]> git.sesse.net Git - nageru/blob - audio_mixer.h
Refactor ALSA code in preparation for hotplug.
[nageru] / audio_mixer.h
1 #ifndef _AUDIO_MIXER_H
2 #define _AUDIO_MIXER_H 1
3
4 // The audio mixer, dealing with extracting the right signals from
5 // each capture card, resampling signals so that they are in sync,
6 // processing them with effects (if desired), and then mixing them
7 // all together into one final audio signal.
8 //
9 // All operations on AudioMixer (except destruction) are thread-safe.
10
11 #include <math.h>
12 #include <stdint.h>
13 #include <atomic>
14 #include <map>
15 #include <memory>
16 #include <mutex>
17 #include <set>
18 #include <vector>
19 #include <zita-resampler/resampler.h>
20
21 #include "alsa_input.h"
22 #include "bmusb/bmusb.h"
23 #include "correlation_measurer.h"
24 #include "db.h"
25 #include "defs.h"
26 #include "ebu_r128_proc.h"
27 #include "filter.h"
28 #include "resampling_queue.h"
29 #include "stereocompressor.h"
30
31 namespace bmusb {
32 struct AudioFormat;
33 }  // namespace bmusb
34
35 enum class InputSourceType { SILENCE, CAPTURE_CARD, ALSA_INPUT };
36 struct DeviceSpec {
37         InputSourceType type;
38         unsigned index;
39
40         bool operator== (const DeviceSpec &other) const {
41                 return type == other.type && index == other.index;
42         }
43
44         bool operator< (const DeviceSpec &other) const {
45                 if (type != other.type)
46                         return type < other.type;
47                 return index < other.index;
48         }
49 };
50 struct DeviceInfo {
51         std::string name;
52         unsigned num_channels;
53 };
54
55 enum EQBand {
56         EQ_BAND_BASS = 0,
57         EQ_BAND_MID,
58         EQ_BAND_TREBLE,
59         NUM_EQ_BANDS
60 };
61
62 static inline uint64_t DeviceSpec_to_key(const DeviceSpec &device_spec)
63 {
64         return (uint64_t(device_spec.type) << 32) | device_spec.index;
65 }
66
67 static inline DeviceSpec key_to_DeviceSpec(uint64_t key)
68 {
69         return DeviceSpec{ InputSourceType(key >> 32), unsigned(key & 0xffffffff) };
70 }
71
72 struct InputMapping {
73         struct Bus {
74                 std::string name;
75                 DeviceSpec device;
76                 int source_channel[2] { -1, -1 };  // Left and right. -1 = none.
77         };
78
79         std::vector<Bus> buses;
80 };
81
82 class AudioMixer {
83 public:
84         AudioMixer(unsigned num_cards);
85         void reset_resampler(DeviceSpec device_spec);
86         void reset_meters();
87
88         // Add audio (or silence) to the given device's queue. Can return false if
89         // the lock wasn't successfully taken; if so, you should simply try again.
90         // (This is to avoid a deadlock where a card hangs on the mutex in add_audio()
91         // while we are trying to shut it down from another thread that also holds
92         // the mutex.) frame_length is in TIMEBASE units.
93         bool add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, bmusb::AudioFormat audio_format, int64_t frame_length);
94         bool add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames, int64_t frame_length);
95
96         std::vector<float> get_output(double pts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy);
97
98         void set_fader_volume(unsigned bus_index, float level_db) { fader_volume_db[bus_index] = level_db; }
99
100         // Note: This operation holds all ALSA devices (see ALSAPool::get_devices()).
101         // You will need to call set_input_mapping() to get the hold state correctly,
102         // or every card will be held forever.
103         std::map<DeviceSpec, DeviceInfo> get_devices();
104
105         void set_name(DeviceSpec device_spec, const std::string &name);
106
107         void set_input_mapping(const InputMapping &input_mapping);
108         InputMapping get_input_mapping() const;
109
110         void set_locut_cutoff(float cutoff_hz)
111         {
112                 locut_cutoff_hz = cutoff_hz;
113         }
114
115         float get_locut_cutoff() const
116         {
117                 return locut_cutoff_hz;
118         }
119
120         void set_locut_enabled(unsigned bus, bool enabled)
121         {
122                 locut_enabled[bus] = enabled;
123         }
124
125         bool get_locut_enabled(unsigned bus)
126         {
127                 return locut_enabled[bus];
128         }
129
130         void set_eq(unsigned bus_index, EQBand band, float db_gain)
131         {
132                 assert(band >= 0 && band < NUM_EQ_BANDS);
133                 eq_level_db[bus_index][band] = db_gain;
134         }
135
136         float get_eq(unsigned bus_index, EQBand band) const
137         {
138                 assert(band >= 0 && band < NUM_EQ_BANDS);
139                 return eq_level_db[bus_index][band];
140         }
141
142         float get_limiter_threshold_dbfs() const
143         {
144                 return limiter_threshold_dbfs;
145         }
146
147         float get_compressor_threshold_dbfs(unsigned bus_index) const
148         {
149                 return compressor_threshold_dbfs[bus_index];
150         }
151
152         void set_limiter_threshold_dbfs(float threshold_dbfs)
153         {
154                 limiter_threshold_dbfs = threshold_dbfs;
155         }
156
157         void set_compressor_threshold_dbfs(unsigned bus_index, float threshold_dbfs)
158         {
159                 compressor_threshold_dbfs[bus_index] = threshold_dbfs;
160         }
161
162         void set_limiter_enabled(bool enabled)
163         {
164                 limiter_enabled = enabled;
165         }
166
167         bool get_limiter_enabled() const
168         {
169                 return limiter_enabled;
170         }
171
172         void set_compressor_enabled(unsigned bus_index, bool enabled)
173         {
174                 compressor_enabled[bus_index] = enabled;
175         }
176
177         bool get_compressor_enabled(unsigned bus_index) const
178         {
179                 return compressor_enabled[bus_index];
180         }
181
182         void set_gain_staging_db(unsigned bus_index, float gain_db)
183         {
184                 std::unique_lock<std::mutex> lock(compressor_mutex);
185                 level_compressor_enabled[bus_index] = false;
186                 gain_staging_db[bus_index] = gain_db;
187         }
188
189         float get_gain_staging_db(unsigned bus_index) const
190         {
191                 std::unique_lock<std::mutex> lock(compressor_mutex);
192                 return gain_staging_db[bus_index];
193         }
194
195         void set_gain_staging_auto(unsigned bus_index, bool enabled)
196         {
197                 std::unique_lock<std::mutex> lock(compressor_mutex);
198                 level_compressor_enabled[bus_index] = enabled;
199         }
200
201         bool get_gain_staging_auto(unsigned bus_index) const
202         {
203                 std::unique_lock<std::mutex> lock(compressor_mutex);
204                 return level_compressor_enabled[bus_index];
205         }
206
207         void set_final_makeup_gain_db(float gain_db)
208         {
209                 std::unique_lock<std::mutex> lock(compressor_mutex);
210                 final_makeup_gain_auto = false;
211                 final_makeup_gain = from_db(gain_db);
212         }
213
214         float get_final_makeup_gain_db()
215         {
216                 std::unique_lock<std::mutex> lock(compressor_mutex);
217                 return to_db(final_makeup_gain);
218         }
219
220         void set_final_makeup_gain_auto(bool enabled)
221         {
222                 std::unique_lock<std::mutex> lock(compressor_mutex);
223                 final_makeup_gain_auto = enabled;
224         }
225
226         bool get_final_makeup_gain_auto() const
227         {
228                 std::unique_lock<std::mutex> lock(compressor_mutex);
229                 return final_makeup_gain_auto;
230         }
231
232         void reset_peak(unsigned bus_index);
233
234         struct BusLevel {
235                 float current_level_dbfs[2];  // Digital peak of last frame, left and right.
236                 float peak_level_dbfs[2];  // Digital peak with hold, left and right.
237                 float historic_peak_dbfs;
238                 float gain_staging_db;
239                 float compressor_attenuation_db;  // A positive number; 0.0 for no attenuation.
240         };
241
242         typedef std::function<void(float level_lufs, float peak_db,
243                                    std::vector<BusLevel> bus_levels,
244                                    float global_level_lufs, float range_low_lufs, float range_high_lufs,
245                                    float final_makeup_gain_db,
246                                    float correlation)> audio_level_callback_t;
247         void set_audio_level_callback(audio_level_callback_t callback)
248         {
249                 audio_level_callback = callback;
250         }
251
252 private:
253         struct AudioDevice {
254                 std::unique_ptr<ResamplingQueue> resampling_queue;
255                 int64_t next_local_pts = 0;
256                 std::string name;
257                 unsigned capture_frequency = OUTPUT_FREQUENCY;
258                 // Which channels we consider interesting (ie., are part of some input_mapping).
259                 std::set<unsigned> interesting_channels;
260         };
261
262         const AudioDevice *find_audio_device(DeviceSpec device_spec) const
263         {
264                 return const_cast<AudioMixer *>(this)->find_audio_device(device_spec);
265         }
266
267         AudioDevice *find_audio_device(DeviceSpec device_spec);
268
269         void find_sample_src_from_device(const std::map<DeviceSpec, std::vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride);
270         void fill_audio_bus(const std::map<DeviceSpec, std::vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float *output);
271         void reset_resampler_mutex_held(DeviceSpec device_spec);
272         void apply_eq(unsigned bus_index, std::vector<float> *samples_bus);
273         void update_meters(const std::vector<float> &samples);
274         void add_bus_to_master(unsigned bus_index, const std::vector<float> &samples_bus, std::vector<float> *samples_out);
275         void measure_bus_levels(unsigned bus_index, const std::vector<float> &left, const std::vector<float> &right);
276         void send_audio_level_callback();
277         std::vector<DeviceSpec> get_active_devices() const;
278
279         unsigned num_cards;
280
281         mutable std::timed_mutex audio_mutex;
282
283         ALSAPool alsa_pool;
284         AudioDevice video_cards[MAX_VIDEO_CARDS];  // Under audio_mutex.
285         AudioDevice alsa_inputs[MAX_ALSA_CARDS];  // Under audio_mutex.
286
287         std::atomic<float> locut_cutoff_hz{120};
288         StereoFilter locut[MAX_BUSES];  // Default cutoff 120 Hz, 24 dB/oct.
289         std::atomic<bool> locut_enabled[MAX_BUSES];
290         StereoFilter eq[MAX_BUSES][NUM_EQ_BANDS];  // The one for EQBand::MID isn't actually used (see comments in apply_eq()).
291
292         // First compressor; takes us up to about -12 dBFS.
293         mutable std::mutex compressor_mutex;
294         std::unique_ptr<StereoCompressor> level_compressor[MAX_BUSES];  // Under compressor_mutex. Used to set/override gain_staging_db if <level_compressor_enabled>.
295         float gain_staging_db[MAX_BUSES];  // Under compressor_mutex.
296         bool level_compressor_enabled[MAX_BUSES];  // Under compressor_mutex.
297
298         static constexpr float ref_level_dbfs = -14.0f;  // Chosen so that we end up around 0 LU in practice.
299         static constexpr float ref_level_lufs = -23.0f;  // 0 LU, more or less by definition.
300
301         StereoCompressor limiter;
302         std::atomic<float> limiter_threshold_dbfs{ref_level_dbfs + 4.0f};   // 4 dB.
303         std::atomic<bool> limiter_enabled{true};
304         std::unique_ptr<StereoCompressor> compressor[MAX_BUSES];
305         std::atomic<float> compressor_threshold_dbfs[MAX_BUSES];
306         std::atomic<bool> compressor_enabled[MAX_BUSES];
307
308         // Note: The values here are not in dB.
309         struct PeakHistory {
310                 float current_level = 0.0f;  // Peak of the last frame.
311                 float historic_peak = 0.0f;  // Highest peak since last reset; no falloff.
312                 float current_peak = 0.0f;  // Current peak of the peak meter.
313                 float last_peak = 0.0f;
314                 float age_seconds = 0.0f;   // Time since "last_peak" was set.
315         };
316         PeakHistory peak_history[MAX_BUSES][2];  // Separate for each channel. Under audio_mutex.
317
318         double final_makeup_gain = 1.0;  // Under compressor_mutex. Read/write by the user. Note: Not in dB, we want the numeric precision so that we can change it slowly.
319         bool final_makeup_gain_auto = true;  // Under compressor_mutex.
320
321         InputMapping input_mapping;  // Under audio_mutex.
322         std::atomic<float> fader_volume_db[MAX_BUSES] {{ 0.0f }};
323         float last_fader_volume_db[MAX_BUSES] { 0.0f };  // Under audio_mutex.
324         std::atomic<float> eq_level_db[MAX_BUSES][NUM_EQ_BANDS] {{{ 0.0f }}};
325
326         audio_level_callback_t audio_level_callback = nullptr;
327         mutable std::mutex audio_measure_mutex;
328         Ebu_r128_proc r128;  // Under audio_measure_mutex.
329         CorrelationMeasurer correlation;  // Under audio_measure_mutex.
330         Resampler peak_resampler;  // Under audio_measure_mutex.
331         std::atomic<float> peak{0.0f};
332 };
333
334 extern AudioMixer *global_audio_mixer;
335
336 #endif  // !defined(_AUDIO_MIXER_H)