= volume_inc;
717                         }
718                 }
719         } else if (new_volume_db > -90.0f) {
720                 float volume = from_db(new_volume_db);
721                 if (bus_index == 0) {
722                         for (unsigned i = 0; i < num_samples; ++i) {
723                                 (*samples_out)[i * 2 + 0] = samples_bus[i * 2 + 0] * volume;
724                                 (*samples_out)[i * 2 + 1] = samples_bus[i * 2 + 1] * volume;
725                         }
726                 } else {
727                         for (unsigned i = 0; i < num_samples; ++i) {
728                                 (*samples_out)[i * 2 + 0] += samples_bus[i * 2 + 0] * volume;
729                                 (*samples_out)[i * 2 + 1] += samples_bus[i * 2 + 1] * volume;
730                         }
731                 }
732         }
733
734         last_fader_volume_db[bus_index] = new_volume_db;
735 }
736
737 void AudioMixer::measure_bus_levels(unsigned bus_index, const vector<float> &left, const vector<float> &right)
738 {
739         assert(left.size() == right.size());
740         const float volume = mute[bus_index] ? 0.0f : from_db(fader_volume_db[bus_index]);
741         const float peak_levels[2] = {
742                 find_peak(left.data(), left.size()) * volume,
743                 find_peak(right.data(), right.size()) * volume
744         };
745         for (unsigned channel = 0; channel < 2; ++channel) {
746                 // Compute the current value, including hold and falloff.
747                 // The constants are borrowed from zita-mu1 by Fons Adriaensen.
748                 static constexpr float hold_sec = 0.5f;
749                 static constexpr float falloff_db_sec = 15.0f;  // dB/sec falloff after hold.
750                 float current_peak;
751                 PeakHistory &history = peak_history[bus_index][channel];
752                 history.historic_peak = max(history.historic_peak, peak_levels[channel]);
753                 if (history.age_seconds < hold_sec) {
754                         current_peak = history.last_peak;
755                 } else {
756                         current_peak = history.last_peak * from_db(-falloff_db_sec * (history.age_seconds - hold_sec));
757                 }
758
759                 // See if we have a new peak to replace the old (possibly falling) one.
760                 if (peak_levels[channel] > current_peak) {
761                         history.last_peak = peak_levels[channel];
762                         history.age_seconds = 0.0f;  // Not 100% correct, but more than good enough given our frame sizes.
763                         current_peak = peak_levels[channel];
764                 } else {
765                         history.age_seconds += float(left.size()) / OUTPUT_FREQUENCY;
766                 }
767                 history.current_level = peak_levels[channel];
768                 history.current_peak = current_peak;
769         }
770 }
771
772 void AudioMixer::update_meters(const vector<float> &samples)
773 {
774         // Upsample 4x to find interpolated peak.
775         peak_resampler.inp_data = const_cast<float *>(samples.data());
776         peak_resampler.inp_count = samples.size() / 2;
777
778         vector<float> interpolated_samples;
779         interpolated_samples.resize(samples.size());
780         {
781                 lock_guard<mutex> lock(audio_measure_mutex);
782
783                 while (peak_resampler.inp_count > 0) {  // About four iterations.
784                         peak_resampler.out_data = &interpolated_samples[0];
785                         peak_resampler.out_count = interpolated_samples.size() / 2;
786                         peak_resampler.process();
787                         size_t out_stereo_samples = interpolated_samples.size() / 2 - peak_resampler.out_count;
788                         peak = max<float>(peak, find_peak(interpolated_samples.data(), out_stereo_samples * 2));
789                         peak_resampler.out_data = nullptr;
790                 }
791         }
792
793         // Find R128 levels and L/R correlation.
794         vector<float> left, right;
795         deinterleave_samples(samples, &left, &right);
796         float *ptrs[] = { left.data(), right.data() };
797         {
798                 lock_guard<mutex> lock(audio_measure_mutex);
799                 r128.process(left.size(), ptrs);
800                 correlation.process_samples(samples);
801         }
802
803         send_audio_level_callback();
804 }
805
806 void AudioMixer::reset_meters()
807 {
808         lock_guard<mutex> lock(audio_measure_mutex);
809         peak_resampler.reset();
810         peak = 0.0f;
811         r128.reset();
812         r128.integr_start();
813         correlation.reset();
814 }
815
816 void AudioMixer::send_audio_level_callback()
817 {
818         if (audio_level_callback == nullptr) {
819                 return;
820         }
821
822         lock_guard<mutex> lock(audio_measure_mutex);
823         double loudness_s = r128.loudness_S();
824         double loudness_i = r128.integrated();
825         double loudness_range_low = r128.range_min();
826         double loudness_range_high = r128.range_max();
827
828         vector<BusLevel> bus_levels;
829         bus_levels.resize(input_mapping.buses.size());
830         {
831                 lock_guard<mutex> lock(compressor_mutex);
832                 for (unsigned bus_index = 0; bus_index < bus_levels.size(); ++bus_index) {
833                         bus_levels[bus_index].current_level_dbfs[0] = to_db(peak_history[bus_index][0].current_level);
834                         bus_levels[bus_index].current_level_dbfs[1] = to_db(peak_history[bus_index][1].current_level);
835                         bus_levels[bus_index].peak_level_dbfs[0] = to_db(peak_history[bus_index][0].current_peak);
836                         bus_levels[bus_index].peak_level_dbfs[1] = to_db(peak_history[bus_index][1].current_peak);
837                         bus_levels[bus_index].historic_peak_dbfs = to_db(
838                                 max(peak_history[bus_index][0].historic_peak,
839                                     peak_history[bus_index][1].historic_peak));
840                         bus_levels[bus_index].gain_staging_db = gain_staging_db[bus_index];
841                         if (compressor_enabled[bus_index]) {
842                                 bus_levels[bus_index].compressor_attenuation_db = -to_db(compressor[bus_index]->get_attenuation());
843                         } else {
844                                 bus_levels[bus_index].compressor_attenuation_db = 0.0;
845                         }
846                 }
847         }
848
849         audio_level_callback(loudness_s, to_db(peak), bus_levels,
850                 loudness_i, loudness_range_low, loudness_range_high,
851                 to_db(final_makeup_gain),
852                 correlation.get_correlation());
853 }
854
855 map<DeviceSpec, DeviceInfo> AudioMixer::get_devices()
856 {
857         lock_guard<timed_mutex> lock(audio_mutex);
858
859         map<DeviceSpec, DeviceInfo> devices;
860         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
861                 const DeviceSpec spec{ InputSourceType::CAPTURE_CARD, card_index };
862                 const AudioDevice *device = &video_cards[card_index];
863                 DeviceInfo info;
864                 info.display_name = device->display_name;
865                 info.num_channels = 8;
866                 devices.insert(make_pair(spec, info));
867         }
868         vector<ALSAPool::Device> available_alsa_devices = alsa_pool.get_devices();
869         for (unsigned card_index = 0; card_index < available_alsa_devices.size(); ++card_index) {
870                 const DeviceSpec spec{ InputSourceType::ALSA_INPUT, card_index };
871                 const ALSAPool::Device &device = available_alsa_devices[card_index];
872                 DeviceInfo info;
873                 info.display_name = device.display_name();
874                 info.num_channels = device.num_channels;
875                 info.alsa_name = device.name;
876                 info.alsa_info = device.info;
877                 info.alsa_address = device.address;
878                 devices.insert(make_pair(spec, info));
879         }
880         return devices;
881 }
882
883 void AudioMixer::set_display_name(DeviceSpec device_spec, const string &name)
884 {
885         AudioDevice *device = find_audio_device(device_spec);
886
887         lock_guard<timed_mutex> lock(audio_mutex);
888         device->display_name = name;
889 }
890
891 void AudioMixer::serialize_device(DeviceSpec device_spec, DeviceSpecProto *device_spec_proto)
892 {
893         lock_guard<timed_mutex> lock(audio_mutex);
894         switch (device_spec.type) {
895                 case InputSourceType::SILENCE:
896                         device_spec_proto->set_type(DeviceSpecProto::SILENCE);
897                         break;
898                 case InputSourceType::CAPTURE_CARD:
899                         device_spec_proto->set_type(DeviceSpecProto::CAPTURE_CARD);
900                         device_spec_proto->set_index(device_spec.index);
901                         device_spec_proto->set_display_name(video_cards[device_spec.index].display_name);
902                         break;
903                 case InputSourceType::ALSA_INPUT:
904                         alsa_pool.serialize_device(device_spec.index, device_spec_proto);
905                         break;
906         }
907 }
908
909 void AudioMixer::set_simple_input(unsigned card_index)
910 {
911         InputMapping new_input_mapping;
912         InputMapping::Bus input;
913         input.name = "Main";
914         input.device.type = InputSourceType::CAPTURE_CARD;
915         input.device.index = card_index;
916         input.source_channel[0] = 0;
917         input.source_channel[1] = 1;
918
919         new_input_mapping.buses.push_back(input);
920
921         lock_guard<timed_mutex> lock(audio_mutex);
922         current_mapping_mode = MappingMode::SIMPLE;
923         set_input_mapping_lock_held(new_input_mapping);
924         fader_volume_db[0] = 0.0f;
925 }
926
927 unsigned AudioMixer::get_simple_input() const
928 {
929         lock_guard<timed_mutex> lock(audio_mutex);
930         if (input_mapping.buses.size() == 1 &&
931             input_mapping.buses[0].device.type == InputSourceType::CAPTURE_CARD &&
932             input_mapping.buses[0].source_channel[0] == 0 &&
933             input_mapping.buses[0].source_channel[1] == 1) {
934                 return input_mapping.buses[0].device.index;
935         } else {
936                 return numeric_limits<unsigned>::max();
937         }
938 }
939
940 void AudioMixer::set_input_mapping(const InputMapping &new_input_mapping)
941 {
942         lock_guard<timed_mutex> lock(audio_mutex);
943         set_input_mapping_lock_held(new_input_mapping);
944         current_mapping_mode = MappingMode::MULTICHANNEL;
945 }
946
947 AudioMixer::MappingMode AudioMixer::get_mapping_mode() const
948 {
949         lock_guard<timed_mutex> lock(audio_mutex);
950         return current_mapping_mode;
951 }
952
953 void AudioMixer::set_input_mapping_lock_held(const InputMapping &new_input_mapping)
954 {
955         map<DeviceSpec, set<unsigned>> interesting_channels;
956         for (const InputMapping::Bus &bus : new_input_mapping.buses) {
957                 if (bus.device.type == InputSourceType::CAPTURE_CARD ||
958                     bus.device.type == InputSourceType::ALSA_INPUT) {
959                         for (unsigned channel = 0; channel < 2; ++channel) {
960                                 if (bus.source_channel[channel] != -1) {
961                                         interesting_channels[bus.device].insert(bus.source_channel[channel]);
962                                 }
963                         }
964                 }
965         }
966
967         // Reset resamplers for all cards that don't have the exact same state as before.
968         for (unsigned card_index = 0; card_index < MAX_VIDEO_CARDS; ++card_index) {
969                 const DeviceSpec device_spec{InputSourceType::CAPTURE_CARD, card_index};
970                 AudioDevice *device = find_audio_device(device_spec);
971                 if (device->interesting_channels != interesting_channels[device_spec]) {
972                         device->interesting_channels = interesting_channels[device_spec];
973                         reset_resampler_mutex_held(device_spec);
974                 }
975         }
976         for (unsigned card_index = 0; card_index < MAX_ALSA_CARDS; ++card_index) {
977                 const DeviceSpec device_spec{InputSourceType::ALSA_INPUT, card_index};
978                 AudioDevice *device = find_audio_device(device_spec);
979                 if (interesting_channels[device_spec].empty()) {
980                         alsa_pool.release_device(card_index);
981                 } else {
982                         alsa_pool.hold_device(card_index);
983                 }
984                 if (device->interesting_channels != interesting_channels[device_spec]) {
985                         device->interesting_channels = interesting_channels[device_spec];
986                         alsa_pool.reset_device(device_spec.index);
987                         reset_resampler_mutex_held(device_spec);
988                 }
989         }
990
991         input_mapping = new_input_mapping;
992 }
993
994 InputMapping AudioMixer::get_input_mapping() const
995 {
996         lock_guard<timed_mutex> lock(audio_mutex);
997         return input_mapping;
998 }
999
1000 unsigned AudioMixer::num_buses() const
1001 {
1002         lock_guard<timed_mutex> lock(audio_mutex);
1003         return input_mapping.buses.size();
1004 }
1005
1006 void AudioMixer::reset_peak(unsigned bus_index)
1007 {
1008         lock_guard<timed_mutex> lock(audio_mutex);
1009         for (unsigned channel = 0; channel < 2; ++channel) {
1010                 PeakHistory &history = peak_history[bus_index][channel];
1011                 history.current_level = 0.0f;
1012                 history.historic_peak = 0.0f;
1013                 history.current_peak = 0.0f;
1014                 history.last_peak = 0.0f;
1015                 history.age_seconds = 0.0f;
1016         }
1017 }
1018
1019 AudioMixer *global_audio_mixer = nullptr;