]> git.sesse.net Git - nageru/blob - flow.cpp
Make PersistentFBOSet handle depth.
[nageru] / flow.cpp
1 #define NO_SDL_GLEXT 1
2
3 #include <epoxy/gl.h>
4
5 #include <SDL2/SDL.h>
6 #include <SDL2/SDL_error.h>
7 #include <SDL2/SDL_events.h>
8 #include <SDL2/SDL_image.h>
9 #include <SDL2/SDL_keyboard.h>
10 #include <SDL2/SDL_mouse.h>
11 #include <SDL2/SDL_video.h>
12
13 #include <assert.h>
14 #include <getopt.h>
15 #include <stdio.h>
16 #include <unistd.h>
17
18 #include "gpu_timers.h"
19 #include "util.h"
20
21 #include <algorithm>
22 #include <deque>
23 #include <memory>
24 #include <map>
25 #include <stack>
26 #include <vector>
27
28 #define BUFFER_OFFSET(i) ((char *)nullptr + (i))
29
30 using namespace std;
31
32 SDL_Window *window;
33
34 // Operating point 3 (10 Hz on CPU, excluding preprocessing).
35 constexpr float patch_overlap_ratio = 0.75f;
36 constexpr unsigned coarsest_level = 5;
37 constexpr unsigned finest_level = 1;
38 constexpr unsigned patch_size_pixels = 12;
39
40 // Weighting constants for the different parts of the variational refinement.
41 // These don't correspond 1:1 to the values given in the DIS paper,
42 // since we have different normalizations and ranges in some cases.
43 // These are found through a simple grid search on some MPI-Sintel data,
44 // although the error (EPE) seems to be fairly insensitive to the precise values.
45 // Only the relative values matter, so we fix alpha (the smoothness constant)
46 // at unity and tweak the others.
47 float vr_alpha = 1.0f, vr_delta = 0.25f, vr_gamma = 0.25f;
48
49 bool enable_timing = true;
50 bool detailed_timing = false;
51 bool enable_variational_refinement = true;  // Just for debugging.
52 bool enable_interpolation = false;
53
54 // Some global OpenGL objects.
55 // TODO: These should really be part of DISComputeFlow.
56 GLuint nearest_sampler, linear_sampler, zero_border_sampler;
57 GLuint vertex_vbo;
58
59 // Structures for asynchronous readback. We assume everything is the same size (and GL_RG16F).
60 struct ReadInProgress {
61         GLuint pbo;
62         string filename0, filename1;
63         string flow_filename, ppm_filename;  // Either may be empty for no write.
64 };
65 stack<GLuint> spare_pbos;
66 deque<ReadInProgress> reads_in_progress;
67
68 int find_num_levels(int width, int height)
69 {
70         int levels = 1;
71         for (int w = width, h = height; w > 1 || h > 1; ) {
72                 w >>= 1;
73                 h >>= 1;
74                 ++levels;
75         }
76         return levels;
77 }
78
79 string read_file(const string &filename)
80 {
81         FILE *fp = fopen(filename.c_str(), "r");
82         if (fp == nullptr) {
83                 perror(filename.c_str());
84                 exit(1);
85         }
86
87         int ret = fseek(fp, 0, SEEK_END);
88         if (ret == -1) {
89                 perror("fseek(SEEK_END)");
90                 exit(1);
91         }
92
93         int size = ftell(fp);
94
95         ret = fseek(fp, 0, SEEK_SET);
96         if (ret == -1) {
97                 perror("fseek(SEEK_SET)");
98                 exit(1);
99         }
100
101         string str;
102         str.resize(size);
103         ret = fread(&str[0], size, 1, fp);
104         if (ret == -1) {
105                 perror("fread");
106                 exit(1);
107         }
108         if (ret == 0) {
109                 fprintf(stderr, "Short read when trying to read %d bytes from %s\n",
110                                 size, filename.c_str());
111                 exit(1);
112         }
113         fclose(fp);
114
115         return str;
116 }
117
118
119 GLuint compile_shader(const string &shader_src, GLenum type)
120 {
121         GLuint obj = glCreateShader(type);
122         const GLchar* source[] = { shader_src.data() };
123         const GLint length[] = { (GLint)shader_src.size() };
124         glShaderSource(obj, 1, source, length);
125         glCompileShader(obj);
126
127         GLchar info_log[4096];
128         GLsizei log_length = sizeof(info_log) - 1;
129         glGetShaderInfoLog(obj, log_length, &log_length, info_log);
130         info_log[log_length] = 0;
131         if (strlen(info_log) > 0) {
132                 fprintf(stderr, "Shader compile log: %s\n", info_log);
133         }
134
135         GLint status;
136         glGetShaderiv(obj, GL_COMPILE_STATUS, &status);
137         if (status == GL_FALSE) {
138                 // Add some line numbers to easier identify compile errors.
139                 string src_with_lines = "/*   1 */ ";
140                 size_t lineno = 1;
141                 for (char ch : shader_src) {
142                         src_with_lines.push_back(ch);
143                         if (ch == '\n') {
144                                 char buf[32];
145                                 snprintf(buf, sizeof(buf), "/* %3zu */ ", ++lineno);
146                                 src_with_lines += buf;
147                         }
148                 }
149
150                 fprintf(stderr, "Failed to compile shader:\n%s\n", src_with_lines.c_str());
151                 exit(1);
152         }
153
154         return obj;
155 }
156
157 enum MipmapPolicy {
158         WITHOUT_MIPMAPS,
159         WITH_MIPMAPS
160 };
161
162 GLuint load_texture(const char *filename, unsigned *width_ret, unsigned *height_ret, MipmapPolicy mipmaps)
163 {
164         SDL_Surface *surf = IMG_Load(filename);
165         if (surf == nullptr) {
166                 fprintf(stderr, "IMG_Load(%s): %s\n", filename, IMG_GetError());
167                 exit(1);
168         }
169
170         // For whatever reason, SDL doesn't support converting to YUV surfaces
171         // nor grayscale, so we'll do it ourselves.
172         SDL_Surface *rgb_surf = SDL_ConvertSurfaceFormat(surf, SDL_PIXELFORMAT_RGBA32, /*flags=*/0);
173         if (rgb_surf == nullptr) {
174                 fprintf(stderr, "SDL_ConvertSurfaceFormat(%s): %s\n", filename, SDL_GetError());
175                 exit(1);
176         }
177
178         SDL_FreeSurface(surf);
179
180         unsigned width = rgb_surf->w, height = rgb_surf->h;
181         const uint8_t *sptr = (uint8_t *)rgb_surf->pixels;
182         unique_ptr<uint8_t[]> pix(new uint8_t[width * height * 4]);
183
184         // Extract the Y component, and convert to bottom-left origin.
185         for (unsigned y = 0; y < height; ++y) {
186                 unsigned y2 = height - 1 - y;
187                 memcpy(pix.get() + y * width * 4, sptr + y2 * rgb_surf->pitch, width * 4);
188         }
189         SDL_FreeSurface(rgb_surf);
190
191         int num_levels = (mipmaps == WITH_MIPMAPS) ? find_num_levels(width, height) : 1;
192
193         GLuint tex;
194         glCreateTextures(GL_TEXTURE_2D, 1, &tex);
195         glTextureStorage2D(tex, num_levels, GL_RGBA8, width, height);
196         glTextureSubImage2D(tex, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pix.get());
197
198         if (mipmaps == WITH_MIPMAPS) {
199                 glGenerateTextureMipmap(tex);
200         }
201
202         *width_ret = width;
203         *height_ret = height;
204
205         return tex;
206 }
207
208 GLuint link_program(GLuint vs_obj, GLuint fs_obj)
209 {
210         GLuint program = glCreateProgram();
211         glAttachShader(program, vs_obj);
212         glAttachShader(program, fs_obj);
213         glLinkProgram(program);
214         GLint success;
215         glGetProgramiv(program, GL_LINK_STATUS, &success);
216         if (success == GL_FALSE) {
217                 GLchar error_log[1024] = {0};
218                 glGetProgramInfoLog(program, 1024, nullptr, error_log);
219                 fprintf(stderr, "Error linking program: %s\n", error_log);
220                 exit(1);
221         }
222         return program;
223 }
224
225 GLuint generate_vbo(GLint size, GLsizeiptr data_size, const GLvoid *data)
226 {
227         GLuint vbo;
228         glCreateBuffers(1, &vbo);
229         glBufferData(GL_ARRAY_BUFFER, data_size, data, GL_STATIC_DRAW);
230         glNamedBufferData(vbo, data_size, data, GL_STATIC_DRAW);
231         return vbo;
232 }
233
234 GLuint fill_vertex_attribute(GLuint vao, GLuint glsl_program_num, const string &attribute_name, GLint size, GLenum type, GLsizeiptr data_size, const GLvoid *data)
235 {
236         int attrib = glGetAttribLocation(glsl_program_num, attribute_name.c_str());
237         if (attrib == -1) {
238                 return -1;
239         }
240
241         GLuint vbo = generate_vbo(size, data_size, data);
242
243         glBindBuffer(GL_ARRAY_BUFFER, vbo);
244         glEnableVertexArrayAttrib(vao, attrib);
245         glVertexAttribPointer(attrib, size, type, GL_FALSE, 0, BUFFER_OFFSET(0));
246         glBindBuffer(GL_ARRAY_BUFFER, 0);
247
248         return vbo;
249 }
250
251 void bind_sampler(GLuint program, GLint location, GLuint texture_unit, GLuint tex, GLuint sampler)
252 {
253         if (location == -1) {
254                 return;
255         }
256
257         glBindTextureUnit(texture_unit, tex);
258         glBindSampler(texture_unit, sampler);
259         glProgramUniform1i(program, location, texture_unit);
260 }
261
262 // A class that caches FBOs that render to a given set of textures.
263 // It never frees anything, so it is only suitable for rendering to
264 // the same (small) set of textures over and over again.
265 template<size_t num_elements>
266 class PersistentFBOSet {
267 public:
268         void render_to(const array<GLuint, num_elements> &textures);
269
270         // Convenience wrappers.
271         void render_to(GLuint texture0) {
272                 render_to({{texture0}});
273         }
274
275         void render_to(GLuint texture0, GLuint texture1) {
276                 render_to({{texture0, texture1}});
277         }
278
279         void render_to(GLuint texture0, GLuint texture1, GLuint texture2) {
280                 render_to({{texture0, texture1, texture2}});
281         }
282
283         void render_to(GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
284                 render_to({{texture0, texture1, texture2, texture3}});
285         }
286
287 private:
288         // TODO: Delete these on destruction.
289         map<array<GLuint, num_elements>, GLuint> fbos;
290 };
291
292 template<size_t num_elements>
293 void PersistentFBOSet<num_elements>::render_to(const array<GLuint, num_elements> &textures)
294 {
295         auto it = fbos.find(textures);
296         if (it != fbos.end()) {
297                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
298                 return;
299         }
300
301         GLuint fbo;
302         glCreateFramebuffers(1, &fbo);
303         GLenum bufs[num_elements];
304         for (size_t i = 0; i < num_elements; ++i) {
305                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
306                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
307         }
308         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
309
310         fbos[textures] = fbo;
311         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
312 }
313
314 // Same, but with a depth texture.
315 template<size_t num_elements>
316 class PersistentFBOSetWithDepth {
317 public:
318         void render_to(GLuint depth_tex, const array<GLuint, num_elements> &textures);
319
320         // Convenience wrappers.
321         void render_to(GLuint depth_tex, GLuint texture0) {
322                 render_to(depth_tex, {{texture0}});
323         }
324
325         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1) {
326                 render_to(depth_tex, {{texture0, texture1}});
327         }
328
329         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1, GLuint texture2) {
330                 render_to(depth_tex, {{texture0, texture1, texture2}});
331         }
332
333         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
334                 render_to(depth_tex, {{texture0, texture1, texture2, texture3}});
335         }
336
337 private:
338         // TODO: Delete these on destruction.
339         map<pair<GLuint, array<GLuint, num_elements>>, GLuint> fbos;
340 };
341
342 template<size_t num_elements>
343 void PersistentFBOSetWithDepth<num_elements>::render_to(GLuint depth_tex, const array<GLuint, num_elements> &textures)
344 {
345         auto key = make_pair(depth_tex, textures);
346
347         auto it = fbos.find(key);
348         if (it != fbos.end()) {
349                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
350                 return;
351         }
352
353         GLuint fbo;
354         glCreateFramebuffers(1, &fbo);
355         GLenum bufs[num_elements];
356         glNamedFramebufferTexture(fbo, GL_DEPTH_ATTACHMENT, depth_tex, 0);
357         for (size_t i = 0; i < num_elements; ++i) {
358                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
359                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
360         }
361         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
362
363         fbos[key] = fbo;
364         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
365 }
366
367 // Convert RGB to grayscale, using Rec. 709 coefficients.
368 class GrayscaleConversion {
369 public:
370         GrayscaleConversion();
371         void exec(GLint tex, GLint gray_tex, int width, int height);
372
373 private:
374         PersistentFBOSet<1> fbos;
375         GLuint gray_vs_obj;
376         GLuint gray_fs_obj;
377         GLuint gray_program;
378         GLuint gray_vao;
379
380         GLuint uniform_tex;
381 };
382
383 GrayscaleConversion::GrayscaleConversion()
384 {
385         gray_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
386         gray_fs_obj = compile_shader(read_file("gray.frag"), GL_FRAGMENT_SHADER);
387         gray_program = link_program(gray_vs_obj, gray_fs_obj);
388
389         // Set up the VAO containing all the required position/texcoord data.
390         glCreateVertexArrays(1, &gray_vao);
391         glBindVertexArray(gray_vao);
392
393         GLint position_attrib = glGetAttribLocation(gray_program, "position");
394         glEnableVertexArrayAttrib(gray_vao, position_attrib);
395         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
396
397         uniform_tex = glGetUniformLocation(gray_program, "tex");
398 }
399
400 void GrayscaleConversion::exec(GLint tex, GLint gray_tex, int width, int height)
401 {
402         glUseProgram(gray_program);
403         bind_sampler(gray_program, uniform_tex, 0, tex, nearest_sampler);
404
405         glViewport(0, 0, width, height);
406         fbos.render_to(gray_tex);
407         glBindVertexArray(gray_vao);
408         glUseProgram(gray_program);
409         glDisable(GL_BLEND);
410         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
411 }
412
413 // Compute gradients in every point, used for the motion search.
414 // The DIS paper doesn't actually mention how these are computed,
415 // but seemingly, a 3x3 Sobel operator is used here (at least in
416 // later versions of the code), while a [1 -8 0 8 -1] kernel is
417 // used for all the derivatives in the variational refinement part
418 // (which borrows code from DeepFlow). This is inconsistent,
419 // but I guess we're better off with staying with the original
420 // decisions until we actually know having different ones would be better.
421 class Sobel {
422 public:
423         Sobel();
424         void exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height);
425
426 private:
427         PersistentFBOSet<1> fbos;
428         GLuint sobel_vs_obj;
429         GLuint sobel_fs_obj;
430         GLuint sobel_program;
431         GLuint sobel_vao;
432
433         GLuint uniform_tex;
434 };
435
436 Sobel::Sobel()
437 {
438         sobel_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
439         sobel_fs_obj = compile_shader(read_file("sobel.frag"), GL_FRAGMENT_SHADER);
440         sobel_program = link_program(sobel_vs_obj, sobel_fs_obj);
441
442         // Set up the VAO containing all the required position/texcoord data.
443         glCreateVertexArrays(1, &sobel_vao);
444         glBindVertexArray(sobel_vao);
445
446         GLint position_attrib = glGetAttribLocation(sobel_program, "position");
447         glEnableVertexArrayAttrib(sobel_vao, position_attrib);
448         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
449
450         uniform_tex = glGetUniformLocation(sobel_program, "tex");
451 }
452
453 void Sobel::exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height)
454 {
455         glUseProgram(sobel_program);
456         bind_sampler(sobel_program, uniform_tex, 0, tex0_view, nearest_sampler);
457
458         glViewport(0, 0, level_width, level_height);
459         fbos.render_to(grad0_tex);
460         glBindVertexArray(sobel_vao);
461         glUseProgram(sobel_program);
462         glDisable(GL_BLEND);
463         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
464 }
465
466 // Motion search to find the initial flow. See motion_search.frag for documentation.
467 class MotionSearch {
468 public:
469         MotionSearch();
470         void exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches);
471
472 private:
473         PersistentFBOSet<1> fbos;
474
475         GLuint motion_vs_obj;
476         GLuint motion_fs_obj;
477         GLuint motion_search_program;
478         GLuint motion_search_vao;
479
480         GLuint uniform_inv_image_size, uniform_inv_prev_level_size;
481         GLuint uniform_image0_tex, uniform_image1_tex, uniform_grad0_tex, uniform_flow_tex;
482 };
483
484 MotionSearch::MotionSearch()
485 {
486         motion_vs_obj = compile_shader(read_file("motion_search.vert"), GL_VERTEX_SHADER);
487         motion_fs_obj = compile_shader(read_file("motion_search.frag"), GL_FRAGMENT_SHADER);
488         motion_search_program = link_program(motion_vs_obj, motion_fs_obj);
489
490         // Set up the VAO containing all the required position/texcoord data.
491         glCreateVertexArrays(1, &motion_search_vao);
492         glBindVertexArray(motion_search_vao);
493         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
494
495         GLint position_attrib = glGetAttribLocation(motion_search_program, "position");
496         glEnableVertexArrayAttrib(motion_search_vao, position_attrib);
497         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
498
499         uniform_inv_image_size = glGetUniformLocation(motion_search_program, "inv_image_size");
500         uniform_inv_prev_level_size = glGetUniformLocation(motion_search_program, "inv_prev_level_size");
501         uniform_image0_tex = glGetUniformLocation(motion_search_program, "image0_tex");
502         uniform_image1_tex = glGetUniformLocation(motion_search_program, "image1_tex");
503         uniform_grad0_tex = glGetUniformLocation(motion_search_program, "grad0_tex");
504         uniform_flow_tex = glGetUniformLocation(motion_search_program, "flow_tex");
505 }
506
507 void MotionSearch::exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches)
508 {
509         glUseProgram(motion_search_program);
510
511         bind_sampler(motion_search_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
512         bind_sampler(motion_search_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
513         bind_sampler(motion_search_program, uniform_grad0_tex, 2, grad0_tex, zero_border_sampler);
514         bind_sampler(motion_search_program, uniform_flow_tex, 3, flow_tex, linear_sampler);
515
516         glProgramUniform2f(motion_search_program, uniform_inv_image_size, 1.0f / level_width, 1.0f / level_height);
517         glProgramUniform2f(motion_search_program, uniform_inv_prev_level_size, 1.0f / prev_level_width, 1.0f / prev_level_height);
518
519         glViewport(0, 0, width_patches, height_patches);
520         fbos.render_to(flow_out_tex);
521         glBindVertexArray(motion_search_vao);
522         glUseProgram(motion_search_program);
523         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
524 }
525
526 // Do “densification”, ie., upsampling of the flow patches to the flow field
527 // (the same size as the image at this level). We draw one quad per patch
528 // over its entire covered area (using instancing in the vertex shader),
529 // and then weight the contributions in the pixel shader by post-warp difference.
530 // This is equation (3) in the paper.
531 //
532 // We accumulate the flow vectors in the R/G channels (for u/v) and the total
533 // weight in the B channel. Dividing R and G by B gives the normalized values.
534 class Densify {
535 public:
536         Densify();
537         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches);
538
539 private:
540         PersistentFBOSet<1> fbos;
541
542         GLuint densify_vs_obj;
543         GLuint densify_fs_obj;
544         GLuint densify_program;
545         GLuint densify_vao;
546
547         GLuint uniform_patch_size;
548         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
549 };
550
551 Densify::Densify()
552 {
553         densify_vs_obj = compile_shader(read_file("densify.vert"), GL_VERTEX_SHADER);
554         densify_fs_obj = compile_shader(read_file("densify.frag"), GL_FRAGMENT_SHADER);
555         densify_program = link_program(densify_vs_obj, densify_fs_obj);
556
557         // Set up the VAO containing all the required position/texcoord data.
558         glCreateVertexArrays(1, &densify_vao);
559         glBindVertexArray(densify_vao);
560         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
561
562         GLint position_attrib = glGetAttribLocation(densify_program, "position");
563         glEnableVertexArrayAttrib(densify_vao, position_attrib);
564         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
565
566         uniform_patch_size = glGetUniformLocation(densify_program, "patch_size");
567         uniform_image0_tex = glGetUniformLocation(densify_program, "image0_tex");
568         uniform_image1_tex = glGetUniformLocation(densify_program, "image1_tex");
569         uniform_flow_tex = glGetUniformLocation(densify_program, "flow_tex");
570 }
571
572 void Densify::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches)
573 {
574         glUseProgram(densify_program);
575
576         bind_sampler(densify_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
577         bind_sampler(densify_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
578         bind_sampler(densify_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
579
580         glProgramUniform2f(densify_program, uniform_patch_size,
581                 float(patch_size_pixels) / level_width,
582                 float(patch_size_pixels) / level_height);
583
584         glViewport(0, 0, level_width, level_height);
585         glEnable(GL_BLEND);
586         glBlendFunc(GL_ONE, GL_ONE);
587         glBindVertexArray(densify_vao);
588         fbos.render_to(dense_flow_tex);
589         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width_patches * height_patches);
590 }
591
592 // Warp I_1 to I_w, and then compute the mean (I) and difference (I_t) of
593 // I_0 and I_w. The prewarping is what enables us to solve the variational
594 // flow for du,dv instead of u,v.
595 //
596 // Also calculates the normalized flow, ie. divides by z (this is needed because
597 // Densify works by additive blending) and multiplies by the image size.
598 //
599 // See variational_refinement.txt for more information.
600 class Prewarp {
601 public:
602         Prewarp();
603         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint normalized_flow_tex, GLuint I_tex, GLuint I_t_tex, int level_width, int level_height);
604
605 private:
606         PersistentFBOSet<3> fbos;
607
608         GLuint prewarp_vs_obj;
609         GLuint prewarp_fs_obj;
610         GLuint prewarp_program;
611         GLuint prewarp_vao;
612
613         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
614 };
615
616 Prewarp::Prewarp()
617 {
618         prewarp_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
619         prewarp_fs_obj = compile_shader(read_file("prewarp.frag"), GL_FRAGMENT_SHADER);
620         prewarp_program = link_program(prewarp_vs_obj, prewarp_fs_obj);
621
622         // Set up the VAO containing all the required position/texcoord data.
623         glCreateVertexArrays(1, &prewarp_vao);
624         glBindVertexArray(prewarp_vao);
625         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
626
627         GLint position_attrib = glGetAttribLocation(prewarp_program, "position");
628         glEnableVertexArrayAttrib(prewarp_vao, position_attrib);
629         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
630
631         uniform_image0_tex = glGetUniformLocation(prewarp_program, "image0_tex");
632         uniform_image1_tex = glGetUniformLocation(prewarp_program, "image1_tex");
633         uniform_flow_tex = glGetUniformLocation(prewarp_program, "flow_tex");
634 }
635
636 void Prewarp::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint I_tex, GLuint I_t_tex, GLuint normalized_flow_tex, int level_width, int level_height)
637 {
638         glUseProgram(prewarp_program);
639
640         bind_sampler(prewarp_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
641         bind_sampler(prewarp_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
642         bind_sampler(prewarp_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
643
644         glViewport(0, 0, level_width, level_height);
645         glDisable(GL_BLEND);
646         glBindVertexArray(prewarp_vao);
647         fbos.render_to(I_tex, I_t_tex, normalized_flow_tex);
648         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
649 }
650
651 // From I, calculate the partial derivatives I_x and I_y. We use a four-tap
652 // central difference filter, since apparently, that's tradition (I haven't
653 // measured quality versus a more normal 0.5 (I[x+1] - I[x-1]).)
654 // The coefficients come from
655 //
656 //   https://en.wikipedia.org/wiki/Finite_difference_coefficient
657 //
658 // Also computes β_0, since it depends only on I_x and I_y.
659 class Derivatives {
660 public:
661         Derivatives();
662         void exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height);
663
664 private:
665         PersistentFBOSet<2> fbos;
666
667         GLuint derivatives_vs_obj;
668         GLuint derivatives_fs_obj;
669         GLuint derivatives_program;
670         GLuint derivatives_vao;
671
672         GLuint uniform_tex;
673 };
674
675 Derivatives::Derivatives()
676 {
677         derivatives_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
678         derivatives_fs_obj = compile_shader(read_file("derivatives.frag"), GL_FRAGMENT_SHADER);
679         derivatives_program = link_program(derivatives_vs_obj, derivatives_fs_obj);
680
681         // Set up the VAO containing all the required position/texcoord data.
682         glCreateVertexArrays(1, &derivatives_vao);
683         glBindVertexArray(derivatives_vao);
684         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
685
686         GLint position_attrib = glGetAttribLocation(derivatives_program, "position");
687         glEnableVertexArrayAttrib(derivatives_vao, position_attrib);
688         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
689
690         uniform_tex = glGetUniformLocation(derivatives_program, "tex");
691 }
692
693 void Derivatives::exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height)
694 {
695         glUseProgram(derivatives_program);
696
697         bind_sampler(derivatives_program, uniform_tex, 0, input_tex, nearest_sampler);
698
699         glViewport(0, 0, level_width, level_height);
700         glDisable(GL_BLEND);
701         glBindVertexArray(derivatives_vao);
702         fbos.render_to(I_x_y_tex, beta_0_tex);
703         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
704 }
705
706 // Calculate the smoothness constraints between neighboring pixels;
707 // s_x(x,y) stores smoothness between pixel (x,y) and (x+1,y),
708 // and s_y(x,y) stores between (x,y) and (x,y+1). We'll sample with
709 // border color (0,0) later, so that there's zero diffusion out of
710 // the border.
711 //
712 // See variational_refinement.txt for more information.
713 class ComputeSmoothness {
714 public:
715         ComputeSmoothness();
716         void exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint smoothness_x_tex, GLuint smoothness_y_tex, int level_width, int level_height);
717
718 private:
719         PersistentFBOSet<2> fbos;
720
721         GLuint smoothness_vs_obj;
722         GLuint smoothness_fs_obj;
723         GLuint smoothness_program;
724         GLuint smoothness_vao;
725
726         GLuint uniform_flow_tex, uniform_diff_flow_tex;
727         GLuint uniform_alpha;
728 };
729
730 ComputeSmoothness::ComputeSmoothness()
731 {
732         smoothness_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
733         smoothness_fs_obj = compile_shader(read_file("smoothness.frag"), GL_FRAGMENT_SHADER);
734         smoothness_program = link_program(smoothness_vs_obj, smoothness_fs_obj);
735
736         // Set up the VAO containing all the required position/texcoord data.
737         glCreateVertexArrays(1, &smoothness_vao);
738         glBindVertexArray(smoothness_vao);
739         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
740
741         GLint position_attrib = glGetAttribLocation(smoothness_program, "position");
742         glEnableVertexArrayAttrib(smoothness_vao, position_attrib);
743         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
744
745         uniform_flow_tex = glGetUniformLocation(smoothness_program, "flow_tex");
746         uniform_diff_flow_tex = glGetUniformLocation(smoothness_program, "diff_flow_tex");
747         uniform_alpha = glGetUniformLocation(smoothness_program, "alpha");
748 }
749
750 void ComputeSmoothness::exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint smoothness_x_tex, GLuint smoothness_y_tex, int level_width, int level_height)
751 {
752         glUseProgram(smoothness_program);
753
754         bind_sampler(smoothness_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
755         bind_sampler(smoothness_program, uniform_diff_flow_tex, 1, diff_flow_tex, nearest_sampler);
756         glProgramUniform1f(smoothness_program, uniform_alpha, vr_alpha);
757
758         glViewport(0, 0, level_width, level_height);
759
760         glDisable(GL_BLEND);
761         glBindVertexArray(smoothness_vao);
762         fbos.render_to(smoothness_x_tex, smoothness_y_tex);
763         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
764
765         // Make sure the smoothness on the right and upper borders is zero.
766         // We could have done this by making (W-1)xH and Wx(H-1) textures instead
767         // (we're sampling smoothness with all-zero border color), but we'd
768         // have to adjust the sampling coordinates, which is annoying.
769         glClearTexSubImage(smoothness_x_tex, 0,  level_width - 1, 0, 0,   1, level_height, 1,  GL_RED, GL_FLOAT, nullptr);
770         glClearTexSubImage(smoothness_y_tex, 0,  0, level_height - 1, 0,  level_width, 1, 1,   GL_RED, GL_FLOAT, nullptr);
771 }
772
773 // Set up the equations set (two equations in two unknowns, per pixel).
774 // We store five floats; the three non-redundant elements of the 2x2 matrix (A)
775 // as 32-bit floats, and the two elements on the right-hand side (b) as 16-bit
776 // floats. (Actually, we store the inverse of the diagonal elements, because
777 // we only ever need to divide by them.) This fits into four u32 values;
778 // R, G, B for the matrix (the last element is symmetric) and A for the two b values.
779 // All the values of the energy term (E_I, E_G, E_S), except the smoothness
780 // terms that depend on other pixels, are calculated in one pass.
781 //
782 // See variational_refinement.txt for more information.
783 class SetupEquations {
784 public:
785         SetupEquations();
786         void exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint flow_tex, GLuint beta_0_tex, GLuint smoothness_x_tex, GLuint smoothness_y_tex, GLuint equation_tex, int level_width, int level_height);
787
788 private:
789         PersistentFBOSet<1> fbos;
790
791         GLuint equations_vs_obj;
792         GLuint equations_fs_obj;
793         GLuint equations_program;
794         GLuint equations_vao;
795
796         GLuint uniform_I_x_y_tex, uniform_I_t_tex;
797         GLuint uniform_diff_flow_tex, uniform_base_flow_tex;
798         GLuint uniform_beta_0_tex;
799         GLuint uniform_smoothness_x_tex, uniform_smoothness_y_tex;
800         GLuint uniform_gamma, uniform_delta;
801 };
802
803 SetupEquations::SetupEquations()
804 {
805         equations_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
806         equations_fs_obj = compile_shader(read_file("equations.frag"), GL_FRAGMENT_SHADER);
807         equations_program = link_program(equations_vs_obj, equations_fs_obj);
808
809         // Set up the VAO containing all the required position/texcoord data.
810         glCreateVertexArrays(1, &equations_vao);
811         glBindVertexArray(equations_vao);
812         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
813
814         GLint position_attrib = glGetAttribLocation(equations_program, "position");
815         glEnableVertexArrayAttrib(equations_vao, position_attrib);
816         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
817
818         uniform_I_x_y_tex = glGetUniformLocation(equations_program, "I_x_y_tex");
819         uniform_I_t_tex = glGetUniformLocation(equations_program, "I_t_tex");
820         uniform_diff_flow_tex = glGetUniformLocation(equations_program, "diff_flow_tex");
821         uniform_base_flow_tex = glGetUniformLocation(equations_program, "base_flow_tex");
822         uniform_beta_0_tex = glGetUniformLocation(equations_program, "beta_0_tex");
823         uniform_smoothness_x_tex = glGetUniformLocation(equations_program, "smoothness_x_tex");
824         uniform_smoothness_y_tex = glGetUniformLocation(equations_program, "smoothness_y_tex");
825         uniform_gamma = glGetUniformLocation(equations_program, "gamma");
826         uniform_delta = glGetUniformLocation(equations_program, "delta");
827 }
828
829 void SetupEquations::exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint base_flow_tex, GLuint beta_0_tex, GLuint smoothness_x_tex, GLuint smoothness_y_tex, GLuint equation_tex, int level_width, int level_height)
830 {
831         glUseProgram(equations_program);
832
833         bind_sampler(equations_program, uniform_I_x_y_tex, 0, I_x_y_tex, nearest_sampler);
834         bind_sampler(equations_program, uniform_I_t_tex, 1, I_t_tex, nearest_sampler);
835         bind_sampler(equations_program, uniform_diff_flow_tex, 2, diff_flow_tex, nearest_sampler);
836         bind_sampler(equations_program, uniform_base_flow_tex, 3, base_flow_tex, nearest_sampler);
837         bind_sampler(equations_program, uniform_beta_0_tex, 4, beta_0_tex, nearest_sampler);
838         bind_sampler(equations_program, uniform_smoothness_x_tex, 5, smoothness_x_tex, zero_border_sampler);
839         bind_sampler(equations_program, uniform_smoothness_y_tex, 6, smoothness_y_tex, zero_border_sampler);
840         glProgramUniform1f(equations_program, uniform_delta, vr_delta);
841         glProgramUniform1f(equations_program, uniform_gamma, vr_gamma);
842
843         glViewport(0, 0, level_width, level_height);
844         glDisable(GL_BLEND);
845         glBindVertexArray(equations_vao);
846         fbos.render_to(equation_tex);
847         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
848 }
849
850 // Actually solve the equation sets made by SetupEquations, by means of
851 // successive over-relaxation (SOR).
852 //
853 // See variational_refinement.txt for more information.
854 class SOR {
855 public:
856         SOR();
857         void exec(GLuint diff_flow_tex, GLuint equation_tex, GLuint smoothness_x_tex, GLuint smoothness_y_tex, int level_width, int level_height, int num_iterations, ScopedTimer *sor_timer);
858
859 private:
860         PersistentFBOSet<1> fbos;
861
862         GLuint sor_vs_obj;
863         GLuint sor_fs_obj;
864         GLuint sor_program;
865         GLuint sor_vao;
866
867         GLuint uniform_diff_flow_tex;
868         GLuint uniform_equation_tex;
869         GLuint uniform_smoothness_x_tex, uniform_smoothness_y_tex;
870         GLuint uniform_phase;
871 };
872
873 SOR::SOR()
874 {
875         sor_vs_obj = compile_shader(read_file("sor.vert"), GL_VERTEX_SHADER);
876         sor_fs_obj = compile_shader(read_file("sor.frag"), GL_FRAGMENT_SHADER);
877         sor_program = link_program(sor_vs_obj, sor_fs_obj);
878
879         // Set up the VAO containing all the required position/texcoord data.
880         glCreateVertexArrays(1, &sor_vao);
881         glBindVertexArray(sor_vao);
882         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
883
884         GLint position_attrib = glGetAttribLocation(sor_program, "position");
885         glEnableVertexArrayAttrib(sor_vao, position_attrib);
886         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
887
888         uniform_diff_flow_tex = glGetUniformLocation(sor_program, "diff_flow_tex");
889         uniform_equation_tex = glGetUniformLocation(sor_program, "equation_tex");
890         uniform_smoothness_x_tex = glGetUniformLocation(sor_program, "smoothness_x_tex");
891         uniform_smoothness_y_tex = glGetUniformLocation(sor_program, "smoothness_y_tex");
892         uniform_phase = glGetUniformLocation(sor_program, "phase");
893 }
894
895 void SOR::exec(GLuint diff_flow_tex, GLuint equation_tex, GLuint smoothness_x_tex, GLuint smoothness_y_tex, int level_width, int level_height, int num_iterations, ScopedTimer *sor_timer)
896 {
897         glUseProgram(sor_program);
898
899         bind_sampler(sor_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
900         bind_sampler(sor_program, uniform_smoothness_x_tex, 1, smoothness_x_tex, zero_border_sampler);
901         bind_sampler(sor_program, uniform_smoothness_y_tex, 2, smoothness_y_tex, zero_border_sampler);
902         bind_sampler(sor_program, uniform_equation_tex, 3, equation_tex, nearest_sampler);
903
904         // NOTE: We bind to the texture we are rendering from, but we never write any value
905         // that we read in the same shader pass (we call discard for red values when we compute
906         // black, and vice versa), and we have barriers between the passes, so we're fine
907         // as per the spec.
908         glViewport(0, 0, level_width, level_height);
909         glDisable(GL_BLEND);
910         glBindVertexArray(sor_vao);
911         fbos.render_to(diff_flow_tex);
912
913         for (int i = 0; i < num_iterations; ++i) {
914                 {
915                         ScopedTimer timer("Red pass", sor_timer);
916                         glProgramUniform1i(sor_program, uniform_phase, 0);
917                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
918                         glTextureBarrier();
919                 }
920                 {
921                         ScopedTimer timer("Black pass", sor_timer);
922                         glProgramUniform1i(sor_program, uniform_phase, 1);
923                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
924                         if (i != num_iterations - 1) {
925                                 glTextureBarrier();
926                         }
927                 }
928         }
929 }
930
931 // Simply add the differential flow found by the variational refinement to the base flow.
932 // The output is in base_flow_tex; we don't need to make a new texture.
933 class AddBaseFlow {
934 public:
935         AddBaseFlow();
936         void exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height);
937
938 private:
939         PersistentFBOSet<1> fbos;
940
941         GLuint add_flow_vs_obj;
942         GLuint add_flow_fs_obj;
943         GLuint add_flow_program;
944         GLuint add_flow_vao;
945
946         GLuint uniform_diff_flow_tex;
947 };
948
949 AddBaseFlow::AddBaseFlow()
950 {
951         add_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
952         add_flow_fs_obj = compile_shader(read_file("add_base_flow.frag"), GL_FRAGMENT_SHADER);
953         add_flow_program = link_program(add_flow_vs_obj, add_flow_fs_obj);
954
955         // Set up the VAO containing all the required position/texcoord data.
956         glCreateVertexArrays(1, &add_flow_vao);
957         glBindVertexArray(add_flow_vao);
958         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
959
960         GLint position_attrib = glGetAttribLocation(add_flow_program, "position");
961         glEnableVertexArrayAttrib(add_flow_vao, position_attrib);
962         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
963
964         uniform_diff_flow_tex = glGetUniformLocation(add_flow_program, "diff_flow_tex");
965 }
966
967 void AddBaseFlow::exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height)
968 {
969         glUseProgram(add_flow_program);
970
971         bind_sampler(add_flow_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
972
973         glViewport(0, 0, level_width, level_height);
974         glEnable(GL_BLEND);
975         glBlendFunc(GL_ONE, GL_ONE);
976         glBindVertexArray(add_flow_vao);
977         fbos.render_to(base_flow_tex);
978
979         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
980 }
981
982 // Take a copy of the flow, bilinearly interpolated and scaled up.
983 class ResizeFlow {
984 public:
985         ResizeFlow();
986         void exec(GLuint in_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height);
987
988 private:
989         PersistentFBOSet<1> fbos;
990
991         GLuint resize_flow_vs_obj;
992         GLuint resize_flow_fs_obj;
993         GLuint resize_flow_program;
994         GLuint resize_flow_vao;
995
996         GLuint uniform_flow_tex;
997         GLuint uniform_scale_factor;
998 };
999
1000 ResizeFlow::ResizeFlow()
1001 {
1002         resize_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
1003         resize_flow_fs_obj = compile_shader(read_file("resize_flow.frag"), GL_FRAGMENT_SHADER);
1004         resize_flow_program = link_program(resize_flow_vs_obj, resize_flow_fs_obj);
1005
1006         // Set up the VAO containing all the required position/texcoord data.
1007         glCreateVertexArrays(1, &resize_flow_vao);
1008         glBindVertexArray(resize_flow_vao);
1009         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1010
1011         GLint position_attrib = glGetAttribLocation(resize_flow_program, "position");
1012         glEnableVertexArrayAttrib(resize_flow_vao, position_attrib);
1013         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1014
1015         uniform_flow_tex = glGetUniformLocation(resize_flow_program, "flow_tex");
1016         uniform_scale_factor = glGetUniformLocation(resize_flow_program, "scale_factor");
1017 }
1018
1019 void ResizeFlow::exec(GLuint flow_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height)
1020 {
1021         glUseProgram(resize_flow_program);
1022
1023         bind_sampler(resize_flow_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
1024
1025         glProgramUniform2f(resize_flow_program, uniform_scale_factor, float(output_width) / input_width, float(output_height) / input_height);
1026
1027         glViewport(0, 0, output_width, output_height);
1028         glDisable(GL_BLEND);
1029         glBindVertexArray(resize_flow_vao);
1030         fbos.render_to(out_tex);
1031
1032         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1033 }
1034
1035 class TexturePool {
1036 public:
1037         GLuint get_texture(GLenum format, GLuint width, GLuint height);
1038         void release_texture(GLuint tex_num);
1039
1040 private:
1041         struct Texture {
1042                 GLuint tex_num;
1043                 GLenum format;
1044                 GLuint width, height;
1045                 bool in_use = false;
1046         };
1047         vector<Texture> textures;
1048 };
1049
1050 class DISComputeFlow {
1051 public:
1052         DISComputeFlow(int width, int height);
1053
1054         enum ResizeStrategy {
1055                 DO_NOT_RESIZE_FLOW,
1056                 RESIZE_FLOW_TO_FULL_SIZE
1057         };
1058
1059         // Returns a texture that must be released with release_texture()
1060         // after use.
1061         GLuint exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy);
1062
1063         void release_texture(GLuint tex) {
1064                 pool.release_texture(tex);
1065         }
1066
1067 private:
1068         int width, height;
1069         GLuint initial_flow_tex;
1070         TexturePool pool;
1071
1072         // The various passes.
1073         Sobel sobel;
1074         MotionSearch motion_search;
1075         Densify densify;
1076         Prewarp prewarp;
1077         Derivatives derivatives;
1078         ComputeSmoothness compute_smoothness;
1079         SetupEquations setup_equations;
1080         SOR sor;
1081         AddBaseFlow add_base_flow;
1082         ResizeFlow resize_flow;
1083 };
1084
1085 DISComputeFlow::DISComputeFlow(int width, int height)
1086         : width(width), height(height)
1087 {
1088         // Make some samplers.
1089         glCreateSamplers(1, &nearest_sampler);
1090         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
1091         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
1092         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1093         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1094
1095         glCreateSamplers(1, &linear_sampler);
1096         glSamplerParameteri(linear_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1097         glSamplerParameteri(linear_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1098         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1099         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1100
1101         // The smoothness is sampled so that once we get to a smoothness involving
1102         // a value outside the border, the diffusivity between the two becomes zero.
1103         // Similarly, gradients are zero outside the border, since the edge is taken
1104         // to be constant.
1105         glCreateSamplers(1, &zero_border_sampler);
1106         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
1107         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
1108         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
1109         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
1110         float zero[] = { 0.0f, 0.0f, 0.0f, 0.0f };
1111         glSamplerParameterfv(zero_border_sampler, GL_TEXTURE_BORDER_COLOR, zero);
1112
1113         // Initial flow is zero, 1x1.
1114         glCreateTextures(GL_TEXTURE_2D, 1, &initial_flow_tex);
1115         glTextureStorage2D(initial_flow_tex, 1, GL_RG16F, 1, 1);
1116         glClearTexImage(initial_flow_tex, 0, GL_RG, GL_FLOAT, nullptr);
1117 }
1118
1119 GLuint DISComputeFlow::exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy)
1120 {
1121         int prev_level_width = 1, prev_level_height = 1;
1122         GLuint prev_level_flow_tex = initial_flow_tex;
1123
1124         GPUTimers timers;
1125
1126         ScopedTimer total_timer("Total", &timers);
1127         for (int level = coarsest_level; level >= int(finest_level); --level) {
1128                 char timer_name[256];
1129                 snprintf(timer_name, sizeof(timer_name), "Level %d (%d x %d)", level, width >> level, height >> level);
1130                 ScopedTimer level_timer(timer_name, &total_timer);
1131
1132                 int level_width = width >> level;
1133                 int level_height = height >> level;
1134                 float patch_spacing_pixels = patch_size_pixels * (1.0f - patch_overlap_ratio);
1135
1136                 // Make sure we have patches at least every Nth pixel, e.g. for width=9
1137                 // and patch_spacing=3 (the default), we put out patch centers in
1138                 // x=0, x=3, x=6, x=9, which is four patches. The fragment shader will
1139                 // lock all the centers to integer coordinates if needed.
1140                 int width_patches = 1 + ceil(level_width / patch_spacing_pixels);
1141                 int height_patches = 1 + ceil(level_height / patch_spacing_pixels);
1142
1143                 // Make sure we always read from the correct level; the chosen
1144                 // mipmapping could otherwise be rather unpredictable, especially
1145                 // during motion search.
1146                 GLuint tex0_view, tex1_view;
1147                 glGenTextures(1, &tex0_view);
1148                 glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_R8, level, 1, 0, 1);
1149                 glGenTextures(1, &tex1_view);
1150                 glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_R8, level, 1, 0, 1);
1151
1152                 // Create a new texture; we could be fancy and render use a multi-level
1153                 // texture, but meh.
1154                 GLuint grad0_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1155
1156                 // Find the derivative.
1157                 {
1158                         ScopedTimer timer("Sobel", &level_timer);
1159                         sobel.exec(tex0_view, grad0_tex, level_width, level_height);
1160                 }
1161
1162                 // Motion search to find the initial flow. We use the flow from the previous
1163                 // level (sampled bilinearly; no fancy tricks) as a guide, then search from there.
1164
1165                 // Create an output flow texture.
1166                 GLuint flow_out_tex = pool.get_texture(GL_RGB16F, width_patches, height_patches);
1167
1168                 // And draw.
1169                 {
1170                         ScopedTimer timer("Motion search", &level_timer);
1171                         motion_search.exec(tex0_view, tex1_view, grad0_tex, prev_level_flow_tex, flow_out_tex, level_width, level_height, prev_level_width, prev_level_height, width_patches, height_patches);
1172                 }
1173                 pool.release_texture(grad0_tex);
1174
1175                 // Densification.
1176
1177                 // Set up an output texture (initially zero).
1178                 GLuint dense_flow_tex = pool.get_texture(GL_RGB16F, level_width, level_height);
1179                 glClearTexImage(dense_flow_tex, 0, GL_RGB, GL_FLOAT, nullptr);
1180
1181                 // And draw.
1182                 {
1183                         ScopedTimer timer("Densification", &level_timer);
1184                         densify.exec(tex0_view, tex1_view, flow_out_tex, dense_flow_tex, level_width, level_height, width_patches, height_patches);
1185                 }
1186                 pool.release_texture(flow_out_tex);
1187
1188                 // Everything below here in the loop belongs to variational refinement.
1189                 ScopedTimer varref_timer("Variational refinement", &level_timer);
1190
1191                 // Prewarping; create I and I_t, and a normalized base flow (so we don't
1192                 // have to normalize it over and over again, and also save some bandwidth).
1193                 //
1194                 // During the entire rest of the variational refinement, flow will be measured
1195                 // in pixels, not 0..1 normalized OpenGL texture coordinates.
1196                 // This is because variational refinement depends so heavily on derivatives,
1197                 // which are measured in intensity levels per pixel.
1198                 GLuint I_tex = pool.get_texture(GL_R16F, level_width, level_height);
1199                 GLuint I_t_tex = pool.get_texture(GL_R16F, level_width, level_height);
1200                 GLuint base_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1201                 {
1202                         ScopedTimer timer("Prewarping", &varref_timer);
1203                         prewarp.exec(tex0_view, tex1_view, dense_flow_tex, I_tex, I_t_tex, base_flow_tex, level_width, level_height);
1204                 }
1205                 pool.release_texture(dense_flow_tex);
1206                 glDeleteTextures(1, &tex0_view);
1207                 glDeleteTextures(1, &tex1_view);
1208
1209                 // Calculate I_x and I_y. We're only calculating first derivatives;
1210                 // the others will be taken on-the-fly in order to sample from fewer
1211                 // textures overall, since sampling from the L1 cache is cheap.
1212                 // (TODO: Verify that this is indeed faster than making separate
1213                 // double-derivative textures.)
1214                 GLuint I_x_y_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1215                 GLuint beta_0_tex = pool.get_texture(GL_R16F, level_width, level_height);
1216                 {
1217                         ScopedTimer timer("First derivatives", &varref_timer);
1218                         derivatives.exec(I_tex, I_x_y_tex, beta_0_tex, level_width, level_height);
1219                 }
1220                 pool.release_texture(I_tex);
1221
1222                 // We need somewhere to store du and dv (the flow increment, relative
1223                 // to the non-refined base flow u0 and v0). It starts at zero.
1224                 GLuint du_dv_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1225                 glClearTexImage(du_dv_tex, 0, GL_RG, GL_FLOAT, nullptr);
1226
1227                 // And for smoothness.
1228                 GLuint smoothness_x_tex = pool.get_texture(GL_R16F, level_width, level_height);
1229                 GLuint smoothness_y_tex = pool.get_texture(GL_R16F, level_width, level_height);
1230
1231                 // And finally for the equation set. See SetupEquations for
1232                 // the storage format.
1233                 GLuint equation_tex = pool.get_texture(GL_RGBA32UI, level_width, level_height);
1234
1235                 for (int outer_idx = 0; outer_idx < level + 1; ++outer_idx) {
1236                         // Calculate the smoothness terms between the neighboring pixels,
1237                         // both in x and y direction.
1238                         {
1239                                 ScopedTimer timer("Compute smoothness", &varref_timer);
1240                                 compute_smoothness.exec(base_flow_tex, du_dv_tex, smoothness_x_tex, smoothness_y_tex, level_width, level_height);
1241                         }
1242
1243                         // Set up the 2x2 equation system for each pixel.
1244                         {
1245                                 ScopedTimer timer("Set up equations", &varref_timer);
1246                                 setup_equations.exec(I_x_y_tex, I_t_tex, du_dv_tex, base_flow_tex, beta_0_tex, smoothness_x_tex, smoothness_y_tex, equation_tex, level_width, level_height);
1247                         }
1248
1249                         // Run a few SOR (or quasi-SOR, since we're not really Jacobi) iterations.
1250                         // Note that these are to/from the same texture.
1251                         {
1252                                 ScopedTimer timer("SOR", &varref_timer);
1253                                 sor.exec(du_dv_tex, equation_tex, smoothness_x_tex, smoothness_y_tex, level_width, level_height, 5, &timer);
1254                         }
1255                 }
1256
1257                 pool.release_texture(I_t_tex);
1258                 pool.release_texture(I_x_y_tex);
1259                 pool.release_texture(beta_0_tex);
1260                 pool.release_texture(smoothness_x_tex);
1261                 pool.release_texture(smoothness_y_tex);
1262                 pool.release_texture(equation_tex);
1263
1264                 // Add the differential flow found by the variational refinement to the base flow,
1265                 // giving the final flow estimate for this level.
1266                 // The output is in diff_flow_tex; we don't need to make a new texture.
1267                 //
1268                 // Disabling this doesn't save any time (although we could easily make it so that
1269                 // it is more efficient), but it helps debug the motion search.
1270                 if (enable_variational_refinement) {
1271                         ScopedTimer timer("Add differential flow", &varref_timer);
1272                         add_base_flow.exec(base_flow_tex, du_dv_tex, level_width, level_height);
1273                 }
1274                 pool.release_texture(du_dv_tex);
1275
1276                 if (prev_level_flow_tex != initial_flow_tex) {
1277                         pool.release_texture(prev_level_flow_tex);
1278                 }
1279                 prev_level_flow_tex = base_flow_tex;
1280                 prev_level_width = level_width;
1281                 prev_level_height = level_height;
1282         }
1283         total_timer.end();
1284
1285         timers.print();
1286
1287         // Scale up the flow to the final size (if needed).
1288         if (finest_level == 0 || resize_strategy == DO_NOT_RESIZE_FLOW) {
1289                 return prev_level_flow_tex;
1290         } else {
1291                 GLuint final_tex = pool.get_texture(GL_RG16F, width, height);
1292                 resize_flow.exec(prev_level_flow_tex, final_tex, prev_level_width, prev_level_height, width, height);
1293                 pool.release_texture(prev_level_flow_tex);
1294                 return final_tex;
1295         }
1296 }
1297
1298 // Forward-warp the flow half-way (or rather, by alpha). A non-zero “splatting”
1299 // radius fills most of the holes.
1300 class Splat {
1301 public:
1302         Splat();
1303
1304         // alpha is the time of the interpolated frame (0..1).
1305         void exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_tex, int width, int height, float alpha);
1306
1307 private:
1308         PersistentFBOSetWithDepth<1> fbos;
1309
1310         GLuint splat_vs_obj;
1311         GLuint splat_fs_obj;
1312         GLuint splat_program;
1313         GLuint splat_vao;
1314
1315         GLuint uniform_invert_flow, uniform_splat_size, uniform_alpha;
1316         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1317         GLuint uniform_inv_flow_size;
1318 };
1319
1320 Splat::Splat()
1321 {
1322         splat_vs_obj = compile_shader(read_file("splat.vert"), GL_VERTEX_SHADER);
1323         splat_fs_obj = compile_shader(read_file("splat.frag"), GL_FRAGMENT_SHADER);
1324         splat_program = link_program(splat_vs_obj, splat_fs_obj);
1325
1326         // Set up the VAO containing all the required position/texcoord data.
1327         glCreateVertexArrays(1, &splat_vao);
1328         glBindVertexArray(splat_vao);
1329         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1330
1331         GLint position_attrib = glGetAttribLocation(splat_program, "position");
1332         glEnableVertexArrayAttrib(splat_vao, position_attrib);
1333         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1334
1335         uniform_invert_flow = glGetUniformLocation(splat_program, "invert_flow");
1336         uniform_splat_size = glGetUniformLocation(splat_program, "splat_size");
1337         uniform_alpha = glGetUniformLocation(splat_program, "alpha");
1338         uniform_image0_tex = glGetUniformLocation(splat_program, "image0_tex");
1339         uniform_image1_tex = glGetUniformLocation(splat_program, "image1_tex");
1340         uniform_flow_tex = glGetUniformLocation(splat_program, "flow_tex");
1341         uniform_inv_flow_size = glGetUniformLocation(splat_program, "inv_flow_size");
1342 }
1343
1344 void Splat::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_tex, int width, int height, float alpha)
1345 {
1346         glUseProgram(splat_program);
1347
1348         bind_sampler(splat_program, uniform_image0_tex, 0, tex0, linear_sampler);
1349         bind_sampler(splat_program, uniform_image1_tex, 1, tex1, linear_sampler);
1350
1351         // FIXME: This is set to 1.0 right now so not to trigger Haswell's “PMA stall”.
1352         // Move to 2.0 later, or even 4.0.
1353         // (Since we have hole filling, it's not critical, but larger values seem to do
1354         // better than hole filling for large motion, blurs etc.)
1355         float splat_size = 1.0f;  // 4x4 splat means 16x overdraw, 2x2 splat means 4x overdraw.
1356         glProgramUniform2f(splat_program, uniform_splat_size, splat_size / width, splat_size / height);
1357         glProgramUniform1f(splat_program, uniform_alpha, alpha);
1358         glProgramUniform2f(splat_program, uniform_inv_flow_size, 1.0f / width, 1.0f / height);
1359
1360         glViewport(0, 0, width, height);
1361         glDisable(GL_BLEND);
1362         glEnable(GL_DEPTH_TEST);
1363         glDepthFunc(GL_LESS);  // We store the difference between I_0 and I_1, where less difference is good. (Default 1.0 is effectively +inf, which always loses.)
1364         glBindVertexArray(splat_vao);
1365
1366         fbos.render_to(depth_tex, flow_tex);
1367
1368         // Do forward splatting.
1369         bind_sampler(splat_program, uniform_flow_tex, 2, forward_flow_tex, nearest_sampler);
1370         glProgramUniform1i(splat_program, uniform_invert_flow, 0);
1371         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1372
1373         // Do backward splatting.
1374         bind_sampler(splat_program, uniform_flow_tex, 2, backward_flow_tex, nearest_sampler);
1375         glProgramUniform1i(splat_program, uniform_invert_flow, 1);
1376         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1377
1378         glDisable(GL_DEPTH_TEST);
1379 }
1380
1381 // Doing good and fast hole-filling on a GPU is nontrivial. We choose an option
1382 // that's fairly simple (given that most holes are really small) and also hopefully
1383 // cheap should the holes not be so small. Conceptually, we look for the first
1384 // non-hole to the left of us (ie., shoot a ray until we hit something), then
1385 // the first non-hole to the right of us, then up and down, and then average them
1386 // all together. It's going to create “stars” if the holes are big, but OK, that's
1387 // a tradeoff.
1388 //
1389 // Our implementation here is efficient assuming that the hierarchical Z-buffer is
1390 // on even for shaders that do discard (this typically kills early Z, but hopefully
1391 // not hierarchical Z); we set up Z so that only holes are written to, which means
1392 // that as soon as a hole is filled, the rasterizer should just skip it. Most of the
1393 // fullscreen quads should just be discarded outright, really.
1394 class HoleFill {
1395 public:
1396         HoleFill();
1397
1398         // Output will be in flow_tex, temp_tex[0, 1, 2], representing the filling
1399         // from the down, left, right and up, respectively. Use HoleBlend to merge
1400         // them into one.
1401         void exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height);
1402
1403 private:
1404         PersistentFBOSetWithDepth<1> fbos;
1405
1406         GLuint fill_vs_obj;
1407         GLuint fill_fs_obj;
1408         GLuint fill_program;
1409         GLuint fill_vao;
1410
1411         GLuint uniform_tex;
1412         GLuint uniform_z, uniform_sample_offset;
1413 };
1414
1415 HoleFill::HoleFill()
1416 {
1417         fill_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);
1418         fill_fs_obj = compile_shader(read_file("hole_fill.frag"), GL_FRAGMENT_SHADER);
1419         fill_program = link_program(fill_vs_obj, fill_fs_obj);
1420
1421         // Set up the VAO containing all the required position/texcoord data.
1422         glCreateVertexArrays(1, &fill_vao);
1423         glBindVertexArray(fill_vao);
1424         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1425
1426         GLint position_attrib = glGetAttribLocation(fill_program, "position");
1427         glEnableVertexArrayAttrib(fill_vao, position_attrib);
1428         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1429
1430         uniform_tex = glGetUniformLocation(fill_program, "tex");
1431         uniform_z = glGetUniformLocation(fill_program, "z");
1432         uniform_sample_offset = glGetUniformLocation(fill_program, "sample_offset");
1433 }
1434
1435 void HoleFill::exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height)
1436 {
1437         glUseProgram(fill_program);
1438
1439         bind_sampler(fill_program, uniform_tex, 0, flow_tex, nearest_sampler);
1440
1441         glProgramUniform1f(fill_program, uniform_z, 1.0f - 1.0f / 1024.0f);
1442
1443         glViewport(0, 0, width, height);
1444         glDisable(GL_BLEND);
1445         glEnable(GL_DEPTH_TEST);
1446         glDepthFunc(GL_LESS);  // Only update the values > 0.999f (ie., only invalid pixels).
1447         glBindVertexArray(fill_vao);
1448
1449         fbos.render_to(depth_tex, flow_tex);  // NOTE: Reading and writing to the same texture.
1450
1451         // Fill holes from the left, by shifting 1, 2, 4, 8, etc. pixels to the right.
1452         for (int offs = 1; offs < width; offs *= 2) {
1453                 glProgramUniform2f(fill_program, uniform_sample_offset, -offs / float(width), 0.0f);
1454                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1455                 glTextureBarrier();
1456         }
1457         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[0], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1458
1459         // Similar to the right; adjust Z a bit down, so that we re-fill the pixels that
1460         // were overwritten in the last algorithm.
1461         glProgramUniform1f(fill_program, uniform_z, 1.0f - 2.0f / 1024.0f);
1462         for (int offs = 1; offs < width; offs *= 2) {
1463                 glProgramUniform2f(fill_program, uniform_sample_offset, offs / float(width), 0.0f);
1464                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1465                 glTextureBarrier();
1466         }
1467         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[1], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1468
1469         // Up.
1470         glProgramUniform1f(fill_program, uniform_z, 1.0f - 3.0f / 1024.0f);
1471         for (int offs = 1; offs < height; offs *= 2) {
1472                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, -offs / float(height));
1473                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1474                 glTextureBarrier();
1475         }
1476         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[2], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1477
1478         // Down.
1479         glProgramUniform1f(fill_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1480         for (int offs = 1; offs < height; offs *= 2) {
1481                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, offs / float(height));
1482                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1483                 glTextureBarrier();
1484         }
1485
1486         glDisable(GL_DEPTH_TEST);
1487 }
1488
1489 // Blend the four directions from HoleFill into one pixel, so that single-pixel
1490 // holes become the average of their four neighbors.
1491 class HoleBlend {
1492 public:
1493         HoleBlend();
1494
1495         void exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height);
1496
1497 private:
1498         PersistentFBOSetWithDepth<1> fbos;
1499
1500         GLuint blend_vs_obj;
1501         GLuint blend_fs_obj;
1502         GLuint blend_program;
1503         GLuint blend_vao;
1504
1505         GLuint uniform_left_tex, uniform_right_tex, uniform_up_tex, uniform_down_tex;
1506         GLuint uniform_z, uniform_sample_offset;
1507 };
1508
1509 HoleBlend::HoleBlend()
1510 {
1511         blend_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);  // Reuse the vertex shader from the fill.
1512         blend_fs_obj = compile_shader(read_file("hole_blend.frag"), GL_FRAGMENT_SHADER);
1513         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1514
1515         // Set up the VAO containing all the required position/texcoord data.
1516         glCreateVertexArrays(1, &blend_vao);
1517         glBindVertexArray(blend_vao);
1518         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1519
1520         GLint position_attrib = glGetAttribLocation(blend_program, "position");
1521         glEnableVertexArrayAttrib(blend_vao, position_attrib);
1522         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1523
1524         uniform_left_tex = glGetUniformLocation(blend_program, "left_tex");
1525         uniform_right_tex = glGetUniformLocation(blend_program, "right_tex");
1526         uniform_up_tex = glGetUniformLocation(blend_program, "up_tex");
1527         uniform_down_tex = glGetUniformLocation(blend_program, "down_tex");
1528         uniform_z = glGetUniformLocation(blend_program, "z");
1529         uniform_sample_offset = glGetUniformLocation(blend_program, "sample_offset");
1530 }
1531
1532 void HoleBlend::exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height)
1533 {
1534         glUseProgram(blend_program);
1535
1536         bind_sampler(blend_program, uniform_left_tex, 0, temp_tex[0], nearest_sampler);
1537         bind_sampler(blend_program, uniform_right_tex, 1, temp_tex[1], nearest_sampler);
1538         bind_sampler(blend_program, uniform_up_tex, 2, temp_tex[2], nearest_sampler);
1539         bind_sampler(blend_program, uniform_down_tex, 3, flow_tex, nearest_sampler);
1540
1541         glProgramUniform1f(blend_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1542         glProgramUniform2f(blend_program, uniform_sample_offset, 0.0f, 0.0f);
1543
1544         glViewport(0, 0, width, height);
1545         glDisable(GL_BLEND);
1546         glEnable(GL_DEPTH_TEST);
1547         glDepthFunc(GL_LEQUAL);  // Skip over all of the pixels that were never holes to begin with.
1548         glBindVertexArray(blend_vao);
1549
1550         fbos.render_to(depth_tex, flow_tex);  // NOTE: Reading and writing to the same texture.
1551
1552         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1553
1554         glDisable(GL_DEPTH_TEST);
1555 }
1556
1557 class Blend {
1558 public:
1559         Blend();
1560         void exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int width, int height, float alpha);
1561
1562 private:
1563         PersistentFBOSet<1> fbos;
1564         GLuint blend_vs_obj;
1565         GLuint blend_fs_obj;
1566         GLuint blend_program;
1567         GLuint blend_vao;
1568
1569         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1570         GLuint uniform_alpha, uniform_flow_consistency_tolerance;
1571 };
1572
1573 Blend::Blend()
1574 {
1575         blend_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
1576         blend_fs_obj = compile_shader(read_file("blend.frag"), GL_FRAGMENT_SHADER);
1577         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1578
1579         // Set up the VAO containing all the required position/texcoord data.
1580         glCreateVertexArrays(1, &blend_vao);
1581         glBindVertexArray(blend_vao);
1582
1583         GLint position_attrib = glGetAttribLocation(blend_program, "position");
1584         glEnableVertexArrayAttrib(blend_vao, position_attrib);
1585         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1586
1587         uniform_image0_tex = glGetUniformLocation(blend_program, "image0_tex");
1588         uniform_image1_tex = glGetUniformLocation(blend_program, "image1_tex");
1589         uniform_flow_tex = glGetUniformLocation(blend_program, "flow_tex");
1590         uniform_alpha = glGetUniformLocation(blend_program, "alpha");
1591         uniform_flow_consistency_tolerance = glGetUniformLocation(blend_program, "flow_consistency_tolerance");
1592 }
1593
1594 void Blend::exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int level_width, int level_height, float alpha)
1595 {
1596         glUseProgram(blend_program);
1597         bind_sampler(blend_program, uniform_image0_tex, 0, tex0, linear_sampler);
1598         bind_sampler(blend_program, uniform_image1_tex, 1, tex1, linear_sampler);
1599         bind_sampler(blend_program, uniform_flow_tex, 2, flow_tex, linear_sampler);  // May be upsampled.
1600         glProgramUniform1f(blend_program, uniform_alpha, alpha);
1601         //glProgramUniform1f(blend_program, uniform_flow_consistency_tolerance, 1.0f / 
1602
1603         glViewport(0, 0, level_width, level_height);
1604         fbos.render_to(output_tex);
1605         glBindVertexArray(blend_vao);
1606         glUseProgram(blend_program);
1607         glDisable(GL_BLEND);  // A bit ironic, perhaps.
1608         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1609 }
1610
1611 class Interpolate {
1612 public:
1613         Interpolate(int width, int height, int flow_level);
1614
1615         // Returns a texture that must be released with release_texture()
1616         // after use. tex0 and tex1 must be RGBA8 textures with mipmaps
1617         // (unless flow_level == 0).
1618         GLuint exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha);
1619
1620         void release_texture(GLuint tex) {
1621                 pool.release_texture(tex);
1622         }
1623
1624 private:
1625         int width, height, flow_level;
1626         TexturePool pool;
1627         Splat splat;
1628         HoleFill hole_fill;
1629         HoleBlend hole_blend;
1630         Blend blend;
1631 };
1632
1633 Interpolate::Interpolate(int width, int height, int flow_level)
1634         : width(width), height(height), flow_level(flow_level) {}
1635
1636 GLuint Interpolate::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha)
1637 {
1638         GPUTimers timers;
1639
1640         ScopedTimer total_timer("Total", &timers);
1641
1642         // Pick out the right level to test splatting results on.
1643         GLuint tex0_view, tex1_view;
1644         glGenTextures(1, &tex0_view);
1645         glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_RGBA8, flow_level, 1, 0, 1);
1646         glGenTextures(1, &tex1_view);
1647         glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_RGBA8, flow_level, 1, 0, 1);
1648
1649         int flow_width = width >> flow_level;
1650         int flow_height = height >> flow_level;
1651
1652         GLuint flow_tex = pool.get_texture(GL_RG16F, flow_width, flow_height);
1653         GLuint depth_tex = pool.get_texture(GL_DEPTH_COMPONENT32F, flow_width, flow_height);  // Used for ranking flows.
1654         {
1655                 ScopedTimer timer("Clear", &total_timer);
1656                 float invalid_flow[] = { 1000.0f, 1000.0f };
1657                 glClearTexImage(flow_tex, 0, GL_RG, GL_FLOAT, invalid_flow);
1658                 float infinity = 1.0f;
1659                 glClearTexImage(depth_tex, 0, GL_DEPTH_COMPONENT, GL_FLOAT, &infinity);
1660         }
1661
1662         {
1663                 ScopedTimer timer("Splat", &total_timer);
1664                 splat.exec(tex0_view, tex1_view, forward_flow_tex, backward_flow_tex, flow_tex, depth_tex, flow_width, flow_height, alpha);
1665         }
1666         glDeleteTextures(1, &tex0_view);
1667         glDeleteTextures(1, &tex1_view);
1668
1669         GLuint temp_tex[3];
1670         temp_tex[0] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1671         temp_tex[1] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1672         temp_tex[2] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1673
1674         {
1675                 ScopedTimer timer("Fill holes", &total_timer);
1676                 hole_fill.exec(flow_tex, depth_tex, temp_tex, flow_width, flow_height);
1677                 hole_blend.exec(flow_tex, depth_tex, temp_tex, flow_width, flow_height);
1678         }
1679
1680         pool.release_texture(temp_tex[0]);
1681         pool.release_texture(temp_tex[1]);
1682         pool.release_texture(temp_tex[2]);
1683         pool.release_texture(depth_tex);
1684
1685         GLuint output_tex = pool.get_texture(GL_RGBA8, width, height);
1686         {
1687                 ScopedTimer timer("Blend", &total_timer);
1688                 blend.exec(tex0, tex1, flow_tex, output_tex, width, height, alpha);
1689         }
1690         total_timer.end();
1691         timers.print();
1692
1693         return output_tex;
1694 }
1695
1696 GLuint TexturePool::get_texture(GLenum format, GLuint width, GLuint height)
1697 {
1698         for (Texture &tex : textures) {
1699                 if (!tex.in_use && tex.format == format &&
1700                     tex.width == width && tex.height == height) {
1701                         tex.in_use = true;
1702                         return tex.tex_num;
1703                 }
1704         }
1705
1706         Texture tex;
1707         glCreateTextures(GL_TEXTURE_2D, 1, &tex.tex_num);
1708         glTextureStorage2D(tex.tex_num, 1, format, width, height);
1709         tex.format = format;
1710         tex.width = width;
1711         tex.height = height;
1712         tex.in_use = true;
1713         textures.push_back(tex);
1714         return tex.tex_num;
1715 }
1716
1717 void TexturePool::release_texture(GLuint tex_num)
1718 {
1719         for (Texture &tex : textures) {
1720                 if (tex.tex_num == tex_num) {
1721                         assert(tex.in_use);
1722                         tex.in_use = false;
1723                         return;
1724                 }
1725         }
1726         assert(false);
1727 }
1728
1729 // OpenGL uses a bottom-left coordinate system, .flo files use a top-left coordinate system.
1730 void flip_coordinate_system(float *dense_flow, unsigned width, unsigned height)
1731 {
1732         for (unsigned i = 0; i < width * height; ++i) {
1733                 dense_flow[i * 2 + 1] = -dense_flow[i * 2 + 1];
1734         }
1735 }
1736
1737 // Not relevant for RGB.
1738 void flip_coordinate_system(uint8_t *dense_flow, unsigned width, unsigned height)
1739 {
1740 }
1741
1742 void write_flow(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1743 {
1744         FILE *flowfp = fopen(filename, "wb");
1745         fprintf(flowfp, "FEIH");
1746         fwrite(&width, 4, 1, flowfp);
1747         fwrite(&height, 4, 1, flowfp);
1748         for (unsigned y = 0; y < height; ++y) {
1749                 int yy = height - y - 1;
1750                 fwrite(&dense_flow[yy * width * 2], width * 2 * sizeof(float), 1, flowfp);
1751         }
1752         fclose(flowfp);
1753 }
1754
1755 // Not relevant for RGB.
1756 void write_flow(const char *filename, const uint8_t *dense_flow, unsigned width, unsigned height)
1757 {
1758         assert(false);
1759 }
1760
1761 void write_ppm(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1762 {
1763         FILE *fp = fopen(filename, "wb");
1764         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1765         for (unsigned y = 0; y < unsigned(height); ++y) {
1766                 int yy = height - y - 1;
1767                 for (unsigned x = 0; x < unsigned(width); ++x) {
1768                         float du = dense_flow[(yy * width + x) * 2 + 0];
1769                         float dv = dense_flow[(yy * width + x) * 2 + 1];
1770
1771                         uint8_t r, g, b;
1772                         flow2rgb(du, dv, &r, &g, &b);
1773                         putc(r, fp);
1774                         putc(g, fp);
1775                         putc(b, fp);
1776                 }
1777         }
1778         fclose(fp);
1779 }
1780
1781 void write_ppm(const char *filename, const uint8_t *rgba, unsigned width, unsigned height)
1782 {
1783         unique_ptr<uint8_t[]> rgb_line(new uint8_t[width * 3 + 1]);
1784
1785         FILE *fp = fopen(filename, "wb");
1786         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1787         for (unsigned y = 0; y < height; ++y) {
1788                 unsigned y2 = height - 1 - y;
1789                 for (size_t x = 0; x < width; ++x) {
1790                         memcpy(&rgb_line[x * 3], &rgba[(y2 * width + x) * 4], 4);
1791                 }
1792                 fwrite(rgb_line.get(), width * 3, 1, fp);
1793         }
1794         fclose(fp);
1795 }
1796
1797 struct FlowType {
1798         using type = float;
1799         static constexpr GLenum gl_format = GL_RG;
1800         static constexpr GLenum gl_type = GL_FLOAT;
1801         static constexpr int num_channels = 2;
1802 };
1803
1804 struct RGBAType {
1805         using type = uint8_t;
1806         static constexpr GLenum gl_format = GL_RGBA;
1807         static constexpr GLenum gl_type = GL_UNSIGNED_BYTE;
1808         static constexpr int num_channels = 4;
1809 };
1810
1811 template <class Type>
1812 void finish_one_read(GLuint width, GLuint height)
1813 {
1814         using T = typename Type::type;
1815         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1816
1817         assert(!reads_in_progress.empty());
1818         ReadInProgress read = reads_in_progress.front();
1819         reads_in_progress.pop_front();
1820
1821         unique_ptr<T[]> flow(new typename Type::type[width * height * Type::num_channels]);
1822         void *buf = glMapNamedBufferRange(read.pbo, 0, width * height * bytes_per_pixel, GL_MAP_READ_BIT);  // Blocks if the read isn't done yet.
1823         memcpy(flow.get(), buf, width * height * bytes_per_pixel);  // TODO: Unneeded for RGBType, since flip_coordinate_system() does nothing.:
1824         glUnmapNamedBuffer(read.pbo);
1825         spare_pbos.push(read.pbo);
1826
1827         flip_coordinate_system(flow.get(), width, height);
1828         if (!read.flow_filename.empty()) {
1829                 write_flow(read.flow_filename.c_str(), flow.get(), width, height);
1830                 fprintf(stderr, "%s %s -> %s\n", read.filename0.c_str(), read.filename1.c_str(), read.flow_filename.c_str());
1831         }
1832         if (!read.ppm_filename.empty()) {
1833                 write_ppm(read.ppm_filename.c_str(), flow.get(), width, height);
1834         }
1835 }
1836
1837 template <class Type>
1838 void schedule_read(GLuint tex, GLuint width, GLuint height, const char *filename0, const char *filename1, const char *flow_filename, const char *ppm_filename)
1839 {
1840         using T = typename Type::type;
1841         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1842
1843         if (spare_pbos.empty()) {
1844                 finish_one_read<Type>(width, height);
1845         }
1846         assert(!spare_pbos.empty());
1847         reads_in_progress.emplace_back(ReadInProgress{ spare_pbos.top(), filename0, filename1, flow_filename, ppm_filename });
1848         glBindBuffer(GL_PIXEL_PACK_BUFFER, spare_pbos.top());
1849         spare_pbos.pop();
1850         glGetTextureImage(tex, 0, Type::gl_format, Type::gl_type, width * height * bytes_per_pixel, nullptr);
1851         glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
1852 }
1853
1854 void compute_flow_only(int argc, char **argv, int optind)
1855 {
1856         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1857         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1858         const char *flow_filename = argc >= (optind + 3) ? argv[optind + 2] : "flow.flo";
1859
1860         // Load pictures.
1861         unsigned width1, height1, width2, height2;
1862         GLuint tex0 = load_texture(filename0, &width1, &height1, WITHOUT_MIPMAPS);
1863         GLuint tex1 = load_texture(filename1, &width2, &height2, WITHOUT_MIPMAPS);
1864
1865         if (width1 != width2 || height1 != height2) {
1866                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1867                         width1, height1, width2, height2);
1868                 exit(1);
1869         }
1870
1871         // Set up some PBOs to do asynchronous readback.
1872         GLuint pbos[5];
1873         glCreateBuffers(5, pbos);
1874         for (int i = 0; i < 5; ++i) {
1875                 glNamedBufferData(pbos[i], width1 * height1 * 2 * sizeof(float), nullptr, GL_STREAM_READ);
1876                 spare_pbos.push(pbos[i]);
1877         }
1878
1879         int levels = find_num_levels(width1, height1);
1880         GLuint tex0_gray, tex1_gray;
1881         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1882         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1883         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1884         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1885
1886         GrayscaleConversion gray;
1887         gray.exec(tex0, tex0_gray, width1, height1);
1888         glDeleteTextures(1, &tex0);
1889         glGenerateTextureMipmap(tex0_gray);
1890
1891         gray.exec(tex1, tex1_gray, width1, height1);
1892         glDeleteTextures(1, &tex1);
1893         glGenerateTextureMipmap(tex1_gray);
1894
1895         DISComputeFlow compute_flow(width1, height1);
1896         GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1897
1898         schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "flow.ppm");
1899         compute_flow.release_texture(final_tex);
1900
1901         // See if there are more flows on the command line (ie., more than three arguments),
1902         // and if so, process them.
1903         int num_flows = (argc - optind) / 3;
1904         for (int i = 1; i < num_flows; ++i) {
1905                 const char *filename0 = argv[optind + i * 3 + 0];
1906                 const char *filename1 = argv[optind + i * 3 + 1];
1907                 const char *flow_filename = argv[optind + i * 3 + 2];
1908                 GLuint width, height;
1909                 GLuint tex0 = load_texture(filename0, &width, &height, WITHOUT_MIPMAPS);
1910                 if (width != width1 || height != height1) {
1911                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1912                                 filename0, width, height, width1, height1);
1913                         exit(1);
1914                 }
1915                 gray.exec(tex0, tex0_gray, width, height);
1916                 glGenerateTextureMipmap(tex0_gray);
1917                 glDeleteTextures(1, &tex0);
1918
1919                 GLuint tex1 = load_texture(filename1, &width, &height, WITHOUT_MIPMAPS);
1920                 if (width != width1 || height != height1) {
1921                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1922                                 filename1, width, height, width1, height1);
1923                         exit(1);
1924                 }
1925                 gray.exec(tex1, tex1_gray, width, height);
1926                 glGenerateTextureMipmap(tex1_gray);
1927                 glDeleteTextures(1, &tex1);
1928
1929                 GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1930
1931                 schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "");
1932                 compute_flow.release_texture(final_tex);
1933         }
1934         glDeleteTextures(1, &tex0_gray);
1935         glDeleteTextures(1, &tex1_gray);
1936
1937         while (!reads_in_progress.empty()) {
1938                 finish_one_read<FlowType>(width1, height1);
1939         }
1940 }
1941
1942 // Interpolate images based on
1943 //
1944 //   Herbst, Seitz, Baker: “Occlusion Reasoning for Temporal Interpolation
1945 //   Using Optical Flow”
1946 //
1947 // or at least a reasonable subset thereof. Unfinished.
1948 void interpolate_image(int argc, char **argv, int optind)
1949 {
1950         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1951         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1952         //const char *out_filename = argc >= (optind + 3) ? argv[optind + 2] : "interpolated.png";
1953
1954         // Load pictures.
1955         unsigned width1, height1, width2, height2;
1956         GLuint tex0 = load_texture(filename0, &width1, &height1, WITH_MIPMAPS);
1957         GLuint tex1 = load_texture(filename1, &width2, &height2, WITH_MIPMAPS);
1958
1959         if (width1 != width2 || height1 != height2) {
1960                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1961                         width1, height1, width2, height2);
1962                 exit(1);
1963         }
1964
1965         // Set up some PBOs to do asynchronous readback.
1966         GLuint pbos[5];
1967         glCreateBuffers(5, pbos);
1968         for (int i = 0; i < 5; ++i) {
1969                 glNamedBufferData(pbos[i], width1 * height1 * 4 * sizeof(uint8_t), nullptr, GL_STREAM_READ);
1970                 spare_pbos.push(pbos[i]);
1971         }
1972
1973         DISComputeFlow compute_flow(width1, height1);
1974         GrayscaleConversion gray;
1975         Interpolate interpolate(width1, height1, finest_level);
1976
1977         int levels = find_num_levels(width1, height1);
1978         GLuint tex0_gray, tex1_gray;
1979         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1980         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1981         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1982         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1983
1984         gray.exec(tex0, tex0_gray, width1, height1);
1985         glGenerateTextureMipmap(tex0_gray);
1986
1987         gray.exec(tex1, tex1_gray, width1, height1);
1988         glGenerateTextureMipmap(tex1_gray);
1989
1990         GLuint forward_flow_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1991         GLuint backward_flow_tex = compute_flow.exec(tex1_gray, tex0_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1992
1993         for (int frameno = 1; frameno < 60; ++frameno) {
1994                 char ppm_filename[256];
1995                 snprintf(ppm_filename, sizeof(ppm_filename), "interp%04d.ppm", frameno);
1996
1997                 float alpha = frameno / 60.0f;
1998                 GLuint interpolated_tex = interpolate.exec(tex0, tex1, forward_flow_tex, backward_flow_tex, width1, height1, alpha);
1999
2000                 schedule_read<RGBAType>(interpolated_tex, width1, height1, filename0, filename1, "", ppm_filename);
2001                 interpolate.release_texture(interpolated_tex);
2002         }
2003
2004         while (!reads_in_progress.empty()) {
2005                 finish_one_read<RGBAType>(width1, height1);
2006         }
2007 }
2008
2009 int main(int argc, char **argv)
2010 {
2011         static const option long_options[] = {
2012                 { "smoothness-relative-weight", required_argument, 0, 's' },  // alpha.
2013                 { "intensity-relative-weight", required_argument, 0, 'i' },  // delta.
2014                 { "gradient-relative-weight", required_argument, 0, 'g' },  // gamma.
2015                 { "disable-timing", no_argument, 0, 1000 },
2016                 { "detailed-timing", no_argument, 0, 1003 },
2017                 { "ignore-variational-refinement", no_argument, 0, 1001 },  // Still calculates it, just doesn't apply it.
2018                 { "interpolate", no_argument, 0, 1002 }
2019         };
2020
2021         for ( ;; ) {
2022                 int option_index = 0;
2023                 int c = getopt_long(argc, argv, "s:i:g:", long_options, &option_index);
2024
2025                 if (c == -1) {
2026                         break;
2027                 }
2028                 switch (c) {
2029                 case 's':
2030                         vr_alpha = atof(optarg);
2031                         break;
2032                 case 'i':
2033                         vr_delta = atof(optarg);
2034                         break;
2035                 case 'g':
2036                         vr_gamma = atof(optarg);
2037                         break;
2038                 case 1000:
2039                         enable_timing = false;
2040                         break;
2041                 case 1001:
2042                         enable_variational_refinement = false;
2043                         break;
2044                 case 1002:
2045                         enable_interpolation = true;
2046                         break;
2047                 case 1003:
2048                         detailed_timing = true;
2049                         break;
2050                 default:
2051                         fprintf(stderr, "Unknown option '%s'\n", argv[option_index]);
2052                         exit(1);
2053                 };
2054         }
2055
2056         if (SDL_Init(SDL_INIT_EVERYTHING) == -1) {
2057                 fprintf(stderr, "SDL_Init failed: %s\n", SDL_GetError());
2058                 exit(1);
2059         }
2060         SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE, 8);
2061         SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 0);
2062         SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 0);
2063         SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);
2064
2065         SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
2066         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 4);
2067         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 5);
2068         // SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, SDL_GL_CONTEXT_DEBUG_FLAG);
2069         window = SDL_CreateWindow("OpenGL window",
2070                 SDL_WINDOWPOS_UNDEFINED,
2071                 SDL_WINDOWPOS_UNDEFINED,
2072                 64, 64,
2073                 SDL_WINDOW_OPENGL | SDL_WINDOW_HIDDEN);
2074         SDL_GLContext context = SDL_GL_CreateContext(window);
2075         assert(context != nullptr);
2076
2077         glDisable(GL_DITHER);
2078
2079         // FIXME: Should be part of DISComputeFlow (but needs to be initialized
2080         // before all the render passes).
2081         float vertices[] = {
2082                 0.0f, 1.0f,
2083                 0.0f, 0.0f,
2084                 1.0f, 1.0f,
2085                 1.0f, 0.0f,
2086         };
2087         glCreateBuffers(1, &vertex_vbo);
2088         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
2089         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
2090
2091         if (enable_interpolation) {
2092                 interpolate_image(argc, argv, optind);
2093         } else {
2094                 compute_flow_only(argc, argv, optind);
2095         }
2096 }