]> git.sesse.net Git - nageru/blob - flow.cpp
Remove the rather pointless enable_if tests for now. And move to C++14.
[nageru] / flow.cpp
1 #define NO_SDL_GLEXT 1
2
3 #include <epoxy/gl.h>
4
5 #include <SDL2/SDL.h>
6 #include <SDL2/SDL_error.h>
7 #include <SDL2/SDL_events.h>
8 #include <SDL2/SDL_image.h>
9 #include <SDL2/SDL_keyboard.h>
10 #include <SDL2/SDL_mouse.h>
11 #include <SDL2/SDL_video.h>
12
13 #include <assert.h>
14 #include <getopt.h>
15 #include <stdio.h>
16 #include <unistd.h>
17
18 #include "gpu_timers.h"
19 #include "util.h"
20
21 #include <algorithm>
22 #include <deque>
23 #include <memory>
24 #include <map>
25 #include <stack>
26 #include <vector>
27
28 #define BUFFER_OFFSET(i) ((char *)nullptr + (i))
29
30 using namespace std;
31
32 SDL_Window *window;
33
34 // Operating point 3 (10 Hz on CPU, excluding preprocessing).
35 constexpr float patch_overlap_ratio = 0.75f;
36 constexpr unsigned coarsest_level = 5;
37 constexpr unsigned finest_level = 1;
38 constexpr unsigned patch_size_pixels = 12;
39
40 // Weighting constants for the different parts of the variational refinement.
41 // These don't correspond 1:1 to the values given in the DIS paper,
42 // since we have different normalizations and ranges in some cases.
43 // These are found through a simple grid search on some MPI-Sintel data,
44 // although the error (EPE) seems to be fairly insensitive to the precise values.
45 // Only the relative values matter, so we fix alpha (the smoothness constant)
46 // at unity and tweak the others.
47 float vr_alpha = 1.0f, vr_delta = 0.25f, vr_gamma = 0.25f;
48
49 bool enable_timing = true;
50 bool detailed_timing = false;
51 bool enable_variational_refinement = true;  // Just for debugging.
52 bool enable_interpolation = false;
53
54 // Some global OpenGL objects.
55 // TODO: These should really be part of DISComputeFlow.
56 GLuint nearest_sampler, linear_sampler, zero_border_sampler;
57 GLuint vertex_vbo;
58
59 // Structures for asynchronous readback. We assume everything is the same size (and GL_RG16F).
60 struct ReadInProgress {
61         GLuint pbo;
62         string filename0, filename1;
63         string flow_filename, ppm_filename;  // Either may be empty for no write.
64 };
65 stack<GLuint> spare_pbos;
66 deque<ReadInProgress> reads_in_progress;
67
68 int find_num_levels(int width, int height)
69 {
70         int levels = 1;
71         for (int w = width, h = height; w > 1 || h > 1; ) {
72                 w >>= 1;
73                 h >>= 1;
74                 ++levels;
75         }
76         return levels;
77 }
78
79 string read_file(const string &filename)
80 {
81         FILE *fp = fopen(filename.c_str(), "r");
82         if (fp == nullptr) {
83                 perror(filename.c_str());
84                 exit(1);
85         }
86
87         int ret = fseek(fp, 0, SEEK_END);
88         if (ret == -1) {
89                 perror("fseek(SEEK_END)");
90                 exit(1);
91         }
92
93         int size = ftell(fp);
94
95         ret = fseek(fp, 0, SEEK_SET);
96         if (ret == -1) {
97                 perror("fseek(SEEK_SET)");
98                 exit(1);
99         }
100
101         string str;
102         str.resize(size);
103         ret = fread(&str[0], size, 1, fp);
104         if (ret == -1) {
105                 perror("fread");
106                 exit(1);
107         }
108         if (ret == 0) {
109                 fprintf(stderr, "Short read when trying to read %d bytes from %s\n",
110                                 size, filename.c_str());
111                 exit(1);
112         }
113         fclose(fp);
114
115         return str;
116 }
117
118
119 GLuint compile_shader(const string &shader_src, GLenum type)
120 {
121         GLuint obj = glCreateShader(type);
122         const GLchar* source[] = { shader_src.data() };
123         const GLint length[] = { (GLint)shader_src.size() };
124         glShaderSource(obj, 1, source, length);
125         glCompileShader(obj);
126
127         GLchar info_log[4096];
128         GLsizei log_length = sizeof(info_log) - 1;
129         glGetShaderInfoLog(obj, log_length, &log_length, info_log);
130         info_log[log_length] = 0;
131         if (strlen(info_log) > 0) {
132                 fprintf(stderr, "Shader compile log: %s\n", info_log);
133         }
134
135         GLint status;
136         glGetShaderiv(obj, GL_COMPILE_STATUS, &status);
137         if (status == GL_FALSE) {
138                 // Add some line numbers to easier identify compile errors.
139                 string src_with_lines = "/*   1 */ ";
140                 size_t lineno = 1;
141                 for (char ch : shader_src) {
142                         src_with_lines.push_back(ch);
143                         if (ch == '\n') {
144                                 char buf[32];
145                                 snprintf(buf, sizeof(buf), "/* %3zu */ ", ++lineno);
146                                 src_with_lines += buf;
147                         }
148                 }
149
150                 fprintf(stderr, "Failed to compile shader:\n%s\n", src_with_lines.c_str());
151                 exit(1);
152         }
153
154         return obj;
155 }
156
157 enum MipmapPolicy {
158         WITHOUT_MIPMAPS,
159         WITH_MIPMAPS
160 };
161
162 GLuint load_texture(const char *filename, unsigned *width_ret, unsigned *height_ret, MipmapPolicy mipmaps)
163 {
164         SDL_Surface *surf = IMG_Load(filename);
165         if (surf == nullptr) {
166                 fprintf(stderr, "IMG_Load(%s): %s\n", filename, IMG_GetError());
167                 exit(1);
168         }
169
170         // For whatever reason, SDL doesn't support converting to YUV surfaces
171         // nor grayscale, so we'll do it ourselves.
172         SDL_Surface *rgb_surf = SDL_ConvertSurfaceFormat(surf, SDL_PIXELFORMAT_RGBA32, /*flags=*/0);
173         if (rgb_surf == nullptr) {
174                 fprintf(stderr, "SDL_ConvertSurfaceFormat(%s): %s\n", filename, SDL_GetError());
175                 exit(1);
176         }
177
178         SDL_FreeSurface(surf);
179
180         unsigned width = rgb_surf->w, height = rgb_surf->h;
181         const uint8_t *sptr = (uint8_t *)rgb_surf->pixels;
182         unique_ptr<uint8_t[]> pix(new uint8_t[width * height * 4]);
183
184         // Extract the Y component, and convert to bottom-left origin.
185         for (unsigned y = 0; y < height; ++y) {
186                 unsigned y2 = height - 1 - y;
187                 memcpy(pix.get() + y * width * 4, sptr + y2 * rgb_surf->pitch, width * 4);
188         }
189         SDL_FreeSurface(rgb_surf);
190
191         int num_levels = (mipmaps == WITH_MIPMAPS) ? find_num_levels(width, height) : 1;
192
193         GLuint tex;
194         glCreateTextures(GL_TEXTURE_2D, 1, &tex);
195         glTextureStorage2D(tex, num_levels, GL_RGBA8, width, height);
196         glTextureSubImage2D(tex, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pix.get());
197
198         if (mipmaps == WITH_MIPMAPS) {
199                 glGenerateTextureMipmap(tex);
200         }
201
202         *width_ret = width;
203         *height_ret = height;
204
205         return tex;
206 }
207
208 GLuint link_program(GLuint vs_obj, GLuint fs_obj)
209 {
210         GLuint program = glCreateProgram();
211         glAttachShader(program, vs_obj);
212         glAttachShader(program, fs_obj);
213         glLinkProgram(program);
214         GLint success;
215         glGetProgramiv(program, GL_LINK_STATUS, &success);
216         if (success == GL_FALSE) {
217                 GLchar error_log[1024] = {0};
218                 glGetProgramInfoLog(program, 1024, nullptr, error_log);
219                 fprintf(stderr, "Error linking program: %s\n", error_log);
220                 exit(1);
221         }
222         return program;
223 }
224
225 GLuint generate_vbo(GLint size, GLsizeiptr data_size, const GLvoid *data)
226 {
227         GLuint vbo;
228         glCreateBuffers(1, &vbo);
229         glBufferData(GL_ARRAY_BUFFER, data_size, data, GL_STATIC_DRAW);
230         glNamedBufferData(vbo, data_size, data, GL_STATIC_DRAW);
231         return vbo;
232 }
233
234 GLuint fill_vertex_attribute(GLuint vao, GLuint glsl_program_num, const string &attribute_name, GLint size, GLenum type, GLsizeiptr data_size, const GLvoid *data)
235 {
236         int attrib = glGetAttribLocation(glsl_program_num, attribute_name.c_str());
237         if (attrib == -1) {
238                 return -1;
239         }
240
241         GLuint vbo = generate_vbo(size, data_size, data);
242
243         glBindBuffer(GL_ARRAY_BUFFER, vbo);
244         glEnableVertexArrayAttrib(vao, attrib);
245         glVertexAttribPointer(attrib, size, type, GL_FALSE, 0, BUFFER_OFFSET(0));
246         glBindBuffer(GL_ARRAY_BUFFER, 0);
247
248         return vbo;
249 }
250
251 void bind_sampler(GLuint program, GLint location, GLuint texture_unit, GLuint tex, GLuint sampler)
252 {
253         if (location == -1) {
254                 return;
255         }
256
257         glBindTextureUnit(texture_unit, tex);
258         glBindSampler(texture_unit, sampler);
259         glProgramUniform1i(program, location, texture_unit);
260 }
261
262 // A class that caches FBOs that render to a given set of textures.
263 // It never frees anything, so it is only suitable for rendering to
264 // the same (small) set of textures over and over again.
265 template<size_t num_elements>
266 class PersistentFBOSet {
267 public:
268         void render_to(const array<GLuint, num_elements> &textures);
269
270         // Convenience wrappers.
271         void render_to(GLuint texture0) {
272                 render_to({{texture0}});
273         }
274
275         void render_to(GLuint texture0, GLuint texture1) {
276                 render_to({{texture0, texture1}});
277         }
278
279         void render_to(GLuint texture0, GLuint texture1, GLuint texture2) {
280                 render_to({{texture0, texture1, texture2}});
281         }
282
283         void render_to(GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
284                 render_to({{texture0, texture1, texture2, texture3}});
285         }
286
287 private:
288         // TODO: Delete these on destruction.
289         map<array<GLuint, num_elements>, GLuint> fbos;
290 };
291
292 template<size_t num_elements>
293 void PersistentFBOSet<num_elements>::render_to(const array<GLuint, num_elements> &textures)
294 {
295         auto it = fbos.find(textures);
296         if (it != fbos.end()) {
297                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
298                 return;
299         }
300
301         GLuint fbo;
302         glCreateFramebuffers(1, &fbo);
303         GLenum bufs[num_elements];
304         for (size_t i = 0; i < num_elements; ++i) {
305                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
306                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
307         }
308         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
309
310         fbos[textures] = fbo;
311         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
312 }
313
314 // Convert RGB to grayscale, using Rec. 709 coefficients.
315 class GrayscaleConversion {
316 public:
317         GrayscaleConversion();
318         void exec(GLint tex, GLint gray_tex, int width, int height);
319
320 private:
321         PersistentFBOSet<1> fbos;
322         GLuint gray_vs_obj;
323         GLuint gray_fs_obj;
324         GLuint gray_program;
325         GLuint gray_vao;
326
327         GLuint uniform_tex;
328 };
329
330 GrayscaleConversion::GrayscaleConversion()
331 {
332         gray_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
333         gray_fs_obj = compile_shader(read_file("gray.frag"), GL_FRAGMENT_SHADER);
334         gray_program = link_program(gray_vs_obj, gray_fs_obj);
335
336         // Set up the VAO containing all the required position/texcoord data.
337         glCreateVertexArrays(1, &gray_vao);
338         glBindVertexArray(gray_vao);
339
340         GLint position_attrib = glGetAttribLocation(gray_program, "position");
341         glEnableVertexArrayAttrib(gray_vao, position_attrib);
342         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
343
344         uniform_tex = glGetUniformLocation(gray_program, "tex");
345 }
346
347 void GrayscaleConversion::exec(GLint tex, GLint gray_tex, int width, int height)
348 {
349         glUseProgram(gray_program);
350         bind_sampler(gray_program, uniform_tex, 0, tex, nearest_sampler);
351
352         glViewport(0, 0, width, height);
353         fbos.render_to(gray_tex);
354         glBindVertexArray(gray_vao);
355         glUseProgram(gray_program);
356         glDisable(GL_BLEND);
357         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
358 }
359
360 // Compute gradients in every point, used for the motion search.
361 // The DIS paper doesn't actually mention how these are computed,
362 // but seemingly, a 3x3 Sobel operator is used here (at least in
363 // later versions of the code), while a [1 -8 0 8 -1] kernel is
364 // used for all the derivatives in the variational refinement part
365 // (which borrows code from DeepFlow). This is inconsistent,
366 // but I guess we're better off with staying with the original
367 // decisions until we actually know having different ones would be better.
368 class Sobel {
369 public:
370         Sobel();
371         void exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height);
372
373 private:
374         PersistentFBOSet<1> fbos;
375         GLuint sobel_vs_obj;
376         GLuint sobel_fs_obj;
377         GLuint sobel_program;
378         GLuint sobel_vao;
379
380         GLuint uniform_tex;
381 };
382
383 Sobel::Sobel()
384 {
385         sobel_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
386         sobel_fs_obj = compile_shader(read_file("sobel.frag"), GL_FRAGMENT_SHADER);
387         sobel_program = link_program(sobel_vs_obj, sobel_fs_obj);
388
389         // Set up the VAO containing all the required position/texcoord data.
390         glCreateVertexArrays(1, &sobel_vao);
391         glBindVertexArray(sobel_vao);
392
393         GLint position_attrib = glGetAttribLocation(sobel_program, "position");
394         glEnableVertexArrayAttrib(sobel_vao, position_attrib);
395         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
396
397         uniform_tex = glGetUniformLocation(sobel_program, "tex");
398 }
399
400 void Sobel::exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height)
401 {
402         glUseProgram(sobel_program);
403         bind_sampler(sobel_program, uniform_tex, 0, tex0_view, nearest_sampler);
404
405         glViewport(0, 0, level_width, level_height);
406         fbos.render_to(grad0_tex);
407         glBindVertexArray(sobel_vao);
408         glUseProgram(sobel_program);
409         glDisable(GL_BLEND);
410         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
411 }
412
413 // Motion search to find the initial flow. See motion_search.frag for documentation.
414 class MotionSearch {
415 public:
416         MotionSearch();
417         void exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches);
418
419 private:
420         PersistentFBOSet<1> fbos;
421
422         GLuint motion_vs_obj;
423         GLuint motion_fs_obj;
424         GLuint motion_search_program;
425         GLuint motion_search_vao;
426
427         GLuint uniform_inv_image_size, uniform_inv_prev_level_size;
428         GLuint uniform_image0_tex, uniform_image1_tex, uniform_grad0_tex, uniform_flow_tex;
429 };
430
431 MotionSearch::MotionSearch()
432 {
433         motion_vs_obj = compile_shader(read_file("motion_search.vert"), GL_VERTEX_SHADER);
434         motion_fs_obj = compile_shader(read_file("motion_search.frag"), GL_FRAGMENT_SHADER);
435         motion_search_program = link_program(motion_vs_obj, motion_fs_obj);
436
437         // Set up the VAO containing all the required position/texcoord data.
438         glCreateVertexArrays(1, &motion_search_vao);
439         glBindVertexArray(motion_search_vao);
440         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
441
442         GLint position_attrib = glGetAttribLocation(motion_search_program, "position");
443         glEnableVertexArrayAttrib(motion_search_vao, position_attrib);
444         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
445
446         uniform_inv_image_size = glGetUniformLocation(motion_search_program, "inv_image_size");
447         uniform_inv_prev_level_size = glGetUniformLocation(motion_search_program, "inv_prev_level_size");
448         uniform_image0_tex = glGetUniformLocation(motion_search_program, "image0_tex");
449         uniform_image1_tex = glGetUniformLocation(motion_search_program, "image1_tex");
450         uniform_grad0_tex = glGetUniformLocation(motion_search_program, "grad0_tex");
451         uniform_flow_tex = glGetUniformLocation(motion_search_program, "flow_tex");
452 }
453
454 void MotionSearch::exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches)
455 {
456         glUseProgram(motion_search_program);
457
458         bind_sampler(motion_search_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
459         bind_sampler(motion_search_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
460         bind_sampler(motion_search_program, uniform_grad0_tex, 2, grad0_tex, zero_border_sampler);
461         bind_sampler(motion_search_program, uniform_flow_tex, 3, flow_tex, linear_sampler);
462
463         glProgramUniform2f(motion_search_program, uniform_inv_image_size, 1.0f / level_width, 1.0f / level_height);
464         glProgramUniform2f(motion_search_program, uniform_inv_prev_level_size, 1.0f / prev_level_width, 1.0f / prev_level_height);
465
466         glViewport(0, 0, width_patches, height_patches);
467         fbos.render_to(flow_out_tex);
468         glBindVertexArray(motion_search_vao);
469         glUseProgram(motion_search_program);
470         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
471 }
472
473 // Do “densification”, ie., upsampling of the flow patches to the flow field
474 // (the same size as the image at this level). We draw one quad per patch
475 // over its entire covered area (using instancing in the vertex shader),
476 // and then weight the contributions in the pixel shader by post-warp difference.
477 // This is equation (3) in the paper.
478 //
479 // We accumulate the flow vectors in the R/G channels (for u/v) and the total
480 // weight in the B channel. Dividing R and G by B gives the normalized values.
481 class Densify {
482 public:
483         Densify();
484         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches);
485
486 private:
487         PersistentFBOSet<1> fbos;
488
489         GLuint densify_vs_obj;
490         GLuint densify_fs_obj;
491         GLuint densify_program;
492         GLuint densify_vao;
493
494         GLuint uniform_patch_size;
495         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
496 };
497
498 Densify::Densify()
499 {
500         densify_vs_obj = compile_shader(read_file("densify.vert"), GL_VERTEX_SHADER);
501         densify_fs_obj = compile_shader(read_file("densify.frag"), GL_FRAGMENT_SHADER);
502         densify_program = link_program(densify_vs_obj, densify_fs_obj);
503
504         // Set up the VAO containing all the required position/texcoord data.
505         glCreateVertexArrays(1, &densify_vao);
506         glBindVertexArray(densify_vao);
507         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
508
509         GLint position_attrib = glGetAttribLocation(densify_program, "position");
510         glEnableVertexArrayAttrib(densify_vao, position_attrib);
511         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
512
513         uniform_patch_size = glGetUniformLocation(densify_program, "patch_size");
514         uniform_image0_tex = glGetUniformLocation(densify_program, "image0_tex");
515         uniform_image1_tex = glGetUniformLocation(densify_program, "image1_tex");
516         uniform_flow_tex = glGetUniformLocation(densify_program, "flow_tex");
517 }
518
519 void Densify::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches)
520 {
521         glUseProgram(densify_program);
522
523         bind_sampler(densify_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
524         bind_sampler(densify_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
525         bind_sampler(densify_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
526
527         glProgramUniform2f(densify_program, uniform_patch_size,
528                 float(patch_size_pixels) / level_width,
529                 float(patch_size_pixels) / level_height);
530
531         glViewport(0, 0, level_width, level_height);
532         glEnable(GL_BLEND);
533         glBlendFunc(GL_ONE, GL_ONE);
534         glBindVertexArray(densify_vao);
535         fbos.render_to(dense_flow_tex);
536         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width_patches * height_patches);
537 }
538
539 // Warp I_1 to I_w, and then compute the mean (I) and difference (I_t) of
540 // I_0 and I_w. The prewarping is what enables us to solve the variational
541 // flow for du,dv instead of u,v.
542 //
543 // Also calculates the normalized flow, ie. divides by z (this is needed because
544 // Densify works by additive blending) and multiplies by the image size.
545 //
546 // See variational_refinement.txt for more information.
547 class Prewarp {
548 public:
549         Prewarp();
550         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint normalized_flow_tex, GLuint I_tex, GLuint I_t_tex, int level_width, int level_height);
551
552 private:
553         PersistentFBOSet<3> fbos;
554
555         GLuint prewarp_vs_obj;
556         GLuint prewarp_fs_obj;
557         GLuint prewarp_program;
558         GLuint prewarp_vao;
559
560         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
561 };
562
563 Prewarp::Prewarp()
564 {
565         prewarp_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
566         prewarp_fs_obj = compile_shader(read_file("prewarp.frag"), GL_FRAGMENT_SHADER);
567         prewarp_program = link_program(prewarp_vs_obj, prewarp_fs_obj);
568
569         // Set up the VAO containing all the required position/texcoord data.
570         glCreateVertexArrays(1, &prewarp_vao);
571         glBindVertexArray(prewarp_vao);
572         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
573
574         GLint position_attrib = glGetAttribLocation(prewarp_program, "position");
575         glEnableVertexArrayAttrib(prewarp_vao, position_attrib);
576         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
577
578         uniform_image0_tex = glGetUniformLocation(prewarp_program, "image0_tex");
579         uniform_image1_tex = glGetUniformLocation(prewarp_program, "image1_tex");
580         uniform_flow_tex = glGetUniformLocation(prewarp_program, "flow_tex");
581 }
582
583 void Prewarp::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint I_tex, GLuint I_t_tex, GLuint normalized_flow_tex, int level_width, int level_height)
584 {
585         glUseProgram(prewarp_program);
586
587         bind_sampler(prewarp_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
588         bind_sampler(prewarp_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
589         bind_sampler(prewarp_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
590
591         glViewport(0, 0, level_width, level_height);
592         glDisable(GL_BLEND);
593         glBindVertexArray(prewarp_vao);
594         fbos.render_to(I_tex, I_t_tex, normalized_flow_tex);
595         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
596 }
597
598 // From I, calculate the partial derivatives I_x and I_y. We use a four-tap
599 // central difference filter, since apparently, that's tradition (I haven't
600 // measured quality versus a more normal 0.5 (I[x+1] - I[x-1]).)
601 // The coefficients come from
602 //
603 //   https://en.wikipedia.org/wiki/Finite_difference_coefficient
604 //
605 // Also computes β_0, since it depends only on I_x and I_y.
606 class Derivatives {
607 public:
608         Derivatives();
609         void exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height);
610
611 private:
612         PersistentFBOSet<2> fbos;
613
614         GLuint derivatives_vs_obj;
615         GLuint derivatives_fs_obj;
616         GLuint derivatives_program;
617         GLuint derivatives_vao;
618
619         GLuint uniform_tex;
620 };
621
622 Derivatives::Derivatives()
623 {
624         derivatives_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
625         derivatives_fs_obj = compile_shader(read_file("derivatives.frag"), GL_FRAGMENT_SHADER);
626         derivatives_program = link_program(derivatives_vs_obj, derivatives_fs_obj);
627
628         // Set up the VAO containing all the required position/texcoord data.
629         glCreateVertexArrays(1, &derivatives_vao);
630         glBindVertexArray(derivatives_vao);
631         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
632
633         GLint position_attrib = glGetAttribLocation(derivatives_program, "position");
634         glEnableVertexArrayAttrib(derivatives_vao, position_attrib);
635         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
636
637         uniform_tex = glGetUniformLocation(derivatives_program, "tex");
638 }
639
640 void Derivatives::exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height)
641 {
642         glUseProgram(derivatives_program);
643
644         bind_sampler(derivatives_program, uniform_tex, 0, input_tex, nearest_sampler);
645
646         glViewport(0, 0, level_width, level_height);
647         glDisable(GL_BLEND);
648         glBindVertexArray(derivatives_vao);
649         fbos.render_to(I_x_y_tex, beta_0_tex);
650         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
651 }
652
653 // Calculate the smoothness constraints between neighboring pixels;
654 // s_x(x,y) stores smoothness between pixel (x,y) and (x+1,y),
655 // and s_y(x,y) stores between (x,y) and (x,y+1). We'll sample with
656 // border color (0,0) later, so that there's zero diffusion out of
657 // the border.
658 //
659 // See variational_refinement.txt for more information.
660 class ComputeSmoothness {
661 public:
662         ComputeSmoothness();
663         void exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint smoothness_x_tex, GLuint smoothness_y_tex, int level_width, int level_height);
664
665 private:
666         PersistentFBOSet<2> fbos;
667
668         GLuint smoothness_vs_obj;
669         GLuint smoothness_fs_obj;
670         GLuint smoothness_program;
671         GLuint smoothness_vao;
672
673         GLuint uniform_flow_tex, uniform_diff_flow_tex;
674         GLuint uniform_alpha;
675 };
676
677 ComputeSmoothness::ComputeSmoothness()
678 {
679         smoothness_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
680         smoothness_fs_obj = compile_shader(read_file("smoothness.frag"), GL_FRAGMENT_SHADER);
681         smoothness_program = link_program(smoothness_vs_obj, smoothness_fs_obj);
682
683         // Set up the VAO containing all the required position/texcoord data.
684         glCreateVertexArrays(1, &smoothness_vao);
685         glBindVertexArray(smoothness_vao);
686         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
687
688         GLint position_attrib = glGetAttribLocation(smoothness_program, "position");
689         glEnableVertexArrayAttrib(smoothness_vao, position_attrib);
690         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
691
692         uniform_flow_tex = glGetUniformLocation(smoothness_program, "flow_tex");
693         uniform_diff_flow_tex = glGetUniformLocation(smoothness_program, "diff_flow_tex");
694         uniform_alpha = glGetUniformLocation(smoothness_program, "alpha");
695 }
696
697 void ComputeSmoothness::exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint smoothness_x_tex, GLuint smoothness_y_tex, int level_width, int level_height)
698 {
699         glUseProgram(smoothness_program);
700
701         bind_sampler(smoothness_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
702         bind_sampler(smoothness_program, uniform_diff_flow_tex, 1, diff_flow_tex, nearest_sampler);
703         glProgramUniform1f(smoothness_program, uniform_alpha, vr_alpha);
704
705         glViewport(0, 0, level_width, level_height);
706
707         glDisable(GL_BLEND);
708         glBindVertexArray(smoothness_vao);
709         fbos.render_to(smoothness_x_tex, smoothness_y_tex);
710         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
711
712         // Make sure the smoothness on the right and upper borders is zero.
713         // We could have done this by making (W-1)xH and Wx(H-1) textures instead
714         // (we're sampling smoothness with all-zero border color), but we'd
715         // have to adjust the sampling coordinates, which is annoying.
716         glClearTexSubImage(smoothness_x_tex, 0,  level_width - 1, 0, 0,   1, level_height, 1,  GL_RED, GL_FLOAT, nullptr);
717         glClearTexSubImage(smoothness_y_tex, 0,  0, level_height - 1, 0,  level_width, 1, 1,   GL_RED, GL_FLOAT, nullptr);
718 }
719
720 // Set up the equations set (two equations in two unknowns, per pixel).
721 // We store five floats; the three non-redundant elements of the 2x2 matrix (A)
722 // as 32-bit floats, and the two elements on the right-hand side (b) as 16-bit
723 // floats. (Actually, we store the inverse of the diagonal elements, because
724 // we only ever need to divide by them.) This fits into four u32 values;
725 // R, G, B for the matrix (the last element is symmetric) and A for the two b values.
726 // All the values of the energy term (E_I, E_G, E_S), except the smoothness
727 // terms that depend on other pixels, are calculated in one pass.
728 //
729 // See variational_refinement.txt for more information.
730 class SetupEquations {
731 public:
732         SetupEquations();
733         void exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint flow_tex, GLuint beta_0_tex, GLuint smoothness_x_tex, GLuint smoothness_y_tex, GLuint equation_tex, int level_width, int level_height);
734
735 private:
736         PersistentFBOSet<1> fbos;
737
738         GLuint equations_vs_obj;
739         GLuint equations_fs_obj;
740         GLuint equations_program;
741         GLuint equations_vao;
742
743         GLuint uniform_I_x_y_tex, uniform_I_t_tex;
744         GLuint uniform_diff_flow_tex, uniform_base_flow_tex;
745         GLuint uniform_beta_0_tex;
746         GLuint uniform_smoothness_x_tex, uniform_smoothness_y_tex;
747         GLuint uniform_gamma, uniform_delta;
748 };
749
750 SetupEquations::SetupEquations()
751 {
752         equations_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
753         equations_fs_obj = compile_shader(read_file("equations.frag"), GL_FRAGMENT_SHADER);
754         equations_program = link_program(equations_vs_obj, equations_fs_obj);
755
756         // Set up the VAO containing all the required position/texcoord data.
757         glCreateVertexArrays(1, &equations_vao);
758         glBindVertexArray(equations_vao);
759         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
760
761         GLint position_attrib = glGetAttribLocation(equations_program, "position");
762         glEnableVertexArrayAttrib(equations_vao, position_attrib);
763         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
764
765         uniform_I_x_y_tex = glGetUniformLocation(equations_program, "I_x_y_tex");
766         uniform_I_t_tex = glGetUniformLocation(equations_program, "I_t_tex");
767         uniform_diff_flow_tex = glGetUniformLocation(equations_program, "diff_flow_tex");
768         uniform_base_flow_tex = glGetUniformLocation(equations_program, "base_flow_tex");
769         uniform_beta_0_tex = glGetUniformLocation(equations_program, "beta_0_tex");
770         uniform_smoothness_x_tex = glGetUniformLocation(equations_program, "smoothness_x_tex");
771         uniform_smoothness_y_tex = glGetUniformLocation(equations_program, "smoothness_y_tex");
772         uniform_gamma = glGetUniformLocation(equations_program, "gamma");
773         uniform_delta = glGetUniformLocation(equations_program, "delta");
774 }
775
776 void SetupEquations::exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint base_flow_tex, GLuint beta_0_tex, GLuint smoothness_x_tex, GLuint smoothness_y_tex, GLuint equation_tex, int level_width, int level_height)
777 {
778         glUseProgram(equations_program);
779
780         bind_sampler(equations_program, uniform_I_x_y_tex, 0, I_x_y_tex, nearest_sampler);
781         bind_sampler(equations_program, uniform_I_t_tex, 1, I_t_tex, nearest_sampler);
782         bind_sampler(equations_program, uniform_diff_flow_tex, 2, diff_flow_tex, nearest_sampler);
783         bind_sampler(equations_program, uniform_base_flow_tex, 3, base_flow_tex, nearest_sampler);
784         bind_sampler(equations_program, uniform_beta_0_tex, 4, beta_0_tex, nearest_sampler);
785         bind_sampler(equations_program, uniform_smoothness_x_tex, 5, smoothness_x_tex, zero_border_sampler);
786         bind_sampler(equations_program, uniform_smoothness_y_tex, 6, smoothness_y_tex, zero_border_sampler);
787         glProgramUniform1f(equations_program, uniform_delta, vr_delta);
788         glProgramUniform1f(equations_program, uniform_gamma, vr_gamma);
789
790         glViewport(0, 0, level_width, level_height);
791         glDisable(GL_BLEND);
792         glBindVertexArray(equations_vao);
793         fbos.render_to(equation_tex);
794         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
795 }
796
797 // Actually solve the equation sets made by SetupEquations, by means of
798 // successive over-relaxation (SOR).
799 //
800 // See variational_refinement.txt for more information.
801 class SOR {
802 public:
803         SOR();
804         void exec(GLuint diff_flow_tex, GLuint equation_tex, GLuint smoothness_x_tex, GLuint smoothness_y_tex, int level_width, int level_height, int num_iterations, ScopedTimer *sor_timer);
805
806 private:
807         PersistentFBOSet<1> fbos;
808
809         GLuint sor_vs_obj;
810         GLuint sor_fs_obj;
811         GLuint sor_program;
812         GLuint sor_vao;
813
814         GLuint uniform_diff_flow_tex;
815         GLuint uniform_equation_tex;
816         GLuint uniform_smoothness_x_tex, uniform_smoothness_y_tex;
817         GLuint uniform_phase;
818 };
819
820 SOR::SOR()
821 {
822         sor_vs_obj = compile_shader(read_file("sor.vert"), GL_VERTEX_SHADER);
823         sor_fs_obj = compile_shader(read_file("sor.frag"), GL_FRAGMENT_SHADER);
824         sor_program = link_program(sor_vs_obj, sor_fs_obj);
825
826         // Set up the VAO containing all the required position/texcoord data.
827         glCreateVertexArrays(1, &sor_vao);
828         glBindVertexArray(sor_vao);
829         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
830
831         GLint position_attrib = glGetAttribLocation(sor_program, "position");
832         glEnableVertexArrayAttrib(sor_vao, position_attrib);
833         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
834
835         uniform_diff_flow_tex = glGetUniformLocation(sor_program, "diff_flow_tex");
836         uniform_equation_tex = glGetUniformLocation(sor_program, "equation_tex");
837         uniform_smoothness_x_tex = glGetUniformLocation(sor_program, "smoothness_x_tex");
838         uniform_smoothness_y_tex = glGetUniformLocation(sor_program, "smoothness_y_tex");
839         uniform_phase = glGetUniformLocation(sor_program, "phase");
840 }
841
842 void SOR::exec(GLuint diff_flow_tex, GLuint equation_tex, GLuint smoothness_x_tex, GLuint smoothness_y_tex, int level_width, int level_height, int num_iterations, ScopedTimer *sor_timer)
843 {
844         glUseProgram(sor_program);
845
846         bind_sampler(sor_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
847         bind_sampler(sor_program, uniform_smoothness_x_tex, 1, smoothness_x_tex, zero_border_sampler);
848         bind_sampler(sor_program, uniform_smoothness_y_tex, 2, smoothness_y_tex, zero_border_sampler);
849         bind_sampler(sor_program, uniform_equation_tex, 3, equation_tex, nearest_sampler);
850
851         // NOTE: We bind to the texture we are rendering from, but we never write any value
852         // that we read in the same shader pass (we call discard for red values when we compute
853         // black, and vice versa), and we have barriers between the passes, so we're fine
854         // as per the spec.
855         glViewport(0, 0, level_width, level_height);
856         glDisable(GL_BLEND);
857         glBindVertexArray(sor_vao);
858         fbos.render_to(diff_flow_tex);
859
860         for (int i = 0; i < num_iterations; ++i) {
861                 {
862                         ScopedTimer timer("Red pass", sor_timer);
863                         glProgramUniform1i(sor_program, uniform_phase, 0);
864                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
865                         glTextureBarrier();
866                 }
867                 {
868                         ScopedTimer timer("Black pass", sor_timer);
869                         glProgramUniform1i(sor_program, uniform_phase, 1);
870                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
871                         if (i != num_iterations - 1) {
872                                 glTextureBarrier();
873                         }
874                 }
875         }
876 }
877
878 // Simply add the differential flow found by the variational refinement to the base flow.
879 // The output is in base_flow_tex; we don't need to make a new texture.
880 class AddBaseFlow {
881 public:
882         AddBaseFlow();
883         void exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height);
884
885 private:
886         PersistentFBOSet<1> fbos;
887
888         GLuint add_flow_vs_obj;
889         GLuint add_flow_fs_obj;
890         GLuint add_flow_program;
891         GLuint add_flow_vao;
892
893         GLuint uniform_diff_flow_tex;
894 };
895
896 AddBaseFlow::AddBaseFlow()
897 {
898         add_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
899         add_flow_fs_obj = compile_shader(read_file("add_base_flow.frag"), GL_FRAGMENT_SHADER);
900         add_flow_program = link_program(add_flow_vs_obj, add_flow_fs_obj);
901
902         // Set up the VAO containing all the required position/texcoord data.
903         glCreateVertexArrays(1, &add_flow_vao);
904         glBindVertexArray(add_flow_vao);
905         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
906
907         GLint position_attrib = glGetAttribLocation(add_flow_program, "position");
908         glEnableVertexArrayAttrib(add_flow_vao, position_attrib);
909         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
910
911         uniform_diff_flow_tex = glGetUniformLocation(add_flow_program, "diff_flow_tex");
912 }
913
914 void AddBaseFlow::exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height)
915 {
916         glUseProgram(add_flow_program);
917
918         bind_sampler(add_flow_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
919
920         glViewport(0, 0, level_width, level_height);
921         glEnable(GL_BLEND);
922         glBlendFunc(GL_ONE, GL_ONE);
923         glBindVertexArray(add_flow_vao);
924         fbos.render_to(base_flow_tex);
925
926         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
927 }
928
929 // Take a copy of the flow, bilinearly interpolated and scaled up.
930 class ResizeFlow {
931 public:
932         ResizeFlow();
933         void exec(GLuint in_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height);
934
935 private:
936         PersistentFBOSet<1> fbos;
937
938         GLuint resize_flow_vs_obj;
939         GLuint resize_flow_fs_obj;
940         GLuint resize_flow_program;
941         GLuint resize_flow_vao;
942
943         GLuint uniform_flow_tex;
944         GLuint uniform_scale_factor;
945 };
946
947 ResizeFlow::ResizeFlow()
948 {
949         resize_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
950         resize_flow_fs_obj = compile_shader(read_file("resize_flow.frag"), GL_FRAGMENT_SHADER);
951         resize_flow_program = link_program(resize_flow_vs_obj, resize_flow_fs_obj);
952
953         // Set up the VAO containing all the required position/texcoord data.
954         glCreateVertexArrays(1, &resize_flow_vao);
955         glBindVertexArray(resize_flow_vao);
956         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
957
958         GLint position_attrib = glGetAttribLocation(resize_flow_program, "position");
959         glEnableVertexArrayAttrib(resize_flow_vao, position_attrib);
960         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
961
962         uniform_flow_tex = glGetUniformLocation(resize_flow_program, "flow_tex");
963         uniform_scale_factor = glGetUniformLocation(resize_flow_program, "scale_factor");
964 }
965
966 void ResizeFlow::exec(GLuint flow_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height)
967 {
968         glUseProgram(resize_flow_program);
969
970         bind_sampler(resize_flow_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
971
972         glProgramUniform2f(resize_flow_program, uniform_scale_factor, float(output_width) / input_width, float(output_height) / input_height);
973
974         glViewport(0, 0, output_width, output_height);
975         glDisable(GL_BLEND);
976         glBindVertexArray(resize_flow_vao);
977         fbos.render_to(out_tex);
978
979         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
980 }
981
982 class TexturePool {
983 public:
984         GLuint get_texture(GLenum format, GLuint width, GLuint height);
985         void release_texture(GLuint tex_num);
986
987 private:
988         struct Texture {
989                 GLuint tex_num;
990                 GLenum format;
991                 GLuint width, height;
992                 bool in_use = false;
993         };
994         vector<Texture> textures;
995 };
996
997 class DISComputeFlow {
998 public:
999         DISComputeFlow(int width, int height);
1000
1001         enum ResizeStrategy {
1002                 DO_NOT_RESIZE_FLOW,
1003                 RESIZE_FLOW_TO_FULL_SIZE
1004         };
1005
1006         // Returns a texture that must be released with release_texture()
1007         // after use.
1008         GLuint exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy);
1009
1010         void release_texture(GLuint tex) {
1011                 pool.release_texture(tex);
1012         }
1013
1014 private:
1015         int width, height;
1016         GLuint initial_flow_tex;
1017         TexturePool pool;
1018
1019         // The various passes.
1020         Sobel sobel;
1021         MotionSearch motion_search;
1022         Densify densify;
1023         Prewarp prewarp;
1024         Derivatives derivatives;
1025         ComputeSmoothness compute_smoothness;
1026         SetupEquations setup_equations;
1027         SOR sor;
1028         AddBaseFlow add_base_flow;
1029         ResizeFlow resize_flow;
1030 };
1031
1032 DISComputeFlow::DISComputeFlow(int width, int height)
1033         : width(width), height(height)
1034 {
1035         // Make some samplers.
1036         glCreateSamplers(1, &nearest_sampler);
1037         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
1038         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
1039         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1040         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1041
1042         glCreateSamplers(1, &linear_sampler);
1043         glSamplerParameteri(linear_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1044         glSamplerParameteri(linear_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1045         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1046         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1047
1048         // The smoothness is sampled so that once we get to a smoothness involving
1049         // a value outside the border, the diffusivity between the two becomes zero.
1050         // Similarly, gradients are zero outside the border, since the edge is taken
1051         // to be constant.
1052         glCreateSamplers(1, &zero_border_sampler);
1053         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
1054         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
1055         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
1056         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
1057         float zero[] = { 0.0f, 0.0f, 0.0f, 0.0f };
1058         glSamplerParameterfv(zero_border_sampler, GL_TEXTURE_BORDER_COLOR, zero);
1059
1060         // Initial flow is zero, 1x1.
1061         glCreateTextures(GL_TEXTURE_2D, 1, &initial_flow_tex);
1062         glTextureStorage2D(initial_flow_tex, 1, GL_RG16F, 1, 1);
1063         glClearTexImage(initial_flow_tex, 0, GL_RG, GL_FLOAT, nullptr);
1064 }
1065
1066 GLuint DISComputeFlow::exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy)
1067 {
1068         int prev_level_width = 1, prev_level_height = 1;
1069         GLuint prev_level_flow_tex = initial_flow_tex;
1070
1071         GPUTimers timers;
1072
1073         ScopedTimer total_timer("Total", &timers);
1074         for (int level = coarsest_level; level >= int(finest_level); --level) {
1075                 char timer_name[256];
1076                 snprintf(timer_name, sizeof(timer_name), "Level %d (%d x %d)", level, width >> level, height >> level);
1077                 ScopedTimer level_timer(timer_name, &total_timer);
1078
1079                 int level_width = width >> level;
1080                 int level_height = height >> level;
1081                 float patch_spacing_pixels = patch_size_pixels * (1.0f - patch_overlap_ratio);
1082
1083                 // Make sure we have patches at least every Nth pixel, e.g. for width=9
1084                 // and patch_spacing=3 (the default), we put out patch centers in
1085                 // x=0, x=3, x=6, x=9, which is four patches. The fragment shader will
1086                 // lock all the centers to integer coordinates if needed.
1087                 int width_patches = 1 + ceil(level_width / patch_spacing_pixels);
1088                 int height_patches = 1 + ceil(level_height / patch_spacing_pixels);
1089
1090                 // Make sure we always read from the correct level; the chosen
1091                 // mipmapping could otherwise be rather unpredictable, especially
1092                 // during motion search.
1093                 GLuint tex0_view, tex1_view;
1094                 glGenTextures(1, &tex0_view);
1095                 glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_R8, level, 1, 0, 1);
1096                 glGenTextures(1, &tex1_view);
1097                 glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_R8, level, 1, 0, 1);
1098
1099                 // Create a new texture; we could be fancy and render use a multi-level
1100                 // texture, but meh.
1101                 GLuint grad0_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1102
1103                 // Find the derivative.
1104                 {
1105                         ScopedTimer timer("Sobel", &level_timer);
1106                         sobel.exec(tex0_view, grad0_tex, level_width, level_height);
1107                 }
1108
1109                 // Motion search to find the initial flow. We use the flow from the previous
1110                 // level (sampled bilinearly; no fancy tricks) as a guide, then search from there.
1111
1112                 // Create an output flow texture.
1113                 GLuint flow_out_tex = pool.get_texture(GL_RGB16F, width_patches, height_patches);
1114
1115                 // And draw.
1116                 {
1117                         ScopedTimer timer("Motion search", &level_timer);
1118                         motion_search.exec(tex0_view, tex1_view, grad0_tex, prev_level_flow_tex, flow_out_tex, level_width, level_height, prev_level_width, prev_level_height, width_patches, height_patches);
1119                 }
1120                 pool.release_texture(grad0_tex);
1121
1122                 // Densification.
1123
1124                 // Set up an output texture (initially zero).
1125                 GLuint dense_flow_tex = pool.get_texture(GL_RGB16F, level_width, level_height);
1126                 glClearTexImage(dense_flow_tex, 0, GL_RGB, GL_FLOAT, nullptr);
1127
1128                 // And draw.
1129                 {
1130                         ScopedTimer timer("Densification", &level_timer);
1131                         densify.exec(tex0_view, tex1_view, flow_out_tex, dense_flow_tex, level_width, level_height, width_patches, height_patches);
1132                 }
1133                 pool.release_texture(flow_out_tex);
1134
1135                 // Everything below here in the loop belongs to variational refinement.
1136                 ScopedTimer varref_timer("Variational refinement", &level_timer);
1137
1138                 // Prewarping; create I and I_t, and a normalized base flow (so we don't
1139                 // have to normalize it over and over again, and also save some bandwidth).
1140                 //
1141                 // During the entire rest of the variational refinement, flow will be measured
1142                 // in pixels, not 0..1 normalized OpenGL texture coordinates.
1143                 // This is because variational refinement depends so heavily on derivatives,
1144                 // which are measured in intensity levels per pixel.
1145                 GLuint I_tex = pool.get_texture(GL_R16F, level_width, level_height);
1146                 GLuint I_t_tex = pool.get_texture(GL_R16F, level_width, level_height);
1147                 GLuint base_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1148                 {
1149                         ScopedTimer timer("Prewarping", &varref_timer);
1150                         prewarp.exec(tex0_view, tex1_view, dense_flow_tex, I_tex, I_t_tex, base_flow_tex, level_width, level_height);
1151                 }
1152                 pool.release_texture(dense_flow_tex);
1153                 glDeleteTextures(1, &tex0_view);
1154                 glDeleteTextures(1, &tex1_view);
1155
1156                 // Calculate I_x and I_y. We're only calculating first derivatives;
1157                 // the others will be taken on-the-fly in order to sample from fewer
1158                 // textures overall, since sampling from the L1 cache is cheap.
1159                 // (TODO: Verify that this is indeed faster than making separate
1160                 // double-derivative textures.)
1161                 GLuint I_x_y_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1162                 GLuint beta_0_tex = pool.get_texture(GL_R16F, level_width, level_height);
1163                 {
1164                         ScopedTimer timer("First derivatives", &varref_timer);
1165                         derivatives.exec(I_tex, I_x_y_tex, beta_0_tex, level_width, level_height);
1166                 }
1167                 pool.release_texture(I_tex);
1168
1169                 // We need somewhere to store du and dv (the flow increment, relative
1170                 // to the non-refined base flow u0 and v0). It starts at zero.
1171                 GLuint du_dv_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1172                 glClearTexImage(du_dv_tex, 0, GL_RG, GL_FLOAT, nullptr);
1173
1174                 // And for smoothness.
1175                 GLuint smoothness_x_tex = pool.get_texture(GL_R16F, level_width, level_height);
1176                 GLuint smoothness_y_tex = pool.get_texture(GL_R16F, level_width, level_height);
1177
1178                 // And finally for the equation set. See SetupEquations for
1179                 // the storage format.
1180                 GLuint equation_tex = pool.get_texture(GL_RGBA32UI, level_width, level_height);
1181
1182                 for (int outer_idx = 0; outer_idx < level + 1; ++outer_idx) {
1183                         // Calculate the smoothness terms between the neighboring pixels,
1184                         // both in x and y direction.
1185                         {
1186                                 ScopedTimer timer("Compute smoothness", &varref_timer);
1187                                 compute_smoothness.exec(base_flow_tex, du_dv_tex, smoothness_x_tex, smoothness_y_tex, level_width, level_height);
1188                         }
1189
1190                         // Set up the 2x2 equation system for each pixel.
1191                         {
1192                                 ScopedTimer timer("Set up equations", &varref_timer);
1193                                 setup_equations.exec(I_x_y_tex, I_t_tex, du_dv_tex, base_flow_tex, beta_0_tex, smoothness_x_tex, smoothness_y_tex, equation_tex, level_width, level_height);
1194                         }
1195
1196                         // Run a few SOR (or quasi-SOR, since we're not really Jacobi) iterations.
1197                         // Note that these are to/from the same texture.
1198                         {
1199                                 ScopedTimer timer("SOR", &varref_timer);
1200                                 sor.exec(du_dv_tex, equation_tex, smoothness_x_tex, smoothness_y_tex, level_width, level_height, 5, &timer);
1201                         }
1202                 }
1203
1204                 pool.release_texture(I_t_tex);
1205                 pool.release_texture(I_x_y_tex);
1206                 pool.release_texture(beta_0_tex);
1207                 pool.release_texture(smoothness_x_tex);
1208                 pool.release_texture(smoothness_y_tex);
1209                 pool.release_texture(equation_tex);
1210
1211                 // Add the differential flow found by the variational refinement to the base flow,
1212                 // giving the final flow estimate for this level.
1213                 // The output is in diff_flow_tex; we don't need to make a new texture.
1214                 //
1215                 // Disabling this doesn't save any time (although we could easily make it so that
1216                 // it is more efficient), but it helps debug the motion search.
1217                 if (enable_variational_refinement) {
1218                         ScopedTimer timer("Add differential flow", &varref_timer);
1219                         add_base_flow.exec(base_flow_tex, du_dv_tex, level_width, level_height);
1220                 }
1221                 pool.release_texture(du_dv_tex);
1222
1223                 if (prev_level_flow_tex != initial_flow_tex) {
1224                         pool.release_texture(prev_level_flow_tex);
1225                 }
1226                 prev_level_flow_tex = base_flow_tex;
1227                 prev_level_width = level_width;
1228                 prev_level_height = level_height;
1229         }
1230         total_timer.end();
1231
1232         timers.print();
1233
1234         // Scale up the flow to the final size (if needed).
1235         if (finest_level == 0 || resize_strategy == DO_NOT_RESIZE_FLOW) {
1236                 return prev_level_flow_tex;
1237         } else {
1238                 GLuint final_tex = pool.get_texture(GL_RG16F, width, height);
1239                 resize_flow.exec(prev_level_flow_tex, final_tex, prev_level_width, prev_level_height, width, height);
1240                 pool.release_texture(prev_level_flow_tex);
1241                 return final_tex;
1242         }
1243 }
1244
1245 // Forward-warp the flow half-way (or rather, by alpha). A non-zero “splatting”
1246 // radius fills most of the holes.
1247 class Splat {
1248 public:
1249         Splat();
1250
1251         // alpha is the time of the interpolated frame (0..1).
1252         void exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_tex, int width, int height, float alpha);
1253
1254 private:
1255         PersistentFBOSet<2> fbos;
1256
1257         GLuint splat_vs_obj;
1258         GLuint splat_fs_obj;
1259         GLuint splat_program;
1260         GLuint splat_vao;
1261
1262         GLuint uniform_invert_flow, uniform_splat_size, uniform_alpha;
1263         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1264         GLuint uniform_inv_flow_size;
1265 };
1266
1267 Splat::Splat()
1268 {
1269         splat_vs_obj = compile_shader(read_file("splat.vert"), GL_VERTEX_SHADER);
1270         splat_fs_obj = compile_shader(read_file("splat.frag"), GL_FRAGMENT_SHADER);
1271         splat_program = link_program(splat_vs_obj, splat_fs_obj);
1272
1273         // Set up the VAO containing all the required position/texcoord data.
1274         glCreateVertexArrays(1, &splat_vao);
1275         glBindVertexArray(splat_vao);
1276         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1277
1278         GLint position_attrib = glGetAttribLocation(splat_program, "position");
1279         glEnableVertexArrayAttrib(splat_vao, position_attrib);
1280         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1281
1282         uniform_invert_flow = glGetUniformLocation(splat_program, "invert_flow");
1283         uniform_splat_size = glGetUniformLocation(splat_program, "splat_size");
1284         uniform_alpha = glGetUniformLocation(splat_program, "alpha");
1285         uniform_image0_tex = glGetUniformLocation(splat_program, "image0_tex");
1286         uniform_image1_tex = glGetUniformLocation(splat_program, "image1_tex");
1287         uniform_flow_tex = glGetUniformLocation(splat_program, "flow_tex");
1288         uniform_inv_flow_size = glGetUniformLocation(splat_program, "inv_flow_size");
1289 }
1290
1291 void Splat::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_tex, int width, int height, float alpha)
1292 {
1293         glUseProgram(splat_program);
1294
1295         bind_sampler(splat_program, uniform_image0_tex, 0, tex0, linear_sampler);
1296         bind_sampler(splat_program, uniform_image1_tex, 1, tex1, linear_sampler);
1297
1298         // FIXME: This is set to 1.0 right now so not to trigger Haswell's “PMA stall”.
1299         // Move to 2.0 later, or even 4.0.
1300         // (Since we have hole filling, it's not critical, but larger values seem to do
1301         // better than hole filling for large motion, blurs etc.)
1302         float splat_size = 1.0f;  // 4x4 splat means 16x overdraw, 2x2 splat means 4x overdraw.
1303         glProgramUniform2f(splat_program, uniform_splat_size, splat_size / width, splat_size / height);
1304         glProgramUniform1f(splat_program, uniform_alpha, alpha);
1305         glProgramUniform2f(splat_program, uniform_inv_flow_size, 1.0f / width, 1.0f / height);
1306
1307         glViewport(0, 0, width, height);
1308         glDisable(GL_BLEND);
1309         glEnable(GL_DEPTH_TEST);
1310         glDepthFunc(GL_LESS);  // We store the difference between I_0 and I_1, where less difference is good. (Default 1.0 is effectively +inf, which always loses.)
1311         glBindVertexArray(splat_vao);
1312
1313         // FIXME: Get this into FBOSet, so we can reuse FBOs across frames.
1314         GLuint fbo;
1315         glCreateFramebuffers(1, &fbo);
1316         glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0, flow_tex, 0);
1317         glNamedFramebufferTexture(fbo, GL_DEPTH_ATTACHMENT, depth_tex, 0);
1318         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1319
1320         // Do forward splatting.
1321         bind_sampler(splat_program, uniform_flow_tex, 2, forward_flow_tex, nearest_sampler);
1322         glProgramUniform1i(splat_program, uniform_invert_flow, 0);
1323         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1324
1325         // Do backward splatting.
1326         bind_sampler(splat_program, uniform_flow_tex, 2, backward_flow_tex, nearest_sampler);
1327         glProgramUniform1i(splat_program, uniform_invert_flow, 1);
1328         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1329
1330         glDisable(GL_DEPTH_TEST);
1331
1332         glDeleteFramebuffers(1, &fbo);
1333 }
1334
1335 // Doing good and fast hole-filling on a GPU is nontrivial. We choose an option
1336 // that's fairly simple (given that most holes are really small) and also hopefully
1337 // cheap should the holes not be so small. Conceptually, we look for the first
1338 // non-hole to the left of us (ie., shoot a ray until we hit something), then
1339 // the first non-hole to the right of us, then up and down, and then average them
1340 // all together. It's going to create “stars” if the holes are big, but OK, that's
1341 // a tradeoff.
1342 //
1343 // Our implementation here is efficient assuming that the hierarchical Z-buffer is
1344 // on even for shaders that do discard (this typically kills early Z, but hopefully
1345 // not hierarchical Z); we set up Z so that only holes are written to, which means
1346 // that as soon as a hole is filled, the rasterizer should just skip it. Most of the
1347 // fullscreen quads should just be discarded outright, really.
1348 class HoleFill {
1349 public:
1350         HoleFill();
1351
1352         // Output will be in flow_tex, temp_tex[0, 1, 2], representing the filling
1353         // from the down, left, right and up, respectively. Use HoleBlend to merge
1354         // them into one.
1355         void exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height);
1356
1357 private:
1358         PersistentFBOSet<2> fbos;
1359
1360         GLuint fill_vs_obj;
1361         GLuint fill_fs_obj;
1362         GLuint fill_program;
1363         GLuint fill_vao;
1364
1365         GLuint uniform_tex;
1366         GLuint uniform_z, uniform_sample_offset;
1367 };
1368
1369 HoleFill::HoleFill()
1370 {
1371         fill_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);
1372         fill_fs_obj = compile_shader(read_file("hole_fill.frag"), GL_FRAGMENT_SHADER);
1373         fill_program = link_program(fill_vs_obj, fill_fs_obj);
1374
1375         // Set up the VAO containing all the required position/texcoord data.
1376         glCreateVertexArrays(1, &fill_vao);
1377         glBindVertexArray(fill_vao);
1378         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1379
1380         GLint position_attrib = glGetAttribLocation(fill_program, "position");
1381         glEnableVertexArrayAttrib(fill_vao, position_attrib);
1382         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1383
1384         uniform_tex = glGetUniformLocation(fill_program, "tex");
1385         uniform_z = glGetUniformLocation(fill_program, "z");
1386         uniform_sample_offset = glGetUniformLocation(fill_program, "sample_offset");
1387 }
1388
1389 void HoleFill::exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height)
1390 {
1391         glUseProgram(fill_program);
1392
1393         bind_sampler(fill_program, uniform_tex, 0, flow_tex, nearest_sampler);
1394
1395         glProgramUniform1f(fill_program, uniform_z, 1.0f - 1.0f / 1024.0f);
1396
1397         glViewport(0, 0, width, height);
1398         glDisable(GL_BLEND);
1399         glEnable(GL_DEPTH_TEST);
1400         glDepthFunc(GL_LESS);  // Only update the values > 0.999f (ie., only invalid pixels).
1401         glBindVertexArray(fill_vao);
1402
1403         // FIXME: Get this into FBOSet, so we can reuse FBOs across frames.
1404         GLuint fbo;
1405         glCreateFramebuffers(1, &fbo);
1406         glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0, flow_tex, 0);  // NOTE: Reading and writing to the same texture.
1407         glNamedFramebufferTexture(fbo, GL_DEPTH_ATTACHMENT, depth_tex, 0);
1408         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1409
1410         // Fill holes from the left, by shifting 1, 2, 4, 8, etc. pixels to the right.
1411         for (int offs = 1; offs < width; offs *= 2) {
1412                 glProgramUniform2f(fill_program, uniform_sample_offset, -offs / float(width), 0.0f);
1413                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1414                 glTextureBarrier();
1415         }
1416         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[0], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1417
1418         // Similar to the right; adjust Z a bit down, so that we re-fill the pixels that
1419         // were overwritten in the last algorithm.
1420         glProgramUniform1f(fill_program, uniform_z, 1.0f - 2.0f / 1024.0f);
1421         for (int offs = 1; offs < width; offs *= 2) {
1422                 glProgramUniform2f(fill_program, uniform_sample_offset, offs / float(width), 0.0f);
1423                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1424                 glTextureBarrier();
1425         }
1426         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[1], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1427
1428         // Up.
1429         glProgramUniform1f(fill_program, uniform_z, 1.0f - 3.0f / 1024.0f);
1430         for (int offs = 1; offs < height; offs *= 2) {
1431                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, -offs / float(height));
1432                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1433                 glTextureBarrier();
1434         }
1435         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[2], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1436
1437         // Down.
1438         glProgramUniform1f(fill_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1439         for (int offs = 1; offs < height; offs *= 2) {
1440                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, offs / float(height));
1441                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1442                 glTextureBarrier();
1443         }
1444
1445         glDisable(GL_DEPTH_TEST);
1446
1447         glDeleteFramebuffers(1, &fbo);
1448 }
1449
1450 // Blend the four directions from HoleFill into one pixel, so that single-pixel
1451 // holes become the average of their four neighbors.
1452 class HoleBlend {
1453 public:
1454         HoleBlend();
1455
1456         void exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height);
1457
1458 private:
1459         PersistentFBOSet<2> fbos;
1460
1461         GLuint blend_vs_obj;
1462         GLuint blend_fs_obj;
1463         GLuint blend_program;
1464         GLuint blend_vao;
1465
1466         GLuint uniform_left_tex, uniform_right_tex, uniform_up_tex, uniform_down_tex;
1467         GLuint uniform_z, uniform_sample_offset;
1468 };
1469
1470 HoleBlend::HoleBlend()
1471 {
1472         blend_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);  // Reuse the vertex shader from the fill.
1473         blend_fs_obj = compile_shader(read_file("hole_blend.frag"), GL_FRAGMENT_SHADER);
1474         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1475
1476         // Set up the VAO containing all the required position/texcoord data.
1477         glCreateVertexArrays(1, &blend_vao);
1478         glBindVertexArray(blend_vao);
1479         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1480
1481         GLint position_attrib = glGetAttribLocation(blend_program, "position");
1482         glEnableVertexArrayAttrib(blend_vao, position_attrib);
1483         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1484
1485         uniform_left_tex = glGetUniformLocation(blend_program, "left_tex");
1486         uniform_right_tex = glGetUniformLocation(blend_program, "right_tex");
1487         uniform_up_tex = glGetUniformLocation(blend_program, "up_tex");
1488         uniform_down_tex = glGetUniformLocation(blend_program, "down_tex");
1489         uniform_z = glGetUniformLocation(blend_program, "z");
1490         uniform_sample_offset = glGetUniformLocation(blend_program, "sample_offset");
1491 }
1492
1493 void HoleBlend::exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height)
1494 {
1495         glUseProgram(blend_program);
1496
1497         bind_sampler(blend_program, uniform_left_tex, 0, temp_tex[0], nearest_sampler);
1498         bind_sampler(blend_program, uniform_right_tex, 1, temp_tex[1], nearest_sampler);
1499         bind_sampler(blend_program, uniform_up_tex, 2, temp_tex[2], nearest_sampler);
1500         bind_sampler(blend_program, uniform_down_tex, 3, flow_tex, nearest_sampler);
1501
1502         glProgramUniform1f(blend_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1503         glProgramUniform2f(blend_program, uniform_sample_offset, 0.0f, 0.0f);
1504
1505         glViewport(0, 0, width, height);
1506         glDisable(GL_BLEND);
1507         glEnable(GL_DEPTH_TEST);
1508         glDepthFunc(GL_LEQUAL);  // Skip over all of the pixels that were never holes to begin with.
1509         glBindVertexArray(blend_vao);
1510
1511         // FIXME: Get this into FBOSet, so we can reuse FBOs across frames.
1512         GLuint fbo;
1513         glCreateFramebuffers(1, &fbo);
1514         glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0, flow_tex, 0);  // NOTE: Reading and writing to the same texture.
1515         glNamedFramebufferTexture(fbo, GL_DEPTH_ATTACHMENT, depth_tex, 0);
1516         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1517
1518         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1519
1520         glDisable(GL_DEPTH_TEST);
1521
1522         glDeleteFramebuffers(1, &fbo);
1523 }
1524
1525 class Blend {
1526 public:
1527         Blend();
1528         void exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int width, int height, float alpha);
1529
1530 private:
1531         PersistentFBOSet<1> fbos;
1532         GLuint blend_vs_obj;
1533         GLuint blend_fs_obj;
1534         GLuint blend_program;
1535         GLuint blend_vao;
1536
1537         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1538         GLuint uniform_alpha, uniform_flow_consistency_tolerance;
1539 };
1540
1541 Blend::Blend()
1542 {
1543         blend_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
1544         blend_fs_obj = compile_shader(read_file("blend.frag"), GL_FRAGMENT_SHADER);
1545         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1546
1547         // Set up the VAO containing all the required position/texcoord data.
1548         glCreateVertexArrays(1, &blend_vao);
1549         glBindVertexArray(blend_vao);
1550
1551         GLint position_attrib = glGetAttribLocation(blend_program, "position");
1552         glEnableVertexArrayAttrib(blend_vao, position_attrib);
1553         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1554
1555         uniform_image0_tex = glGetUniformLocation(blend_program, "image0_tex");
1556         uniform_image1_tex = glGetUniformLocation(blend_program, "image1_tex");
1557         uniform_flow_tex = glGetUniformLocation(blend_program, "flow_tex");
1558         uniform_alpha = glGetUniformLocation(blend_program, "alpha");
1559         uniform_flow_consistency_tolerance = glGetUniformLocation(blend_program, "flow_consistency_tolerance");
1560 }
1561
1562 void Blend::exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int level_width, int level_height, float alpha)
1563 {
1564         glUseProgram(blend_program);
1565         bind_sampler(blend_program, uniform_image0_tex, 0, tex0, linear_sampler);
1566         bind_sampler(blend_program, uniform_image1_tex, 1, tex1, linear_sampler);
1567         bind_sampler(blend_program, uniform_flow_tex, 2, flow_tex, linear_sampler);  // May be upsampled.
1568         glProgramUniform1f(blend_program, uniform_alpha, alpha);
1569         //glProgramUniform1f(blend_program, uniform_flow_consistency_tolerance, 1.0f / 
1570
1571         glViewport(0, 0, level_width, level_height);
1572         fbos.render_to(output_tex);
1573         glBindVertexArray(blend_vao);
1574         glUseProgram(blend_program);
1575         glDisable(GL_BLEND);  // A bit ironic, perhaps.
1576         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1577 }
1578
1579 class Interpolate {
1580 public:
1581         Interpolate(int width, int height, int flow_level);
1582
1583         // Returns a texture that must be released with release_texture()
1584         // after use. tex0 and tex1 must be RGBA8 textures with mipmaps
1585         // (unless flow_level == 0).
1586         GLuint exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha);
1587
1588         void release_texture(GLuint tex) {
1589                 pool.release_texture(tex);
1590         }
1591
1592 private:
1593         int width, height, flow_level;
1594         TexturePool pool;
1595         Splat splat;
1596         HoleFill hole_fill;
1597         HoleBlend hole_blend;
1598         Blend blend;
1599 };
1600
1601 Interpolate::Interpolate(int width, int height, int flow_level)
1602         : width(width), height(height), flow_level(flow_level) {}
1603
1604 GLuint Interpolate::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha)
1605 {
1606         GPUTimers timers;
1607
1608         ScopedTimer total_timer("Total", &timers);
1609
1610         // Pick out the right level to test splatting results on.
1611         GLuint tex0_view, tex1_view;
1612         glGenTextures(1, &tex0_view);
1613         glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_RGBA8, flow_level, 1, 0, 1);
1614         glGenTextures(1, &tex1_view);
1615         glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_RGBA8, flow_level, 1, 0, 1);
1616
1617         int flow_width = width >> flow_level;
1618         int flow_height = height >> flow_level;
1619
1620         GLuint flow_tex = pool.get_texture(GL_RG16F, flow_width, flow_height);
1621         GLuint depth_tex = pool.get_texture(GL_DEPTH_COMPONENT32F, flow_width, flow_height);  // Used for ranking flows.
1622         {
1623                 ScopedTimer timer("Clear", &total_timer);
1624                 float invalid_flow[] = { 1000.0f, 1000.0f };
1625                 glClearTexImage(flow_tex, 0, GL_RG, GL_FLOAT, invalid_flow);
1626                 float infinity = 1.0f;
1627                 glClearTexImage(depth_tex, 0, GL_DEPTH_COMPONENT, GL_FLOAT, &infinity);
1628         }
1629
1630         {
1631                 ScopedTimer timer("Splat", &total_timer);
1632                 splat.exec(tex0_view, tex1_view, forward_flow_tex, backward_flow_tex, flow_tex, depth_tex, flow_width, flow_height, alpha);
1633         }
1634         glDeleteTextures(1, &tex0_view);
1635         glDeleteTextures(1, &tex1_view);
1636
1637         GLuint temp_tex[3];
1638         temp_tex[0] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1639         temp_tex[1] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1640         temp_tex[2] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1641
1642         {
1643                 ScopedTimer timer("Fill holes", &total_timer);
1644                 hole_fill.exec(flow_tex, depth_tex, temp_tex, flow_width, flow_height);
1645                 hole_blend.exec(flow_tex, depth_tex, temp_tex, flow_width, flow_height);
1646         }
1647
1648         pool.release_texture(temp_tex[0]);
1649         pool.release_texture(temp_tex[1]);
1650         pool.release_texture(temp_tex[2]);
1651         pool.release_texture(depth_tex);
1652
1653         GLuint output_tex = pool.get_texture(GL_RGBA8, width, height);
1654         {
1655                 ScopedTimer timer("Blend", &total_timer);
1656                 blend.exec(tex0, tex1, flow_tex, output_tex, width, height, alpha);
1657         }
1658         total_timer.end();
1659         timers.print();
1660
1661         return output_tex;
1662 }
1663
1664 GLuint TexturePool::get_texture(GLenum format, GLuint width, GLuint height)
1665 {
1666         for (Texture &tex : textures) {
1667                 if (!tex.in_use && tex.format == format &&
1668                     tex.width == width && tex.height == height) {
1669                         tex.in_use = true;
1670                         return tex.tex_num;
1671                 }
1672         }
1673
1674         Texture tex;
1675         glCreateTextures(GL_TEXTURE_2D, 1, &tex.tex_num);
1676         glTextureStorage2D(tex.tex_num, 1, format, width, height);
1677         tex.format = format;
1678         tex.width = width;
1679         tex.height = height;
1680         tex.in_use = true;
1681         textures.push_back(tex);
1682         return tex.tex_num;
1683 }
1684
1685 void TexturePool::release_texture(GLuint tex_num)
1686 {
1687         for (Texture &tex : textures) {
1688                 if (tex.tex_num == tex_num) {
1689                         assert(tex.in_use);
1690                         tex.in_use = false;
1691                         return;
1692                 }
1693         }
1694         assert(false);
1695 }
1696
1697 // OpenGL uses a bottom-left coordinate system, .flo files use a top-left coordinate system.
1698 void flip_coordinate_system(float *dense_flow, unsigned width, unsigned height)
1699 {
1700         for (unsigned i = 0; i < width * height; ++i) {
1701                 dense_flow[i * 2 + 1] = -dense_flow[i * 2 + 1];
1702         }
1703 }
1704
1705 // Not relevant for RGB.
1706 void flip_coordinate_system(uint8_t *dense_flow, unsigned width, unsigned height)
1707 {
1708 }
1709
1710 void write_flow(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1711 {
1712         FILE *flowfp = fopen(filename, "wb");
1713         fprintf(flowfp, "FEIH");
1714         fwrite(&width, 4, 1, flowfp);
1715         fwrite(&height, 4, 1, flowfp);
1716         for (unsigned y = 0; y < height; ++y) {
1717                 int yy = height - y - 1;
1718                 fwrite(&dense_flow[yy * width * 2], width * 2 * sizeof(float), 1, flowfp);
1719         }
1720         fclose(flowfp);
1721 }
1722
1723 // Not relevant for RGB.
1724 void write_flow(const char *filename, const uint8_t *dense_flow, unsigned width, unsigned height)
1725 {
1726         assert(false);
1727 }
1728
1729 void write_ppm(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1730 {
1731         FILE *fp = fopen(filename, "wb");
1732         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1733         for (unsigned y = 0; y < unsigned(height); ++y) {
1734                 int yy = height - y - 1;
1735                 for (unsigned x = 0; x < unsigned(width); ++x) {
1736                         float du = dense_flow[(yy * width + x) * 2 + 0];
1737                         float dv = dense_flow[(yy * width + x) * 2 + 1];
1738
1739                         uint8_t r, g, b;
1740                         flow2rgb(du, dv, &r, &g, &b);
1741                         putc(r, fp);
1742                         putc(g, fp);
1743                         putc(b, fp);
1744                 }
1745         }
1746         fclose(fp);
1747 }
1748
1749 void write_ppm(const char *filename, const uint8_t *rgba, unsigned width, unsigned height)
1750 {
1751         unique_ptr<uint8_t[]> rgb_line(new uint8_t[width * 3 + 1]);
1752
1753         FILE *fp = fopen(filename, "wb");
1754         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1755         for (unsigned y = 0; y < height; ++y) {
1756                 unsigned y2 = height - 1 - y;
1757                 for (size_t x = 0; x < width; ++x) {
1758                         memcpy(&rgb_line[x * 3], &rgba[(y2 * width + x) * 4], 4);
1759                 }
1760                 fwrite(rgb_line.get(), width * 3, 1, fp);
1761         }
1762         fclose(fp);
1763 }
1764
1765 struct FlowType {
1766         using type = float;
1767         static constexpr GLenum gl_format = GL_RG;
1768         static constexpr GLenum gl_type = GL_FLOAT;
1769         static constexpr int num_channels = 2;
1770 };
1771
1772 struct RGBAType {
1773         using type = uint8_t;
1774         static constexpr GLenum gl_format = GL_RGBA;
1775         static constexpr GLenum gl_type = GL_UNSIGNED_BYTE;
1776         static constexpr int num_channels = 4;
1777 };
1778
1779 template <class Type>
1780 void finish_one_read(GLuint width, GLuint height)
1781 {
1782         using T = typename Type::type;
1783         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1784
1785         assert(!reads_in_progress.empty());
1786         ReadInProgress read = reads_in_progress.front();
1787         reads_in_progress.pop_front();
1788
1789         unique_ptr<T[]> flow(new typename Type::type[width * height * Type::num_channels]);
1790         void *buf = glMapNamedBufferRange(read.pbo, 0, width * height * bytes_per_pixel, GL_MAP_READ_BIT);  // Blocks if the read isn't done yet.
1791         memcpy(flow.get(), buf, width * height * bytes_per_pixel);  // TODO: Unneeded for RGBType, since flip_coordinate_system() does nothing.:
1792         glUnmapNamedBuffer(read.pbo);
1793         spare_pbos.push(read.pbo);
1794
1795         flip_coordinate_system(flow.get(), width, height);
1796         if (!read.flow_filename.empty()) {
1797                 write_flow(read.flow_filename.c_str(), flow.get(), width, height);
1798                 fprintf(stderr, "%s %s -> %s\n", read.filename0.c_str(), read.filename1.c_str(), read.flow_filename.c_str());
1799         }
1800         if (!read.ppm_filename.empty()) {
1801                 write_ppm(read.ppm_filename.c_str(), flow.get(), width, height);
1802         }
1803 }
1804
1805 template <class Type>
1806 void schedule_read(GLuint tex, GLuint width, GLuint height, const char *filename0, const char *filename1, const char *flow_filename, const char *ppm_filename)
1807 {
1808         using T = typename Type::type;
1809         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1810
1811         if (spare_pbos.empty()) {
1812                 finish_one_read<Type>(width, height);
1813         }
1814         assert(!spare_pbos.empty());
1815         reads_in_progress.emplace_back(ReadInProgress{ spare_pbos.top(), filename0, filename1, flow_filename, ppm_filename });
1816         glBindBuffer(GL_PIXEL_PACK_BUFFER, spare_pbos.top());
1817         spare_pbos.pop();
1818         glGetTextureImage(tex, 0, Type::gl_format, Type::gl_type, width * height * bytes_per_pixel, nullptr);
1819         glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
1820 }
1821
1822 void compute_flow_only(int argc, char **argv, int optind)
1823 {
1824         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1825         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1826         const char *flow_filename = argc >= (optind + 3) ? argv[optind + 2] : "flow.flo";
1827
1828         // Load pictures.
1829         unsigned width1, height1, width2, height2;
1830         GLuint tex0 = load_texture(filename0, &width1, &height1, WITHOUT_MIPMAPS);
1831         GLuint tex1 = load_texture(filename1, &width2, &height2, WITHOUT_MIPMAPS);
1832
1833         if (width1 != width2 || height1 != height2) {
1834                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1835                         width1, height1, width2, height2);
1836                 exit(1);
1837         }
1838
1839         // Set up some PBOs to do asynchronous readback.
1840         GLuint pbos[5];
1841         glCreateBuffers(5, pbos);
1842         for (int i = 0; i < 5; ++i) {
1843                 glNamedBufferData(pbos[i], width1 * height1 * 2 * sizeof(float), nullptr, GL_STREAM_READ);
1844                 spare_pbos.push(pbos[i]);
1845         }
1846
1847         int levels = find_num_levels(width1, height1);
1848         GLuint tex0_gray, tex1_gray;
1849         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1850         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1851         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1852         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1853
1854         GrayscaleConversion gray;
1855         gray.exec(tex0, tex0_gray, width1, height1);
1856         glDeleteTextures(1, &tex0);
1857         glGenerateTextureMipmap(tex0_gray);
1858
1859         gray.exec(tex1, tex1_gray, width1, height1);
1860         glDeleteTextures(1, &tex1);
1861         glGenerateTextureMipmap(tex1_gray);
1862
1863         DISComputeFlow compute_flow(width1, height1);
1864         GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1865
1866         schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "flow.ppm");
1867         compute_flow.release_texture(final_tex);
1868
1869         // See if there are more flows on the command line (ie., more than three arguments),
1870         // and if so, process them.
1871         int num_flows = (argc - optind) / 3;
1872         for (int i = 1; i < num_flows; ++i) {
1873                 const char *filename0 = argv[optind + i * 3 + 0];
1874                 const char *filename1 = argv[optind + i * 3 + 1];
1875                 const char *flow_filename = argv[optind + i * 3 + 2];
1876                 GLuint width, height;
1877                 GLuint tex0 = load_texture(filename0, &width, &height, WITHOUT_MIPMAPS);
1878                 if (width != width1 || height != height1) {
1879                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1880                                 filename0, width, height, width1, height1);
1881                         exit(1);
1882                 }
1883                 gray.exec(tex0, tex0_gray, width, height);
1884                 glGenerateTextureMipmap(tex0_gray);
1885                 glDeleteTextures(1, &tex0);
1886
1887                 GLuint tex1 = load_texture(filename1, &width, &height, WITHOUT_MIPMAPS);
1888                 if (width != width1 || height != height1) {
1889                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1890                                 filename1, width, height, width1, height1);
1891                         exit(1);
1892                 }
1893                 gray.exec(tex1, tex1_gray, width, height);
1894                 glGenerateTextureMipmap(tex1_gray);
1895                 glDeleteTextures(1, &tex1);
1896
1897                 GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1898
1899                 schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "");
1900                 compute_flow.release_texture(final_tex);
1901         }
1902         glDeleteTextures(1, &tex0_gray);
1903         glDeleteTextures(1, &tex1_gray);
1904
1905         while (!reads_in_progress.empty()) {
1906                 finish_one_read<FlowType>(width1, height1);
1907         }
1908 }
1909
1910 // Interpolate images based on
1911 //
1912 //   Herbst, Seitz, Baker: “Occlusion Reasoning for Temporal Interpolation
1913 //   Using Optical Flow”
1914 //
1915 // or at least a reasonable subset thereof. Unfinished.
1916 void interpolate_image(int argc, char **argv, int optind)
1917 {
1918         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1919         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1920         //const char *out_filename = argc >= (optind + 3) ? argv[optind + 2] : "interpolated.png";
1921
1922         // Load pictures.
1923         unsigned width1, height1, width2, height2;
1924         GLuint tex0 = load_texture(filename0, &width1, &height1, WITH_MIPMAPS);
1925         GLuint tex1 = load_texture(filename1, &width2, &height2, WITH_MIPMAPS);
1926
1927         if (width1 != width2 || height1 != height2) {
1928                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1929                         width1, height1, width2, height2);
1930                 exit(1);
1931         }
1932
1933         // Set up some PBOs to do asynchronous readback.
1934         GLuint pbos[5];
1935         glCreateBuffers(5, pbos);
1936         for (int i = 0; i < 5; ++i) {
1937                 glNamedBufferData(pbos[i], width1 * height1 * 4 * sizeof(uint8_t), nullptr, GL_STREAM_READ);
1938                 spare_pbos.push(pbos[i]);
1939         }
1940
1941         DISComputeFlow compute_flow(width1, height1);
1942         GrayscaleConversion gray;
1943         Interpolate interpolate(width1, height1, finest_level);
1944
1945         int levels = find_num_levels(width1, height1);
1946         GLuint tex0_gray, tex1_gray;
1947         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1948         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1949         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1950         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1951
1952         gray.exec(tex0, tex0_gray, width1, height1);
1953         glGenerateTextureMipmap(tex0_gray);
1954
1955         gray.exec(tex1, tex1_gray, width1, height1);
1956         glGenerateTextureMipmap(tex1_gray);
1957
1958         GLuint forward_flow_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1959         GLuint backward_flow_tex = compute_flow.exec(tex1_gray, tex0_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1960
1961         for (int frameno = 1; frameno < 60; ++frameno) {
1962                 char ppm_filename[256];
1963                 snprintf(ppm_filename, sizeof(ppm_filename), "interp%04d.ppm", frameno);
1964
1965                 float alpha = frameno / 60.0f;
1966                 GLuint interpolated_tex = interpolate.exec(tex0, tex1, forward_flow_tex, backward_flow_tex, width1, height1, alpha);
1967
1968                 schedule_read<RGBAType>(interpolated_tex, width1, height1, filename0, filename1, "", ppm_filename);
1969                 interpolate.release_texture(interpolated_tex);
1970         }
1971
1972         while (!reads_in_progress.empty()) {
1973                 finish_one_read<RGBAType>(width1, height1);
1974         }
1975 }
1976
1977 int main(int argc, char **argv)
1978 {
1979         static const option long_options[] = {
1980                 { "smoothness-relative-weight", required_argument, 0, 's' },  // alpha.
1981                 { "intensity-relative-weight", required_argument, 0, 'i' },  // delta.
1982                 { "gradient-relative-weight", required_argument, 0, 'g' },  // gamma.
1983                 { "disable-timing", no_argument, 0, 1000 },
1984                 { "detailed-timing", no_argument, 0, 1003 },
1985                 { "ignore-variational-refinement", no_argument, 0, 1001 },  // Still calculates it, just doesn't apply it.
1986                 { "interpolate", no_argument, 0, 1002 }
1987         };
1988
1989         for ( ;; ) {
1990                 int option_index = 0;
1991                 int c = getopt_long(argc, argv, "s:i:g:", long_options, &option_index);
1992
1993                 if (c == -1) {
1994                         break;
1995                 }
1996                 switch (c) {
1997                 case 's':
1998                         vr_alpha = atof(optarg);
1999                         break;
2000                 case 'i':
2001                         vr_delta = atof(optarg);
2002                         break;
2003                 case 'g':
2004                         vr_gamma = atof(optarg);
2005                         break;
2006                 case 1000:
2007                         enable_timing = false;
2008                         break;
2009                 case 1001:
2010                         enable_variational_refinement = false;
2011                         break;
2012                 case 1002:
2013                         enable_interpolation = true;
2014                         break;
2015                 case 1003:
2016                         detailed_timing = true;
2017                         break;
2018                 default:
2019                         fprintf(stderr, "Unknown option '%s'\n", argv[option_index]);
2020                         exit(1);
2021                 };
2022         }
2023
2024         if (SDL_Init(SDL_INIT_EVERYTHING) == -1) {
2025                 fprintf(stderr, "SDL_Init failed: %s\n", SDL_GetError());
2026                 exit(1);
2027         }
2028         SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE, 8);
2029         SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 0);
2030         SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 0);
2031         SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);
2032
2033         SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
2034         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 4);
2035         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 5);
2036         // SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, SDL_GL_CONTEXT_DEBUG_FLAG);
2037         window = SDL_CreateWindow("OpenGL window",
2038                 SDL_WINDOWPOS_UNDEFINED,
2039                 SDL_WINDOWPOS_UNDEFINED,
2040                 64, 64,
2041                 SDL_WINDOW_OPENGL | SDL_WINDOW_HIDDEN);
2042         SDL_GLContext context = SDL_GL_CreateContext(window);
2043         assert(context != nullptr);
2044
2045         glDisable(GL_DITHER);
2046
2047         // FIXME: Should be part of DISComputeFlow (but needs to be initialized
2048         // before all the render passes).
2049         float vertices[] = {
2050                 0.0f, 1.0f,
2051                 0.0f, 0.0f,
2052                 1.0f, 1.0f,
2053                 1.0f, 0.0f,
2054         };
2055         glCreateBuffers(1, &vertex_vbo);
2056         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
2057         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
2058
2059         if (enable_interpolation) {
2060                 interpolate_image(argc, argv, optind);
2061         } else {
2062                 compute_flow_only(argc, argv, optind);
2063         }
2064 }