]> git.sesse.net Git - nageru/blob - audio_mixer.h
Hook up the EQ controls and labels.
[nageru] / audio_mixer.h
1 #ifndef _AUDIO_MIXER_H
2 #define _AUDIO_MIXER_H 1
3
4 // The audio mixer, dealing with extracting the right signals from
5 // each capture card, resampling signals so that they are in sync,
6 // processing them with effects (if desired), and then mixing them
7 // all together into one final audio signal.
8 //
9 // All operations on AudioMixer (except destruction) are thread-safe.
10
11 #include <math.h>
12 #include <stdint.h>
13 #include <atomic>
14 #include <map>
15 #include <memory>
16 #include <mutex>
17 #include <set>
18 #include <vector>
19 #include <zita-resampler/resampler.h>
20
21 #include "alsa_input.h"
22 #include "bmusb/bmusb.h"
23 #include "correlation_measurer.h"
24 #include "db.h"
25 #include "defs.h"
26 #include "ebu_r128_proc.h"
27 #include "filter.h"
28 #include "resampling_queue.h"
29 #include "stereocompressor.h"
30
31 namespace bmusb {
32 struct AudioFormat;
33 }  // namespace bmusb
34
35 enum class InputSourceType { SILENCE, CAPTURE_CARD, ALSA_INPUT };
36 struct DeviceSpec {
37         InputSourceType type;
38         unsigned index;
39
40         bool operator== (const DeviceSpec &other) const {
41                 return type == other.type && index == other.index;
42         }
43
44         bool operator< (const DeviceSpec &other) const {
45                 if (type != other.type)
46                         return type < other.type;
47                 return index < other.index;
48         }
49 };
50 struct DeviceInfo {
51         std::string name;
52         unsigned num_channels;
53 };
54
55 enum EQBand {
56         EQ_BAND_BASS = 0,
57         EQ_BAND_MID,
58         EQ_BAND_TREBLE,
59         NUM_EQ_BANDS
60 };
61
62 static inline uint64_t DeviceSpec_to_key(const DeviceSpec &device_spec)
63 {
64         return (uint64_t(device_spec.type) << 32) | device_spec.index;
65 }
66
67 static inline DeviceSpec key_to_DeviceSpec(uint64_t key)
68 {
69         return DeviceSpec{ InputSourceType(key >> 32), unsigned(key & 0xffffffff) };
70 }
71
72 struct InputMapping {
73         struct Bus {
74                 std::string name;
75                 DeviceSpec device;
76                 int source_channel[2] { -1, -1 };  // Left and right. -1 = none.
77         };
78
79         std::vector<Bus> buses;
80 };
81
82 class AudioMixer {
83 public:
84         AudioMixer(unsigned num_cards);
85         ~AudioMixer();
86         void reset_resampler(DeviceSpec device_spec);
87         void reset_meters();
88
89         // Add audio (or silence) to the given device's queue. Can return false if
90         // the lock wasn't successfully taken; if so, you should simply try again.
91         // (This is to avoid a deadlock where a card hangs on the mutex in add_audio()
92         // while we are trying to shut it down from another thread that also holds
93         // the mutex.) frame_length is in TIMEBASE units.
94         bool add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, bmusb::AudioFormat audio_format, int64_t frame_length);
95         bool add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length);
96
97         std::vector<float> get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy);
98
99         void set_fader_volume(unsigned bus_index, float level_db) { fader_volume_db[bus_index] = level_db; }
100         std::map<DeviceSpec, DeviceInfo> get_devices() const;
101         void set_name(DeviceSpec device_spec, const std::string &name);
102
103         void set_input_mapping(const InputMapping &input_mapping);
104         InputMapping get_input_mapping() const;
105
106         void set_locut_cutoff(float cutoff_hz)
107         {
108                 locut_cutoff_hz = cutoff_hz;
109         }
110
111         void set_locut_enabled(unsigned bus, bool enabled)
112         {
113                 locut_enabled[bus] = enabled;
114         }
115
116         bool get_locut_enabled(unsigned bus)
117         {
118                 return locut_enabled[bus];
119         }
120
121         void set_eq(unsigned bus_index, EQBand band, float db_gain)
122         {
123                 assert(band >= 0 && band < NUM_EQ_BANDS);
124                 eq_level_db[bus_index][band] = db_gain;
125         }
126
127         float get_eq(unsigned bus_index, EQBand band) const
128         {
129                 assert(band >= 0 && band < NUM_EQ_BANDS);
130                 return eq_level_db[bus_index][band];
131         }
132
133         float get_limiter_threshold_dbfs() const
134         {
135                 return limiter_threshold_dbfs;
136         }
137
138         float get_compressor_threshold_dbfs(unsigned bus_index) const
139         {
140                 return compressor_threshold_dbfs[bus_index];
141         }
142
143         void set_limiter_threshold_dbfs(float threshold_dbfs)
144         {
145                 limiter_threshold_dbfs = threshold_dbfs;
146         }
147
148         void set_compressor_threshold_dbfs(unsigned bus_index, float threshold_dbfs)
149         {
150                 compressor_threshold_dbfs[bus_index] = threshold_dbfs;
151         }
152
153         void set_limiter_enabled(bool enabled)
154         {
155                 limiter_enabled = enabled;
156         }
157
158         bool get_limiter_enabled() const
159         {
160                 return limiter_enabled;
161         }
162
163         void set_compressor_enabled(unsigned bus_index, bool enabled)
164         {
165                 compressor_enabled[bus_index] = enabled;
166         }
167
168         bool get_compressor_enabled(unsigned bus_index) const
169         {
170                 return compressor_enabled[bus_index];
171         }
172
173         void set_gain_staging_db(unsigned bus_index, float gain_db)
174         {
175                 std::unique_lock<std::mutex> lock(compressor_mutex);
176                 level_compressor_enabled[bus_index] = false;
177                 gain_staging_db[bus_index] = gain_db;
178         }
179
180         float get_gain_staging_db(unsigned bus_index) const
181         {
182                 std::unique_lock<std::mutex> lock(compressor_mutex);
183                 return gain_staging_db[bus_index];
184         }
185
186         void set_gain_staging_auto(unsigned bus_index, bool enabled)
187         {
188                 std::unique_lock<std::mutex> lock(compressor_mutex);
189                 level_compressor_enabled[bus_index] = enabled;
190         }
191
192         bool get_gain_staging_auto(unsigned bus_index) const
193         {
194                 std::unique_lock<std::mutex> lock(compressor_mutex);
195                 return level_compressor_enabled[bus_index];
196         }
197
198         void set_final_makeup_gain_db(float gain_db)
199         {
200                 std::unique_lock<std::mutex> lock(compressor_mutex);
201                 final_makeup_gain_auto = false;
202                 final_makeup_gain = from_db(gain_db);
203         }
204
205         float get_final_makeup_gain_db()
206         {
207                 std::unique_lock<std::mutex> lock(compressor_mutex);
208                 return to_db(final_makeup_gain);
209         }
210
211         void set_final_makeup_gain_auto(bool enabled)
212         {
213                 std::unique_lock<std::mutex> lock(compressor_mutex);
214                 final_makeup_gain_auto = enabled;
215         }
216
217         bool get_final_makeup_gain_auto() const
218         {
219                 std::unique_lock<std::mutex> lock(compressor_mutex);
220                 return final_makeup_gain_auto;
221         }
222
223         void reset_peak(unsigned bus_index);
224
225         struct BusLevel {
226                 float current_level_dbfs[2];  // Digital peak of last frame, left and right.
227                 float peak_level_dbfs[2];  // Digital peak with hold, left and right.
228                 float historic_peak_dbfs;
229                 float gain_staging_db;
230                 float compressor_attenuation_db;  // A positive number; 0.0 for no attenuation.
231         };
232
233         typedef std::function<void(float level_lufs, float peak_db,
234                                    std::vector<BusLevel> bus_levels,
235                                    float global_level_lufs, float range_low_lufs, float range_high_lufs,
236                                    float final_makeup_gain_db,
237                                    float correlation)> audio_level_callback_t;
238         void set_audio_level_callback(audio_level_callback_t callback)
239         {
240                 audio_level_callback = callback;
241         }
242
243 private:
244         struct AudioDevice {
245                 std::unique_ptr<ResamplingQueue> resampling_queue;
246                 int64_t next_local_pts = 0;
247                 std::string name;
248                 unsigned capture_frequency = OUTPUT_FREQUENCY;
249                 // Which channels we consider interesting (ie., are part of some input_mapping).
250                 std::set<unsigned> interesting_channels;
251                 // Only used for ALSA cards, obviously.
252                 std::unique_ptr<ALSAInput> alsa_device;
253         };
254         AudioDevice *find_audio_device(DeviceSpec device_spec);
255
256         void find_sample_src_from_device(const std::map<DeviceSpec, std::vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride);
257         void fill_audio_bus(const std::map<DeviceSpec, std::vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output);
258         void reset_resampler_mutex_held(DeviceSpec device_spec);
259         void reset_alsa_mutex_held(DeviceSpec device_spec);
260         std::map<DeviceSpec, DeviceInfo> get_devices_mutex_held() const;
261         void apply_eq(unsigned bus_index, std::vector<float> *samples_bus);
262         void update_meters(const std::vector<float> &samples);
263         void add_bus_to_master(unsigned bus_index, const std::vector<float> &samples_bus, std::vector<float> *samples_out);
264         void measure_bus_levels(unsigned bus_index, const std::vector<float> &left, const std::vector<float> &right);
265         void send_audio_level_callback();
266
267         unsigned num_cards;
268
269         mutable std::timed_mutex audio_mutex;
270
271         AudioDevice video_cards[MAX_VIDEO_CARDS];  // Under audio_mutex.
272
273         // TODO: Figure out a better way to unify these two, as they are sharing indexing.
274         AudioDevice alsa_inputs[MAX_ALSA_CARDS];  // Under audio_mutex.
275         std::vector<ALSAInput::Device> available_alsa_cards;
276
277         std::atomic<float> locut_cutoff_hz;
278         StereoFilter locut[MAX_BUSES];  // Default cutoff 120 Hz, 24 dB/oct.
279         std::atomic<bool> locut_enabled[MAX_BUSES];
280         StereoFilter eq[MAX_BUSES][NUM_EQ_BANDS];  // The one for EQBand::MID isn't actually used (see comments in apply_eq()).
281
282         // First compressor; takes us up to about -12 dBFS.
283         mutable std::mutex compressor_mutex;
284         std::unique_ptr<StereoCompressor> level_compressor[MAX_BUSES];  // Under compressor_mutex. Used to set/override gain_staging_db if <level_compressor_enabled>.
285         float gain_staging_db[MAX_BUSES];  // Under compressor_mutex.
286         bool level_compressor_enabled[MAX_BUSES];  // Under compressor_mutex.
287
288         static constexpr float ref_level_dbfs = -14.0f;  // Chosen so that we end up around 0 LU in practice.
289         static constexpr float ref_level_lufs = -23.0f;  // 0 LU, more or less by definition.
290
291         StereoCompressor limiter;
292         std::atomic<float> limiter_threshold_dbfs{ref_level_dbfs + 4.0f};   // 4 dB.
293         std::atomic<bool> limiter_enabled{true};
294         std::unique_ptr<StereoCompressor> compressor[MAX_BUSES];
295         std::atomic<float> compressor_threshold_dbfs[MAX_BUSES];
296         std::atomic<bool> compressor_enabled[MAX_BUSES];
297
298         // Note: The values here are not in dB.
299         struct PeakHistory {
300                 float current_level = 0.0f;  // Peak of the last frame.
301                 float historic_peak = 0.0f;  // Highest peak since last reset; no falloff.
302                 float current_peak = 0.0f;  // Current peak of the peak meter.
303                 float last_peak = 0.0f;
304                 float age_seconds = 0.0f;   // Time since "last_peak" was set.
305         };
306         PeakHistory peak_history[MAX_BUSES][2];  // Separate for each channel. Under audio_mutex.
307
308         double final_makeup_gain = 1.0;  // Under compressor_mutex. Read/write by the user. Note: Not in dB, we want the numeric precision so that we can change it slowly.
309         bool final_makeup_gain_auto = true;  // Under compressor_mutex.
310
311         InputMapping input_mapping;  // Under audio_mutex.
312         std::atomic<float> fader_volume_db[MAX_BUSES] {{ 0.0f }};
313         float last_fader_volume_db[MAX_BUSES] { 0.0f };  // Under audio_mutex.
314         std::atomic<float> eq_level_db[MAX_BUSES][NUM_EQ_BANDS] {{{ 0.0f }}};
315
316         audio_level_callback_t audio_level_callback = nullptr;
317         mutable std::mutex audio_measure_mutex;
318         Ebu_r128_proc r128;  // Under audio_measure_mutex.
319         CorrelationMeasurer correlation;  // Under audio_measure_mutex.
320         Resampler peak_resampler;  // Under audio_measure_mutex.
321         std::atomic<float> peak{0.0f};
322 };
323
324 #endif  // !defined(_AUDIO_MIXER_H)