]> git.sesse.net Git - nageru/blob - flow.cpp
Remove some redundant glUseProgram() calls.
[nageru] / flow.cpp
1 #define NO_SDL_GLEXT 1
2
3 #include <epoxy/gl.h>
4
5 #include <SDL2/SDL.h>
6 #include <SDL2/SDL_error.h>
7 #include <SDL2/SDL_events.h>
8 #include <SDL2/SDL_image.h>
9 #include <SDL2/SDL_keyboard.h>
10 #include <SDL2/SDL_mouse.h>
11 #include <SDL2/SDL_video.h>
12
13 #include <assert.h>
14 #include <getopt.h>
15 #include <stdio.h>
16 #include <unistd.h>
17
18 #include "gpu_timers.h"
19 #include "util.h"
20
21 #include <algorithm>
22 #include <deque>
23 #include <memory>
24 #include <map>
25 #include <stack>
26 #include <vector>
27
28 #define BUFFER_OFFSET(i) ((char *)nullptr + (i))
29
30 using namespace std;
31
32 SDL_Window *window;
33
34 // Operating point 3 (10 Hz on CPU, excluding preprocessing).
35 constexpr float patch_overlap_ratio = 0.75f;
36 constexpr unsigned coarsest_level = 5;
37 constexpr unsigned finest_level = 1;
38 constexpr unsigned patch_size_pixels = 12;
39
40 // Weighting constants for the different parts of the variational refinement.
41 // These don't correspond 1:1 to the values given in the DIS paper,
42 // since we have different normalizations and ranges in some cases.
43 // These are found through a simple grid search on some MPI-Sintel data,
44 // although the error (EPE) seems to be fairly insensitive to the precise values.
45 // Only the relative values matter, so we fix alpha (the smoothness constant)
46 // at unity and tweak the others.
47 float vr_alpha = 1.0f, vr_delta = 0.25f, vr_gamma = 0.25f;
48
49 bool enable_timing = true;
50 bool detailed_timing = false;
51 bool enable_variational_refinement = true;  // Just for debugging.
52 bool enable_interpolation = false;
53
54 // Some global OpenGL objects.
55 // TODO: These should really be part of DISComputeFlow.
56 GLuint nearest_sampler, linear_sampler, zero_border_sampler;
57 GLuint vertex_vbo;
58
59 // Structures for asynchronous readback. We assume everything is the same size (and GL_RG16F).
60 struct ReadInProgress {
61         GLuint pbo;
62         string filename0, filename1;
63         string flow_filename, ppm_filename;  // Either may be empty for no write.
64 };
65 stack<GLuint> spare_pbos;
66 deque<ReadInProgress> reads_in_progress;
67
68 int find_num_levels(int width, int height)
69 {
70         int levels = 1;
71         for (int w = width, h = height; w > 1 || h > 1; ) {
72                 w >>= 1;
73                 h >>= 1;
74                 ++levels;
75         }
76         return levels;
77 }
78
79 string read_file(const string &filename)
80 {
81         FILE *fp = fopen(filename.c_str(), "r");
82         if (fp == nullptr) {
83                 perror(filename.c_str());
84                 exit(1);
85         }
86
87         int ret = fseek(fp, 0, SEEK_END);
88         if (ret == -1) {
89                 perror("fseek(SEEK_END)");
90                 exit(1);
91         }
92
93         int size = ftell(fp);
94
95         ret = fseek(fp, 0, SEEK_SET);
96         if (ret == -1) {
97                 perror("fseek(SEEK_SET)");
98                 exit(1);
99         }
100
101         string str;
102         str.resize(size);
103         ret = fread(&str[0], size, 1, fp);
104         if (ret == -1) {
105                 perror("fread");
106                 exit(1);
107         }
108         if (ret == 0) {
109                 fprintf(stderr, "Short read when trying to read %d bytes from %s\n",
110                                 size, filename.c_str());
111                 exit(1);
112         }
113         fclose(fp);
114
115         return str;
116 }
117
118
119 GLuint compile_shader(const string &shader_src, GLenum type)
120 {
121         GLuint obj = glCreateShader(type);
122         const GLchar* source[] = { shader_src.data() };
123         const GLint length[] = { (GLint)shader_src.size() };
124         glShaderSource(obj, 1, source, length);
125         glCompileShader(obj);
126
127         GLchar info_log[4096];
128         GLsizei log_length = sizeof(info_log) - 1;
129         glGetShaderInfoLog(obj, log_length, &log_length, info_log);
130         info_log[log_length] = 0;
131         if (strlen(info_log) > 0) {
132                 fprintf(stderr, "Shader compile log: %s\n", info_log);
133         }
134
135         GLint status;
136         glGetShaderiv(obj, GL_COMPILE_STATUS, &status);
137         if (status == GL_FALSE) {
138                 // Add some line numbers to easier identify compile errors.
139                 string src_with_lines = "/*   1 */ ";
140                 size_t lineno = 1;
141                 for (char ch : shader_src) {
142                         src_with_lines.push_back(ch);
143                         if (ch == '\n') {
144                                 char buf[32];
145                                 snprintf(buf, sizeof(buf), "/* %3zu */ ", ++lineno);
146                                 src_with_lines += buf;
147                         }
148                 }
149
150                 fprintf(stderr, "Failed to compile shader:\n%s\n", src_with_lines.c_str());
151                 exit(1);
152         }
153
154         return obj;
155 }
156
157 enum MipmapPolicy {
158         WITHOUT_MIPMAPS,
159         WITH_MIPMAPS
160 };
161
162 GLuint load_texture(const char *filename, unsigned *width_ret, unsigned *height_ret, MipmapPolicy mipmaps)
163 {
164         SDL_Surface *surf = IMG_Load(filename);
165         if (surf == nullptr) {
166                 fprintf(stderr, "IMG_Load(%s): %s\n", filename, IMG_GetError());
167                 exit(1);
168         }
169
170         // For whatever reason, SDL doesn't support converting to YUV surfaces
171         // nor grayscale, so we'll do it ourselves.
172         SDL_Surface *rgb_surf = SDL_ConvertSurfaceFormat(surf, SDL_PIXELFORMAT_RGBA32, /*flags=*/0);
173         if (rgb_surf == nullptr) {
174                 fprintf(stderr, "SDL_ConvertSurfaceFormat(%s): %s\n", filename, SDL_GetError());
175                 exit(1);
176         }
177
178         SDL_FreeSurface(surf);
179
180         unsigned width = rgb_surf->w, height = rgb_surf->h;
181         const uint8_t *sptr = (uint8_t *)rgb_surf->pixels;
182         unique_ptr<uint8_t[]> pix(new uint8_t[width * height * 4]);
183
184         // Extract the Y component, and convert to bottom-left origin.
185         for (unsigned y = 0; y < height; ++y) {
186                 unsigned y2 = height - 1 - y;
187                 memcpy(pix.get() + y * width * 4, sptr + y2 * rgb_surf->pitch, width * 4);
188         }
189         SDL_FreeSurface(rgb_surf);
190
191         int num_levels = (mipmaps == WITH_MIPMAPS) ? find_num_levels(width, height) : 1;
192
193         GLuint tex;
194         glCreateTextures(GL_TEXTURE_2D, 1, &tex);
195         glTextureStorage2D(tex, num_levels, GL_RGBA8, width, height);
196         glTextureSubImage2D(tex, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pix.get());
197
198         if (mipmaps == WITH_MIPMAPS) {
199                 glGenerateTextureMipmap(tex);
200         }
201
202         *width_ret = width;
203         *height_ret = height;
204
205         return tex;
206 }
207
208 GLuint link_program(GLuint vs_obj, GLuint fs_obj)
209 {
210         GLuint program = glCreateProgram();
211         glAttachShader(program, vs_obj);
212         glAttachShader(program, fs_obj);
213         glLinkProgram(program);
214         GLint success;
215         glGetProgramiv(program, GL_LINK_STATUS, &success);
216         if (success == GL_FALSE) {
217                 GLchar error_log[1024] = {0};
218                 glGetProgramInfoLog(program, 1024, nullptr, error_log);
219                 fprintf(stderr, "Error linking program: %s\n", error_log);
220                 exit(1);
221         }
222         return program;
223 }
224
225 void bind_sampler(GLuint program, GLint location, GLuint texture_unit, GLuint tex, GLuint sampler)
226 {
227         if (location == -1) {
228                 return;
229         }
230
231         glBindTextureUnit(texture_unit, tex);
232         glBindSampler(texture_unit, sampler);
233         glProgramUniform1i(program, location, texture_unit);
234 }
235
236 // A class that caches FBOs that render to a given set of textures.
237 // It never frees anything, so it is only suitable for rendering to
238 // the same (small) set of textures over and over again.
239 template<size_t num_elements>
240 class PersistentFBOSet {
241 public:
242         void render_to(const array<GLuint, num_elements> &textures);
243
244         // Convenience wrappers.
245         void render_to(GLuint texture0) {
246                 render_to({{texture0}});
247         }
248
249         void render_to(GLuint texture0, GLuint texture1) {
250                 render_to({{texture0, texture1}});
251         }
252
253         void render_to(GLuint texture0, GLuint texture1, GLuint texture2) {
254                 render_to({{texture0, texture1, texture2}});
255         }
256
257         void render_to(GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
258                 render_to({{texture0, texture1, texture2, texture3}});
259         }
260
261 private:
262         // TODO: Delete these on destruction.
263         map<array<GLuint, num_elements>, GLuint> fbos;
264 };
265
266 template<size_t num_elements>
267 void PersistentFBOSet<num_elements>::render_to(const array<GLuint, num_elements> &textures)
268 {
269         auto it = fbos.find(textures);
270         if (it != fbos.end()) {
271                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
272                 return;
273         }
274
275         GLuint fbo;
276         glCreateFramebuffers(1, &fbo);
277         GLenum bufs[num_elements];
278         for (size_t i = 0; i < num_elements; ++i) {
279                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
280                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
281         }
282         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
283
284         fbos[textures] = fbo;
285         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
286 }
287
288 // Same, but with a depth texture.
289 template<size_t num_elements>
290 class PersistentFBOSetWithDepth {
291 public:
292         void render_to(GLuint depth_tex, const array<GLuint, num_elements> &textures);
293
294         // Convenience wrappers.
295         void render_to(GLuint depth_tex, GLuint texture0) {
296                 render_to(depth_tex, {{texture0}});
297         }
298
299         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1) {
300                 render_to(depth_tex, {{texture0, texture1}});
301         }
302
303         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1, GLuint texture2) {
304                 render_to(depth_tex, {{texture0, texture1, texture2}});
305         }
306
307         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
308                 render_to(depth_tex, {{texture0, texture1, texture2, texture3}});
309         }
310
311 private:
312         // TODO: Delete these on destruction.
313         map<pair<GLuint, array<GLuint, num_elements>>, GLuint> fbos;
314 };
315
316 template<size_t num_elements>
317 void PersistentFBOSetWithDepth<num_elements>::render_to(GLuint depth_tex, const array<GLuint, num_elements> &textures)
318 {
319         auto key = make_pair(depth_tex, textures);
320
321         auto it = fbos.find(key);
322         if (it != fbos.end()) {
323                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
324                 return;
325         }
326
327         GLuint fbo;
328         glCreateFramebuffers(1, &fbo);
329         GLenum bufs[num_elements];
330         glNamedFramebufferTexture(fbo, GL_DEPTH_ATTACHMENT, depth_tex, 0);
331         for (size_t i = 0; i < num_elements; ++i) {
332                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
333                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
334         }
335         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
336
337         fbos[key] = fbo;
338         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
339 }
340
341 // Convert RGB to grayscale, using Rec. 709 coefficients.
342 class GrayscaleConversion {
343 public:
344         GrayscaleConversion();
345         void exec(GLint tex, GLint gray_tex, int width, int height);
346
347 private:
348         PersistentFBOSet<1> fbos;
349         GLuint gray_vs_obj;
350         GLuint gray_fs_obj;
351         GLuint gray_program;
352         GLuint gray_vao;
353
354         GLuint uniform_tex;
355 };
356
357 GrayscaleConversion::GrayscaleConversion()
358 {
359         gray_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
360         gray_fs_obj = compile_shader(read_file("gray.frag"), GL_FRAGMENT_SHADER);
361         gray_program = link_program(gray_vs_obj, gray_fs_obj);
362
363         // Set up the VAO containing all the required position/texcoord data.
364         glCreateVertexArrays(1, &gray_vao);
365         glBindVertexArray(gray_vao);
366
367         GLint position_attrib = glGetAttribLocation(gray_program, "position");
368         glEnableVertexArrayAttrib(gray_vao, position_attrib);
369         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
370
371         uniform_tex = glGetUniformLocation(gray_program, "tex");
372 }
373
374 void GrayscaleConversion::exec(GLint tex, GLint gray_tex, int width, int height)
375 {
376         glUseProgram(gray_program);
377         bind_sampler(gray_program, uniform_tex, 0, tex, nearest_sampler);
378
379         glViewport(0, 0, width, height);
380         fbos.render_to(gray_tex);
381         glBindVertexArray(gray_vao);
382         glDisable(GL_BLEND);
383         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
384 }
385
386 // Compute gradients in every point, used for the motion search.
387 // The DIS paper doesn't actually mention how these are computed,
388 // but seemingly, a 3x3 Sobel operator is used here (at least in
389 // later versions of the code), while a [1 -8 0 8 -1] kernel is
390 // used for all the derivatives in the variational refinement part
391 // (which borrows code from DeepFlow). This is inconsistent,
392 // but I guess we're better off with staying with the original
393 // decisions until we actually know having different ones would be better.
394 class Sobel {
395 public:
396         Sobel();
397         void exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height);
398
399 private:
400         PersistentFBOSet<1> fbos;
401         GLuint sobel_vs_obj;
402         GLuint sobel_fs_obj;
403         GLuint sobel_program;
404
405         GLuint uniform_tex;
406 };
407
408 Sobel::Sobel()
409 {
410         sobel_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
411         sobel_fs_obj = compile_shader(read_file("sobel.frag"), GL_FRAGMENT_SHADER);
412         sobel_program = link_program(sobel_vs_obj, sobel_fs_obj);
413
414         uniform_tex = glGetUniformLocation(sobel_program, "tex");
415 }
416
417 void Sobel::exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height)
418 {
419         glUseProgram(sobel_program);
420         bind_sampler(sobel_program, uniform_tex, 0, tex0_view, nearest_sampler);
421
422         glViewport(0, 0, level_width, level_height);
423         fbos.render_to(grad0_tex);
424         glDisable(GL_BLEND);
425         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
426 }
427
428 // Motion search to find the initial flow. See motion_search.frag for documentation.
429 class MotionSearch {
430 public:
431         MotionSearch();
432         void exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches);
433
434 private:
435         PersistentFBOSet<1> fbos;
436
437         GLuint motion_vs_obj;
438         GLuint motion_fs_obj;
439         GLuint motion_search_program;
440
441         GLuint uniform_inv_image_size, uniform_inv_prev_level_size;
442         GLuint uniform_image0_tex, uniform_image1_tex, uniform_grad0_tex, uniform_flow_tex;
443 };
444
445 MotionSearch::MotionSearch()
446 {
447         motion_vs_obj = compile_shader(read_file("motion_search.vert"), GL_VERTEX_SHADER);
448         motion_fs_obj = compile_shader(read_file("motion_search.frag"), GL_FRAGMENT_SHADER);
449         motion_search_program = link_program(motion_vs_obj, motion_fs_obj);
450
451         uniform_inv_image_size = glGetUniformLocation(motion_search_program, "inv_image_size");
452         uniform_inv_prev_level_size = glGetUniformLocation(motion_search_program, "inv_prev_level_size");
453         uniform_image0_tex = glGetUniformLocation(motion_search_program, "image0_tex");
454         uniform_image1_tex = glGetUniformLocation(motion_search_program, "image1_tex");
455         uniform_grad0_tex = glGetUniformLocation(motion_search_program, "grad0_tex");
456         uniform_flow_tex = glGetUniformLocation(motion_search_program, "flow_tex");
457 }
458
459 void MotionSearch::exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches)
460 {
461         glUseProgram(motion_search_program);
462
463         bind_sampler(motion_search_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
464         bind_sampler(motion_search_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
465         bind_sampler(motion_search_program, uniform_grad0_tex, 2, grad0_tex, zero_border_sampler);
466         bind_sampler(motion_search_program, uniform_flow_tex, 3, flow_tex, linear_sampler);
467
468         glProgramUniform2f(motion_search_program, uniform_inv_image_size, 1.0f / level_width, 1.0f / level_height);
469         glProgramUniform2f(motion_search_program, uniform_inv_prev_level_size, 1.0f / prev_level_width, 1.0f / prev_level_height);
470
471         glViewport(0, 0, width_patches, height_patches);
472         fbos.render_to(flow_out_tex);
473         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
474 }
475
476 // Do “densification”, ie., upsampling of the flow patches to the flow field
477 // (the same size as the image at this level). We draw one quad per patch
478 // over its entire covered area (using instancing in the vertex shader),
479 // and then weight the contributions in the pixel shader by post-warp difference.
480 // This is equation (3) in the paper.
481 //
482 // We accumulate the flow vectors in the R/G channels (for u/v) and the total
483 // weight in the B channel. Dividing R and G by B gives the normalized values.
484 class Densify {
485 public:
486         Densify();
487         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches);
488
489 private:
490         PersistentFBOSet<1> fbos;
491
492         GLuint densify_vs_obj;
493         GLuint densify_fs_obj;
494         GLuint densify_program;
495
496         GLuint uniform_patch_size;
497         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
498 };
499
500 Densify::Densify()
501 {
502         densify_vs_obj = compile_shader(read_file("densify.vert"), GL_VERTEX_SHADER);
503         densify_fs_obj = compile_shader(read_file("densify.frag"), GL_FRAGMENT_SHADER);
504         densify_program = link_program(densify_vs_obj, densify_fs_obj);
505
506         uniform_patch_size = glGetUniformLocation(densify_program, "patch_size");
507         uniform_image0_tex = glGetUniformLocation(densify_program, "image0_tex");
508         uniform_image1_tex = glGetUniformLocation(densify_program, "image1_tex");
509         uniform_flow_tex = glGetUniformLocation(densify_program, "flow_tex");
510 }
511
512 void Densify::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches)
513 {
514         glUseProgram(densify_program);
515
516         bind_sampler(densify_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
517         bind_sampler(densify_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
518         bind_sampler(densify_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
519
520         glProgramUniform2f(densify_program, uniform_patch_size,
521                 float(patch_size_pixels) / level_width,
522                 float(patch_size_pixels) / level_height);
523
524         glViewport(0, 0, level_width, level_height);
525         glEnable(GL_BLEND);
526         glBlendFunc(GL_ONE, GL_ONE);
527         fbos.render_to(dense_flow_tex);
528         glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
529         glClear(GL_COLOR_BUFFER_BIT);
530         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width_patches * height_patches);
531 }
532
533 // Warp I_1 to I_w, and then compute the mean (I) and difference (I_t) of
534 // I_0 and I_w. The prewarping is what enables us to solve the variational
535 // flow for du,dv instead of u,v.
536 //
537 // Also calculates the normalized flow, ie. divides by z (this is needed because
538 // Densify works by additive blending) and multiplies by the image size.
539 //
540 // See variational_refinement.txt for more information.
541 class Prewarp {
542 public:
543         Prewarp();
544         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint normalized_flow_tex, GLuint I_tex, GLuint I_t_tex, int level_width, int level_height);
545
546 private:
547         PersistentFBOSet<3> fbos;
548
549         GLuint prewarp_vs_obj;
550         GLuint prewarp_fs_obj;
551         GLuint prewarp_program;
552
553         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
554 };
555
556 Prewarp::Prewarp()
557 {
558         prewarp_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
559         prewarp_fs_obj = compile_shader(read_file("prewarp.frag"), GL_FRAGMENT_SHADER);
560         prewarp_program = link_program(prewarp_vs_obj, prewarp_fs_obj);
561
562         uniform_image0_tex = glGetUniformLocation(prewarp_program, "image0_tex");
563         uniform_image1_tex = glGetUniformLocation(prewarp_program, "image1_tex");
564         uniform_flow_tex = glGetUniformLocation(prewarp_program, "flow_tex");
565 }
566
567 void Prewarp::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint I_tex, GLuint I_t_tex, GLuint normalized_flow_tex, int level_width, int level_height)
568 {
569         glUseProgram(prewarp_program);
570
571         bind_sampler(prewarp_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
572         bind_sampler(prewarp_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
573         bind_sampler(prewarp_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
574
575         glViewport(0, 0, level_width, level_height);
576         glDisable(GL_BLEND);
577         fbos.render_to(I_tex, I_t_tex, normalized_flow_tex);
578         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
579 }
580
581 // From I, calculate the partial derivatives I_x and I_y. We use a four-tap
582 // central difference filter, since apparently, that's tradition (I haven't
583 // measured quality versus a more normal 0.5 (I[x+1] - I[x-1]).)
584 // The coefficients come from
585 //
586 //   https://en.wikipedia.org/wiki/Finite_difference_coefficient
587 //
588 // Also computes β_0, since it depends only on I_x and I_y.
589 class Derivatives {
590 public:
591         Derivatives();
592         void exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height);
593
594 private:
595         PersistentFBOSet<2> fbos;
596
597         GLuint derivatives_vs_obj;
598         GLuint derivatives_fs_obj;
599         GLuint derivatives_program;
600
601         GLuint uniform_tex;
602 };
603
604 Derivatives::Derivatives()
605 {
606         derivatives_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
607         derivatives_fs_obj = compile_shader(read_file("derivatives.frag"), GL_FRAGMENT_SHADER);
608         derivatives_program = link_program(derivatives_vs_obj, derivatives_fs_obj);
609
610         uniform_tex = glGetUniformLocation(derivatives_program, "tex");
611 }
612
613 void Derivatives::exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height)
614 {
615         glUseProgram(derivatives_program);
616
617         bind_sampler(derivatives_program, uniform_tex, 0, input_tex, nearest_sampler);
618
619         glViewport(0, 0, level_width, level_height);
620         glDisable(GL_BLEND);
621         fbos.render_to(I_x_y_tex, beta_0_tex);
622         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
623 }
624
625 // Calculate the diffusivity for each pixels, g(x,y). Smoothness (s) will
626 // be calculated in the shaders on-the-fly by sampling in-between two
627 // neighboring g(x,y) pixels, plus a border tweak to make sure we get
628 // zero smoothness at the border.
629 //
630 // See variational_refinement.txt for more information.
631 class ComputeDiffusivity {
632 public:
633         ComputeDiffusivity();
634         void exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow);
635
636 private:
637         PersistentFBOSet<1> fbos;
638
639         GLuint diffusivity_vs_obj;
640         GLuint diffusivity_fs_obj;
641         GLuint diffusivity_program;
642
643         GLuint uniform_flow_tex, uniform_diff_flow_tex;
644         GLuint uniform_alpha, uniform_zero_diff_flow;
645 };
646
647 ComputeDiffusivity::ComputeDiffusivity()
648 {
649         diffusivity_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
650         diffusivity_fs_obj = compile_shader(read_file("diffusivity.frag"), GL_FRAGMENT_SHADER);
651         diffusivity_program = link_program(diffusivity_vs_obj, diffusivity_fs_obj);
652
653         uniform_flow_tex = glGetUniformLocation(diffusivity_program, "flow_tex");
654         uniform_diff_flow_tex = glGetUniformLocation(diffusivity_program, "diff_flow_tex");
655         uniform_alpha = glGetUniformLocation(diffusivity_program, "alpha");
656         uniform_zero_diff_flow = glGetUniformLocation(diffusivity_program, "zero_diff_flow");
657 }
658
659 void ComputeDiffusivity::exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow)
660 {
661         glUseProgram(diffusivity_program);
662
663         bind_sampler(diffusivity_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
664         bind_sampler(diffusivity_program, uniform_diff_flow_tex, 1, diff_flow_tex, nearest_sampler);
665         glProgramUniform1f(diffusivity_program, uniform_alpha, vr_alpha);
666         glProgramUniform1i(diffusivity_program, uniform_zero_diff_flow, zero_diff_flow);
667
668         glViewport(0, 0, level_width, level_height);
669
670         glDisable(GL_BLEND);
671         fbos.render_to(diffusivity_tex);
672         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
673 }
674
675 // Set up the equations set (two equations in two unknowns, per pixel).
676 // We store five floats; the three non-redundant elements of the 2x2 matrix (A)
677 // as 32-bit floats, and the two elements on the right-hand side (b) as 16-bit
678 // floats. (Actually, we store the inverse of the diagonal elements, because
679 // we only ever need to divide by them.) This fits into four u32 values;
680 // R, G, B for the matrix (the last element is symmetric) and A for the two b values.
681 // All the values of the energy term (E_I, E_G, E_S), except the smoothness
682 // terms that depend on other pixels, are calculated in one pass.
683 //
684 // See variational_refinement.txt for more information.
685 class SetupEquations {
686 public:
687         SetupEquations();
688         void exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_tex, int level_width, int level_height, bool zero_diff_flow);
689
690 private:
691         PersistentFBOSet<1> fbos;
692
693         GLuint equations_vs_obj;
694         GLuint equations_fs_obj;
695         GLuint equations_program;
696
697         GLuint uniform_I_x_y_tex, uniform_I_t_tex;
698         GLuint uniform_diff_flow_tex, uniform_base_flow_tex;
699         GLuint uniform_beta_0_tex;
700         GLuint uniform_diffusivity_tex;
701         GLuint uniform_gamma, uniform_delta, uniform_zero_diff_flow;
702 };
703
704 SetupEquations::SetupEquations()
705 {
706         equations_vs_obj = compile_shader(read_file("equations.vert"), GL_VERTEX_SHADER);
707         equations_fs_obj = compile_shader(read_file("equations.frag"), GL_FRAGMENT_SHADER);
708         equations_program = link_program(equations_vs_obj, equations_fs_obj);
709
710         uniform_I_x_y_tex = glGetUniformLocation(equations_program, "I_x_y_tex");
711         uniform_I_t_tex = glGetUniformLocation(equations_program, "I_t_tex");
712         uniform_diff_flow_tex = glGetUniformLocation(equations_program, "diff_flow_tex");
713         uniform_base_flow_tex = glGetUniformLocation(equations_program, "base_flow_tex");
714         uniform_beta_0_tex = glGetUniformLocation(equations_program, "beta_0_tex");
715         uniform_diffusivity_tex = glGetUniformLocation(equations_program, "diffusivity_tex");
716         uniform_gamma = glGetUniformLocation(equations_program, "gamma");
717         uniform_delta = glGetUniformLocation(equations_program, "delta");
718         uniform_zero_diff_flow = glGetUniformLocation(equations_program, "zero_diff_flow");
719 }
720
721 void SetupEquations::exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint base_flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_tex, int level_width, int level_height, bool zero_diff_flow)
722 {
723         glUseProgram(equations_program);
724
725         bind_sampler(equations_program, uniform_I_x_y_tex, 0, I_x_y_tex, nearest_sampler);
726         bind_sampler(equations_program, uniform_I_t_tex, 1, I_t_tex, nearest_sampler);
727         bind_sampler(equations_program, uniform_diff_flow_tex, 2, diff_flow_tex, nearest_sampler);
728         bind_sampler(equations_program, uniform_base_flow_tex, 3, base_flow_tex, nearest_sampler);
729         bind_sampler(equations_program, uniform_beta_0_tex, 4, beta_0_tex, nearest_sampler);
730         bind_sampler(equations_program, uniform_diffusivity_tex, 5, diffusivity_tex, zero_border_sampler);
731         glProgramUniform1f(equations_program, uniform_delta, vr_delta);
732         glProgramUniform1f(equations_program, uniform_gamma, vr_gamma);
733         glProgramUniform1i(equations_program, uniform_zero_diff_flow, zero_diff_flow);
734
735         glViewport(0, 0, level_width, level_height);
736         glDisable(GL_BLEND);
737         fbos.render_to(equation_tex);
738         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
739 }
740
741 // Actually solve the equation sets made by SetupEquations, by means of
742 // successive over-relaxation (SOR).
743 //
744 // See variational_refinement.txt for more information.
745 class SOR {
746 public:
747         SOR();
748         void exec(GLuint diff_flow_tex, GLuint equation_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, ScopedTimer *sor_timer);
749
750 private:
751         PersistentFBOSet<1> fbos;
752
753         GLuint sor_vs_obj;
754         GLuint sor_fs_obj;
755         GLuint sor_program;
756
757         GLuint uniform_diff_flow_tex;
758         GLuint uniform_equation_tex;
759         GLuint uniform_diffusivity_tex;
760         GLuint uniform_phase, uniform_zero_diff_flow;
761 };
762
763 SOR::SOR()
764 {
765         sor_vs_obj = compile_shader(read_file("sor.vert"), GL_VERTEX_SHADER);
766         sor_fs_obj = compile_shader(read_file("sor.frag"), GL_FRAGMENT_SHADER);
767         sor_program = link_program(sor_vs_obj, sor_fs_obj);
768
769         uniform_diff_flow_tex = glGetUniformLocation(sor_program, "diff_flow_tex");
770         uniform_equation_tex = glGetUniformLocation(sor_program, "equation_tex");
771         uniform_diffusivity_tex = glGetUniformLocation(sor_program, "diffusivity_tex");
772         uniform_phase = glGetUniformLocation(sor_program, "phase");
773         uniform_zero_diff_flow = glGetUniformLocation(sor_program, "zero_diff_flow");
774 }
775
776 void SOR::exec(GLuint diff_flow_tex, GLuint equation_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, ScopedTimer *sor_timer)
777 {
778         glUseProgram(sor_program);
779
780         bind_sampler(sor_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
781         bind_sampler(sor_program, uniform_diffusivity_tex, 1, diffusivity_tex, zero_border_sampler);
782         bind_sampler(sor_program, uniform_equation_tex, 2, equation_tex, nearest_sampler);
783
784         glProgramUniform1i(sor_program, uniform_zero_diff_flow, zero_diff_flow);
785
786         // NOTE: We bind to the texture we are rendering from, but we never write any value
787         // that we read in the same shader pass (we call discard for red values when we compute
788         // black, and vice versa), and we have barriers between the passes, so we're fine
789         // as per the spec.
790         glViewport(0, 0, level_width, level_height);
791         glDisable(GL_BLEND);
792         fbos.render_to(diff_flow_tex);
793
794         for (int i = 0; i < num_iterations; ++i) {
795                 {
796                         ScopedTimer timer("Red pass", sor_timer);
797                         glProgramUniform1i(sor_program, uniform_phase, 0);
798                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
799                         glTextureBarrier();
800                 }
801                 {
802                         ScopedTimer timer("Black pass", sor_timer);
803                         if (zero_diff_flow && i == 0) {
804                                 // Not zero anymore.
805                                 glProgramUniform1i(sor_program, uniform_zero_diff_flow, 0);
806                         }
807                         glProgramUniform1i(sor_program, uniform_phase, 1);
808                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
809                         if (i != num_iterations - 1) {
810                                 glTextureBarrier();
811                         }
812                 }
813         }
814 }
815
816 // Simply add the differential flow found by the variational refinement to the base flow.
817 // The output is in base_flow_tex; we don't need to make a new texture.
818 class AddBaseFlow {
819 public:
820         AddBaseFlow();
821         void exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height);
822
823 private:
824         PersistentFBOSet<1> fbos;
825
826         GLuint add_flow_vs_obj;
827         GLuint add_flow_fs_obj;
828         GLuint add_flow_program;
829
830         GLuint uniform_diff_flow_tex;
831 };
832
833 AddBaseFlow::AddBaseFlow()
834 {
835         add_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
836         add_flow_fs_obj = compile_shader(read_file("add_base_flow.frag"), GL_FRAGMENT_SHADER);
837         add_flow_program = link_program(add_flow_vs_obj, add_flow_fs_obj);
838
839         uniform_diff_flow_tex = glGetUniformLocation(add_flow_program, "diff_flow_tex");
840 }
841
842 void AddBaseFlow::exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height)
843 {
844         glUseProgram(add_flow_program);
845
846         bind_sampler(add_flow_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
847
848         glViewport(0, 0, level_width, level_height);
849         glEnable(GL_BLEND);
850         glBlendFunc(GL_ONE, GL_ONE);
851         fbos.render_to(base_flow_tex);
852
853         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
854 }
855
856 // Take a copy of the flow, bilinearly interpolated and scaled up.
857 class ResizeFlow {
858 public:
859         ResizeFlow();
860         void exec(GLuint in_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height);
861
862 private:
863         PersistentFBOSet<1> fbos;
864
865         GLuint resize_flow_vs_obj;
866         GLuint resize_flow_fs_obj;
867         GLuint resize_flow_program;
868
869         GLuint uniform_flow_tex;
870         GLuint uniform_scale_factor;
871 };
872
873 ResizeFlow::ResizeFlow()
874 {
875         resize_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
876         resize_flow_fs_obj = compile_shader(read_file("resize_flow.frag"), GL_FRAGMENT_SHADER);
877         resize_flow_program = link_program(resize_flow_vs_obj, resize_flow_fs_obj);
878
879         uniform_flow_tex = glGetUniformLocation(resize_flow_program, "flow_tex");
880         uniform_scale_factor = glGetUniformLocation(resize_flow_program, "scale_factor");
881 }
882
883 void ResizeFlow::exec(GLuint flow_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height)
884 {
885         glUseProgram(resize_flow_program);
886
887         bind_sampler(resize_flow_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
888
889         glProgramUniform2f(resize_flow_program, uniform_scale_factor, float(output_width) / input_width, float(output_height) / input_height);
890
891         glViewport(0, 0, output_width, output_height);
892         glDisable(GL_BLEND);
893         fbos.render_to(out_tex);
894
895         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
896 }
897
898 class TexturePool {
899 public:
900         GLuint get_texture(GLenum format, GLuint width, GLuint height);
901         void release_texture(GLuint tex_num);
902
903 private:
904         struct Texture {
905                 GLuint tex_num;
906                 GLenum format;
907                 GLuint width, height;
908                 bool in_use = false;
909         };
910         vector<Texture> textures;
911 };
912
913 class DISComputeFlow {
914 public:
915         DISComputeFlow(int width, int height);
916
917         enum ResizeStrategy {
918                 DO_NOT_RESIZE_FLOW,
919                 RESIZE_FLOW_TO_FULL_SIZE
920         };
921
922         // Returns a texture that must be released with release_texture()
923         // after use.
924         GLuint exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy);
925
926         void release_texture(GLuint tex) {
927                 pool.release_texture(tex);
928         }
929
930 private:
931         int width, height;
932         GLuint initial_flow_tex;
933         GLuint vertex_vbo, vao;
934         TexturePool pool;
935
936         // The various passes.
937         Sobel sobel;
938         MotionSearch motion_search;
939         Densify densify;
940         Prewarp prewarp;
941         Derivatives derivatives;
942         ComputeDiffusivity compute_diffusivity;
943         SetupEquations setup_equations;
944         SOR sor;
945         AddBaseFlow add_base_flow;
946         ResizeFlow resize_flow;
947 };
948
949 DISComputeFlow::DISComputeFlow(int width, int height)
950         : width(width), height(height)
951 {
952         // Make some samplers.
953         glCreateSamplers(1, &nearest_sampler);
954         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
955         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
956         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
957         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
958
959         glCreateSamplers(1, &linear_sampler);
960         glSamplerParameteri(linear_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
961         glSamplerParameteri(linear_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
962         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
963         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
964
965         // The smoothness is sampled so that once we get to a smoothness involving
966         // a value outside the border, the diffusivity between the two becomes zero.
967         // Similarly, gradients are zero outside the border, since the edge is taken
968         // to be constant.
969         glCreateSamplers(1, &zero_border_sampler);
970         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
971         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
972         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
973         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
974         float zero[] = { 0.0f, 0.0f, 0.0f, 0.0f };  // Note that zero alpha means we can also see whether we sampled outside the border or not.
975         glSamplerParameterfv(zero_border_sampler, GL_TEXTURE_BORDER_COLOR, zero);
976
977         // Initial flow is zero, 1x1.
978         glCreateTextures(GL_TEXTURE_2D, 1, &initial_flow_tex);
979         glTextureStorage2D(initial_flow_tex, 1, GL_RG16F, 1, 1);
980         glClearTexImage(initial_flow_tex, 0, GL_RG, GL_FLOAT, nullptr);
981
982         // Set up the vertex data that will be shared between all passes.
983         float vertices[] = {
984                 0.0f, 1.0f,
985                 0.0f, 0.0f,
986                 1.0f, 1.0f,
987                 1.0f, 0.0f,
988         };
989         glCreateBuffers(1, &vertex_vbo);
990         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
991
992         glCreateVertexArrays(1, &vao);
993         glBindVertexArray(vao);
994         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
995
996         GLint position_attrib = 0;  // Hard-coded in every vertex shader.
997         glEnableVertexArrayAttrib(vao, position_attrib);
998         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
999 }
1000
1001 GLuint DISComputeFlow::exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy)
1002 {
1003         int prev_level_width = 1, prev_level_height = 1;
1004         GLuint prev_level_flow_tex = initial_flow_tex;
1005
1006         GPUTimers timers;
1007
1008         glBindVertexArray(vao);
1009
1010         ScopedTimer total_timer("Total", &timers);
1011         for (int level = coarsest_level; level >= int(finest_level); --level) {
1012                 char timer_name[256];
1013                 snprintf(timer_name, sizeof(timer_name), "Level %d (%d x %d)", level, width >> level, height >> level);
1014                 ScopedTimer level_timer(timer_name, &total_timer);
1015
1016                 int level_width = width >> level;
1017                 int level_height = height >> level;
1018                 float patch_spacing_pixels = patch_size_pixels * (1.0f - patch_overlap_ratio);
1019
1020                 // Make sure we have patches at least every Nth pixel, e.g. for width=9
1021                 // and patch_spacing=3 (the default), we put out patch centers in
1022                 // x=0, x=3, x=6, x=9, which is four patches. The fragment shader will
1023                 // lock all the centers to integer coordinates if needed.
1024                 int width_patches = 1 + ceil(level_width / patch_spacing_pixels);
1025                 int height_patches = 1 + ceil(level_height / patch_spacing_pixels);
1026
1027                 // Make sure we always read from the correct level; the chosen
1028                 // mipmapping could otherwise be rather unpredictable, especially
1029                 // during motion search.
1030                 GLuint tex0_view, tex1_view;
1031                 glGenTextures(1, &tex0_view);
1032                 glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_R8, level, 1, 0, 1);
1033                 glGenTextures(1, &tex1_view);
1034                 glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_R8, level, 1, 0, 1);
1035
1036                 // Create a new texture; we could be fancy and render use a multi-level
1037                 // texture, but meh.
1038                 GLuint grad0_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1039
1040                 // Find the derivative.
1041                 {
1042                         ScopedTimer timer("Sobel", &level_timer);
1043                         sobel.exec(tex0_view, grad0_tex, level_width, level_height);
1044                 }
1045
1046                 // Motion search to find the initial flow. We use the flow from the previous
1047                 // level (sampled bilinearly; no fancy tricks) as a guide, then search from there.
1048
1049                 // Create an output flow texture.
1050                 GLuint flow_out_tex = pool.get_texture(GL_RGB16F, width_patches, height_patches);
1051
1052                 // And draw.
1053                 {
1054                         ScopedTimer timer("Motion search", &level_timer);
1055                         motion_search.exec(tex0_view, tex1_view, grad0_tex, prev_level_flow_tex, flow_out_tex, level_width, level_height, prev_level_width, prev_level_height, width_patches, height_patches);
1056                 }
1057                 pool.release_texture(grad0_tex);
1058
1059                 // Densification.
1060
1061                 // Set up an output texture (cleared in Densify).
1062                 GLuint dense_flow_tex = pool.get_texture(GL_RGB16F, level_width, level_height);
1063
1064                 // And draw.
1065                 {
1066                         ScopedTimer timer("Densification", &level_timer);
1067                         densify.exec(tex0_view, tex1_view, flow_out_tex, dense_flow_tex, level_width, level_height, width_patches, height_patches);
1068                 }
1069                 pool.release_texture(flow_out_tex);
1070
1071                 // Everything below here in the loop belongs to variational refinement.
1072                 ScopedTimer varref_timer("Variational refinement", &level_timer);
1073
1074                 // Prewarping; create I and I_t, and a normalized base flow (so we don't
1075                 // have to normalize it over and over again, and also save some bandwidth).
1076                 //
1077                 // During the entire rest of the variational refinement, flow will be measured
1078                 // in pixels, not 0..1 normalized OpenGL texture coordinates.
1079                 // This is because variational refinement depends so heavily on derivatives,
1080                 // which are measured in intensity levels per pixel.
1081                 GLuint I_tex = pool.get_texture(GL_R16F, level_width, level_height);
1082                 GLuint I_t_tex = pool.get_texture(GL_R16F, level_width, level_height);
1083                 GLuint base_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1084                 {
1085                         ScopedTimer timer("Prewarping", &varref_timer);
1086                         prewarp.exec(tex0_view, tex1_view, dense_flow_tex, I_tex, I_t_tex, base_flow_tex, level_width, level_height);
1087                 }
1088                 pool.release_texture(dense_flow_tex);
1089                 glDeleteTextures(1, &tex0_view);
1090                 glDeleteTextures(1, &tex1_view);
1091
1092                 // Calculate I_x and I_y. We're only calculating first derivatives;
1093                 // the others will be taken on-the-fly in order to sample from fewer
1094                 // textures overall, since sampling from the L1 cache is cheap.
1095                 // (TODO: Verify that this is indeed faster than making separate
1096                 // double-derivative textures.)
1097                 GLuint I_x_y_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1098                 GLuint beta_0_tex = pool.get_texture(GL_R16F, level_width, level_height);
1099                 {
1100                         ScopedTimer timer("First derivatives", &varref_timer);
1101                         derivatives.exec(I_tex, I_x_y_tex, beta_0_tex, level_width, level_height);
1102                 }
1103                 pool.release_texture(I_tex);
1104
1105                 // We need somewhere to store du and dv (the flow increment, relative
1106                 // to the non-refined base flow u0 and v0). It's initially garbage,
1107                 // but not read until we've written something sane to it.
1108                 GLuint du_dv_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1109
1110                 // And for diffusivity.
1111                 GLuint diffusivity_tex = pool.get_texture(GL_R16F, level_width, level_height);
1112
1113                 // And finally for the equation set. See SetupEquations for
1114                 // the storage format.
1115                 GLuint equation_tex = pool.get_texture(GL_RGBA32UI, level_width, level_height);
1116
1117                 for (int outer_idx = 0; outer_idx < level + 1; ++outer_idx) {
1118                         // Calculate the diffusivity term for each pixel.
1119                         {
1120                                 ScopedTimer timer("Compute diffusivity", &varref_timer);
1121                                 compute_diffusivity.exec(base_flow_tex, du_dv_tex, diffusivity_tex, level_width, level_height, outer_idx == 0);
1122                         }
1123
1124                         // Set up the 2x2 equation system for each pixel.
1125                         {
1126                                 ScopedTimer timer("Set up equations", &varref_timer);
1127                                 setup_equations.exec(I_x_y_tex, I_t_tex, du_dv_tex, base_flow_tex, beta_0_tex, diffusivity_tex, equation_tex, level_width, level_height, outer_idx == 0);
1128                         }
1129
1130                         // Run a few SOR (or quasi-SOR, since we're not really Jacobi) iterations.
1131                         // Note that these are to/from the same texture.
1132                         {
1133                                 ScopedTimer timer("SOR", &varref_timer);
1134                                 sor.exec(du_dv_tex, equation_tex, diffusivity_tex, level_width, level_height, 5, outer_idx == 0, &timer);
1135                         }
1136                 }
1137
1138                 pool.release_texture(I_t_tex);
1139                 pool.release_texture(I_x_y_tex);
1140                 pool.release_texture(beta_0_tex);
1141                 pool.release_texture(diffusivity_tex);
1142                 pool.release_texture(equation_tex);
1143
1144                 // Add the differential flow found by the variational refinement to the base flow,
1145                 // giving the final flow estimate for this level.
1146                 // The output is in diff_flow_tex; we don't need to make a new texture.
1147                 //
1148                 // Disabling this doesn't save any time (although we could easily make it so that
1149                 // it is more efficient), but it helps debug the motion search.
1150                 if (enable_variational_refinement) {
1151                         ScopedTimer timer("Add differential flow", &varref_timer);
1152                         add_base_flow.exec(base_flow_tex, du_dv_tex, level_width, level_height);
1153                 }
1154                 pool.release_texture(du_dv_tex);
1155
1156                 if (prev_level_flow_tex != initial_flow_tex) {
1157                         pool.release_texture(prev_level_flow_tex);
1158                 }
1159                 prev_level_flow_tex = base_flow_tex;
1160                 prev_level_width = level_width;
1161                 prev_level_height = level_height;
1162         }
1163         total_timer.end();
1164
1165         timers.print();
1166
1167         // Scale up the flow to the final size (if needed).
1168         if (finest_level == 0 || resize_strategy == DO_NOT_RESIZE_FLOW) {
1169                 return prev_level_flow_tex;
1170         } else {
1171                 GLuint final_tex = pool.get_texture(GL_RG16F, width, height);
1172                 resize_flow.exec(prev_level_flow_tex, final_tex, prev_level_width, prev_level_height, width, height);
1173                 pool.release_texture(prev_level_flow_tex);
1174                 return final_tex;
1175         }
1176 }
1177
1178 // Forward-warp the flow half-way (or rather, by alpha). A non-zero “splatting”
1179 // radius fills most of the holes.
1180 class Splat {
1181 public:
1182         Splat();
1183
1184         // alpha is the time of the interpolated frame (0..1).
1185         void exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_tex, int width, int height, float alpha);
1186
1187 private:
1188         PersistentFBOSetWithDepth<1> fbos;
1189
1190         GLuint splat_vs_obj;
1191         GLuint splat_fs_obj;
1192         GLuint splat_program;
1193
1194         GLuint uniform_invert_flow, uniform_splat_size, uniform_alpha;
1195         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1196         GLuint uniform_inv_flow_size;
1197 };
1198
1199 Splat::Splat()
1200 {
1201         splat_vs_obj = compile_shader(read_file("splat.vert"), GL_VERTEX_SHADER);
1202         splat_fs_obj = compile_shader(read_file("splat.frag"), GL_FRAGMENT_SHADER);
1203         splat_program = link_program(splat_vs_obj, splat_fs_obj);
1204
1205         uniform_invert_flow = glGetUniformLocation(splat_program, "invert_flow");
1206         uniform_splat_size = glGetUniformLocation(splat_program, "splat_size");
1207         uniform_alpha = glGetUniformLocation(splat_program, "alpha");
1208         uniform_image0_tex = glGetUniformLocation(splat_program, "image0_tex");
1209         uniform_image1_tex = glGetUniformLocation(splat_program, "image1_tex");
1210         uniform_flow_tex = glGetUniformLocation(splat_program, "flow_tex");
1211         uniform_inv_flow_size = glGetUniformLocation(splat_program, "inv_flow_size");
1212 }
1213
1214 void Splat::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_tex, int width, int height, float alpha)
1215 {
1216         glUseProgram(splat_program);
1217
1218         bind_sampler(splat_program, uniform_image0_tex, 0, tex0, linear_sampler);
1219         bind_sampler(splat_program, uniform_image1_tex, 1, tex1, linear_sampler);
1220
1221         // FIXME: This is set to 1.0 right now so not to trigger Haswell's “PMA stall”.
1222         // Move to 2.0 later, or even 4.0.
1223         // (Since we have hole filling, it's not critical, but larger values seem to do
1224         // better than hole filling for large motion, blurs etc.)
1225         float splat_size = 1.0f;  // 4x4 splat means 16x overdraw, 2x2 splat means 4x overdraw.
1226         glProgramUniform2f(splat_program, uniform_splat_size, splat_size / width, splat_size / height);
1227         glProgramUniform1f(splat_program, uniform_alpha, alpha);
1228         glProgramUniform2f(splat_program, uniform_inv_flow_size, 1.0f / width, 1.0f / height);
1229
1230         glViewport(0, 0, width, height);
1231         glDisable(GL_BLEND);
1232         glEnable(GL_DEPTH_TEST);
1233         glDepthFunc(GL_LESS);  // We store the difference between I_0 and I_1, where less difference is good. (Default 1.0 is effectively +inf, which always loses.)
1234
1235         fbos.render_to(depth_tex, flow_tex);
1236
1237         // Evidently NVIDIA doesn't use fast clears for glClearTexImage, so clear now that
1238         // we've got it bound.
1239         glClearColor(1000.0f, 1000.0f, 0.0f, 1.0f);  // Invalid flow.
1240         glClearDepth(1.0f);  // Effectively infinity.
1241         glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
1242
1243         // Do forward splatting.
1244         bind_sampler(splat_program, uniform_flow_tex, 2, forward_flow_tex, nearest_sampler);
1245         glProgramUniform1i(splat_program, uniform_invert_flow, 0);
1246         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1247
1248         // Do backward splatting.
1249         bind_sampler(splat_program, uniform_flow_tex, 2, backward_flow_tex, nearest_sampler);
1250         glProgramUniform1i(splat_program, uniform_invert_flow, 1);
1251         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1252
1253         glDisable(GL_DEPTH_TEST);
1254 }
1255
1256 // Doing good and fast hole-filling on a GPU is nontrivial. We choose an option
1257 // that's fairly simple (given that most holes are really small) and also hopefully
1258 // cheap should the holes not be so small. Conceptually, we look for the first
1259 // non-hole to the left of us (ie., shoot a ray until we hit something), then
1260 // the first non-hole to the right of us, then up and down, and then average them
1261 // all together. It's going to create “stars” if the holes are big, but OK, that's
1262 // a tradeoff.
1263 //
1264 // Our implementation here is efficient assuming that the hierarchical Z-buffer is
1265 // on even for shaders that do discard (this typically kills early Z, but hopefully
1266 // not hierarchical Z); we set up Z so that only holes are written to, which means
1267 // that as soon as a hole is filled, the rasterizer should just skip it. Most of the
1268 // fullscreen quads should just be discarded outright, really.
1269 class HoleFill {
1270 public:
1271         HoleFill();
1272
1273         // Output will be in flow_tex, temp_tex[0, 1, 2], representing the filling
1274         // from the down, left, right and up, respectively. Use HoleBlend to merge
1275         // them into one.
1276         void exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height);
1277
1278 private:
1279         PersistentFBOSetWithDepth<1> fbos;
1280
1281         GLuint fill_vs_obj;
1282         GLuint fill_fs_obj;
1283         GLuint fill_program;
1284
1285         GLuint uniform_tex;
1286         GLuint uniform_z, uniform_sample_offset;
1287 };
1288
1289 HoleFill::HoleFill()
1290 {
1291         fill_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);
1292         fill_fs_obj = compile_shader(read_file("hole_fill.frag"), GL_FRAGMENT_SHADER);
1293         fill_program = link_program(fill_vs_obj, fill_fs_obj);
1294
1295         uniform_tex = glGetUniformLocation(fill_program, "tex");
1296         uniform_z = glGetUniformLocation(fill_program, "z");
1297         uniform_sample_offset = glGetUniformLocation(fill_program, "sample_offset");
1298 }
1299
1300 void HoleFill::exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height)
1301 {
1302         glUseProgram(fill_program);
1303
1304         bind_sampler(fill_program, uniform_tex, 0, flow_tex, nearest_sampler);
1305
1306         glProgramUniform1f(fill_program, uniform_z, 1.0f - 1.0f / 1024.0f);
1307
1308         glViewport(0, 0, width, height);
1309         glDisable(GL_BLEND);
1310         glEnable(GL_DEPTH_TEST);
1311         glDepthFunc(GL_LESS);  // Only update the values > 0.999f (ie., only invalid pixels).
1312
1313         fbos.render_to(depth_tex, flow_tex);  // NOTE: Reading and writing to the same texture.
1314
1315         // Fill holes from the left, by shifting 1, 2, 4, 8, etc. pixels to the right.
1316         for (int offs = 1; offs < width; offs *= 2) {
1317                 glProgramUniform2f(fill_program, uniform_sample_offset, -offs / float(width), 0.0f);
1318                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1319                 glTextureBarrier();
1320         }
1321         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[0], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1322
1323         // Similar to the right; adjust Z a bit down, so that we re-fill the pixels that
1324         // were overwritten in the last algorithm.
1325         glProgramUniform1f(fill_program, uniform_z, 1.0f - 2.0f / 1024.0f);
1326         for (int offs = 1; offs < width; offs *= 2) {
1327                 glProgramUniform2f(fill_program, uniform_sample_offset, offs / float(width), 0.0f);
1328                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1329                 glTextureBarrier();
1330         }
1331         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[1], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1332
1333         // Up.
1334         glProgramUniform1f(fill_program, uniform_z, 1.0f - 3.0f / 1024.0f);
1335         for (int offs = 1; offs < height; offs *= 2) {
1336                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, -offs / float(height));
1337                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1338                 glTextureBarrier();
1339         }
1340         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[2], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1341
1342         // Down.
1343         glProgramUniform1f(fill_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1344         for (int offs = 1; offs < height; offs *= 2) {
1345                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, offs / float(height));
1346                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1347                 glTextureBarrier();
1348         }
1349
1350         glDisable(GL_DEPTH_TEST);
1351 }
1352
1353 // Blend the four directions from HoleFill into one pixel, so that single-pixel
1354 // holes become the average of their four neighbors.
1355 class HoleBlend {
1356 public:
1357         HoleBlend();
1358
1359         void exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height);
1360
1361 private:
1362         PersistentFBOSetWithDepth<1> fbos;
1363
1364         GLuint blend_vs_obj;
1365         GLuint blend_fs_obj;
1366         GLuint blend_program;
1367
1368         GLuint uniform_left_tex, uniform_right_tex, uniform_up_tex, uniform_down_tex;
1369         GLuint uniform_z, uniform_sample_offset;
1370 };
1371
1372 HoleBlend::HoleBlend()
1373 {
1374         blend_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);  // Reuse the vertex shader from the fill.
1375         blend_fs_obj = compile_shader(read_file("hole_blend.frag"), GL_FRAGMENT_SHADER);
1376         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1377
1378         uniform_left_tex = glGetUniformLocation(blend_program, "left_tex");
1379         uniform_right_tex = glGetUniformLocation(blend_program, "right_tex");
1380         uniform_up_tex = glGetUniformLocation(blend_program, "up_tex");
1381         uniform_down_tex = glGetUniformLocation(blend_program, "down_tex");
1382         uniform_z = glGetUniformLocation(blend_program, "z");
1383         uniform_sample_offset = glGetUniformLocation(blend_program, "sample_offset");
1384 }
1385
1386 void HoleBlend::exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height)
1387 {
1388         glUseProgram(blend_program);
1389
1390         bind_sampler(blend_program, uniform_left_tex, 0, temp_tex[0], nearest_sampler);
1391         bind_sampler(blend_program, uniform_right_tex, 1, temp_tex[1], nearest_sampler);
1392         bind_sampler(blend_program, uniform_up_tex, 2, temp_tex[2], nearest_sampler);
1393         bind_sampler(blend_program, uniform_down_tex, 3, flow_tex, nearest_sampler);
1394
1395         glProgramUniform1f(blend_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1396         glProgramUniform2f(blend_program, uniform_sample_offset, 0.0f, 0.0f);
1397
1398         glViewport(0, 0, width, height);
1399         glDisable(GL_BLEND);
1400         glEnable(GL_DEPTH_TEST);
1401         glDepthFunc(GL_LEQUAL);  // Skip over all of the pixels that were never holes to begin with.
1402
1403         fbos.render_to(depth_tex, flow_tex);  // NOTE: Reading and writing to the same texture.
1404
1405         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1406
1407         glDisable(GL_DEPTH_TEST);
1408 }
1409
1410 class Blend {
1411 public:
1412         Blend();
1413         void exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int width, int height, float alpha);
1414
1415 private:
1416         PersistentFBOSet<1> fbos;
1417         GLuint blend_vs_obj;
1418         GLuint blend_fs_obj;
1419         GLuint blend_program;
1420
1421         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1422         GLuint uniform_alpha, uniform_flow_consistency_tolerance;
1423 };
1424
1425 Blend::Blend()
1426 {
1427         blend_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
1428         blend_fs_obj = compile_shader(read_file("blend.frag"), GL_FRAGMENT_SHADER);
1429         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1430
1431         uniform_image0_tex = glGetUniformLocation(blend_program, "image0_tex");
1432         uniform_image1_tex = glGetUniformLocation(blend_program, "image1_tex");
1433         uniform_flow_tex = glGetUniformLocation(blend_program, "flow_tex");
1434         uniform_alpha = glGetUniformLocation(blend_program, "alpha");
1435         uniform_flow_consistency_tolerance = glGetUniformLocation(blend_program, "flow_consistency_tolerance");
1436 }
1437
1438 void Blend::exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int level_width, int level_height, float alpha)
1439 {
1440         glUseProgram(blend_program);
1441         bind_sampler(blend_program, uniform_image0_tex, 0, tex0, linear_sampler);
1442         bind_sampler(blend_program, uniform_image1_tex, 1, tex1, linear_sampler);
1443         bind_sampler(blend_program, uniform_flow_tex, 2, flow_tex, linear_sampler);  // May be upsampled.
1444         glProgramUniform1f(blend_program, uniform_alpha, alpha);
1445
1446         glViewport(0, 0, level_width, level_height);
1447         fbos.render_to(output_tex);
1448         glDisable(GL_BLEND);  // A bit ironic, perhaps.
1449         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1450 }
1451
1452 class Interpolate {
1453 public:
1454         Interpolate(int width, int height, int flow_level);
1455
1456         // Returns a texture that must be released with release_texture()
1457         // after use. tex0 and tex1 must be RGBA8 textures with mipmaps
1458         // (unless flow_level == 0).
1459         GLuint exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha);
1460
1461         void release_texture(GLuint tex) {
1462                 pool.release_texture(tex);
1463         }
1464
1465 private:
1466         int width, height, flow_level;
1467         GLuint vertex_vbo, vao;
1468         TexturePool pool;
1469
1470         Splat splat;
1471         HoleFill hole_fill;
1472         HoleBlend hole_blend;
1473         Blend blend;
1474 };
1475
1476 Interpolate::Interpolate(int width, int height, int flow_level)
1477         : width(width), height(height), flow_level(flow_level) {
1478         // Set up the vertex data that will be shared between all passes.
1479         float vertices[] = {
1480                 0.0f, 1.0f,
1481                 0.0f, 0.0f,
1482                 1.0f, 1.0f,
1483                 1.0f, 0.0f,
1484         };
1485         glCreateBuffers(1, &vertex_vbo);
1486         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
1487
1488         glCreateVertexArrays(1, &vao);
1489         glBindVertexArray(vao);
1490         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1491
1492         GLint position_attrib = 0;  // Hard-coded in every vertex shader.
1493         glEnableVertexArrayAttrib(vao, position_attrib);
1494         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1495 }
1496
1497 GLuint Interpolate::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha)
1498 {
1499         GPUTimers timers;
1500
1501         ScopedTimer total_timer("Total", &timers);
1502
1503         glBindVertexArray(vao);
1504
1505         // Pick out the right level to test splatting results on.
1506         GLuint tex0_view, tex1_view;
1507         glGenTextures(1, &tex0_view);
1508         glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_RGBA8, flow_level, 1, 0, 1);
1509         glGenTextures(1, &tex1_view);
1510         glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_RGBA8, flow_level, 1, 0, 1);
1511
1512         int flow_width = width >> flow_level;
1513         int flow_height = height >> flow_level;
1514
1515         GLuint flow_tex = pool.get_texture(GL_RG16F, flow_width, flow_height);
1516         GLuint depth_tex = pool.get_texture(GL_DEPTH_COMPONENT32F, flow_width, flow_height);  // Used for ranking flows.
1517
1518         {
1519                 ScopedTimer timer("Splat", &total_timer);
1520                 splat.exec(tex0_view, tex1_view, forward_flow_tex, backward_flow_tex, flow_tex, depth_tex, flow_width, flow_height, alpha);
1521         }
1522         glDeleteTextures(1, &tex0_view);
1523         glDeleteTextures(1, &tex1_view);
1524
1525         GLuint temp_tex[3];
1526         temp_tex[0] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1527         temp_tex[1] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1528         temp_tex[2] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1529
1530         {
1531                 ScopedTimer timer("Fill holes", &total_timer);
1532                 hole_fill.exec(flow_tex, depth_tex, temp_tex, flow_width, flow_height);
1533                 hole_blend.exec(flow_tex, depth_tex, temp_tex, flow_width, flow_height);
1534         }
1535
1536         pool.release_texture(temp_tex[0]);
1537         pool.release_texture(temp_tex[1]);
1538         pool.release_texture(temp_tex[2]);
1539         pool.release_texture(depth_tex);
1540
1541         GLuint output_tex = pool.get_texture(GL_RGBA8, width, height);
1542         {
1543                 ScopedTimer timer("Blend", &total_timer);
1544                 blend.exec(tex0, tex1, flow_tex, output_tex, width, height, alpha);
1545         }
1546         pool.release_texture(flow_tex);
1547         total_timer.end();
1548         timers.print();
1549
1550         return output_tex;
1551 }
1552
1553 GLuint TexturePool::get_texture(GLenum format, GLuint width, GLuint height)
1554 {
1555         for (Texture &tex : textures) {
1556                 if (!tex.in_use && tex.format == format &&
1557                     tex.width == width && tex.height == height) {
1558                         tex.in_use = true;
1559                         return tex.tex_num;
1560                 }
1561         }
1562
1563         Texture tex;
1564         glCreateTextures(GL_TEXTURE_2D, 1, &tex.tex_num);
1565         glTextureStorage2D(tex.tex_num, 1, format, width, height);
1566         tex.format = format;
1567         tex.width = width;
1568         tex.height = height;
1569         tex.in_use = true;
1570         textures.push_back(tex);
1571         return tex.tex_num;
1572 }
1573
1574 void TexturePool::release_texture(GLuint tex_num)
1575 {
1576         for (Texture &tex : textures) {
1577                 if (tex.tex_num == tex_num) {
1578                         assert(tex.in_use);
1579                         tex.in_use = false;
1580                         return;
1581                 }
1582         }
1583         assert(false);
1584 }
1585
1586 // OpenGL uses a bottom-left coordinate system, .flo files use a top-left coordinate system.
1587 void flip_coordinate_system(float *dense_flow, unsigned width, unsigned height)
1588 {
1589         for (unsigned i = 0; i < width * height; ++i) {
1590                 dense_flow[i * 2 + 1] = -dense_flow[i * 2 + 1];
1591         }
1592 }
1593
1594 // Not relevant for RGB.
1595 void flip_coordinate_system(uint8_t *dense_flow, unsigned width, unsigned height)
1596 {
1597 }
1598
1599 void write_flow(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1600 {
1601         FILE *flowfp = fopen(filename, "wb");
1602         fprintf(flowfp, "FEIH");
1603         fwrite(&width, 4, 1, flowfp);
1604         fwrite(&height, 4, 1, flowfp);
1605         for (unsigned y = 0; y < height; ++y) {
1606                 int yy = height - y - 1;
1607                 fwrite(&dense_flow[yy * width * 2], width * 2 * sizeof(float), 1, flowfp);
1608         }
1609         fclose(flowfp);
1610 }
1611
1612 // Not relevant for RGB.
1613 void write_flow(const char *filename, const uint8_t *dense_flow, unsigned width, unsigned height)
1614 {
1615         assert(false);
1616 }
1617
1618 void write_ppm(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1619 {
1620         FILE *fp = fopen(filename, "wb");
1621         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1622         for (unsigned y = 0; y < unsigned(height); ++y) {
1623                 int yy = height - y - 1;
1624                 for (unsigned x = 0; x < unsigned(width); ++x) {
1625                         float du = dense_flow[(yy * width + x) * 2 + 0];
1626                         float dv = dense_flow[(yy * width + x) * 2 + 1];
1627
1628                         uint8_t r, g, b;
1629                         flow2rgb(du, dv, &r, &g, &b);
1630                         putc(r, fp);
1631                         putc(g, fp);
1632                         putc(b, fp);
1633                 }
1634         }
1635         fclose(fp);
1636 }
1637
1638 void write_ppm(const char *filename, const uint8_t *rgba, unsigned width, unsigned height)
1639 {
1640         unique_ptr<uint8_t[]> rgb_line(new uint8_t[width * 3 + 1]);
1641
1642         FILE *fp = fopen(filename, "wb");
1643         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1644         for (unsigned y = 0; y < height; ++y) {
1645                 unsigned y2 = height - 1 - y;
1646                 for (size_t x = 0; x < width; ++x) {
1647                         memcpy(&rgb_line[x * 3], &rgba[(y2 * width + x) * 4], 4);
1648                 }
1649                 fwrite(rgb_line.get(), width * 3, 1, fp);
1650         }
1651         fclose(fp);
1652 }
1653
1654 struct FlowType {
1655         using type = float;
1656         static constexpr GLenum gl_format = GL_RG;
1657         static constexpr GLenum gl_type = GL_FLOAT;
1658         static constexpr int num_channels = 2;
1659 };
1660
1661 struct RGBAType {
1662         using type = uint8_t;
1663         static constexpr GLenum gl_format = GL_RGBA;
1664         static constexpr GLenum gl_type = GL_UNSIGNED_BYTE;
1665         static constexpr int num_channels = 4;
1666 };
1667
1668 template <class Type>
1669 void finish_one_read(GLuint width, GLuint height)
1670 {
1671         using T = typename Type::type;
1672         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1673
1674         assert(!reads_in_progress.empty());
1675         ReadInProgress read = reads_in_progress.front();
1676         reads_in_progress.pop_front();
1677
1678         unique_ptr<T[]> flow(new typename Type::type[width * height * Type::num_channels]);
1679         void *buf = glMapNamedBufferRange(read.pbo, 0, width * height * bytes_per_pixel, GL_MAP_READ_BIT);  // Blocks if the read isn't done yet.
1680         memcpy(flow.get(), buf, width * height * bytes_per_pixel);  // TODO: Unneeded for RGBType, since flip_coordinate_system() does nothing.:
1681         glUnmapNamedBuffer(read.pbo);
1682         spare_pbos.push(read.pbo);
1683
1684         flip_coordinate_system(flow.get(), width, height);
1685         if (!read.flow_filename.empty()) {
1686                 write_flow(read.flow_filename.c_str(), flow.get(), width, height);
1687                 fprintf(stderr, "%s %s -> %s\n", read.filename0.c_str(), read.filename1.c_str(), read.flow_filename.c_str());
1688         }
1689         if (!read.ppm_filename.empty()) {
1690                 write_ppm(read.ppm_filename.c_str(), flow.get(), width, height);
1691         }
1692 }
1693
1694 template <class Type>
1695 void schedule_read(GLuint tex, GLuint width, GLuint height, const char *filename0, const char *filename1, const char *flow_filename, const char *ppm_filename)
1696 {
1697         using T = typename Type::type;
1698         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1699
1700         if (spare_pbos.empty()) {
1701                 finish_one_read<Type>(width, height);
1702         }
1703         assert(!spare_pbos.empty());
1704         reads_in_progress.emplace_back(ReadInProgress{ spare_pbos.top(), filename0, filename1, flow_filename, ppm_filename });
1705         glBindBuffer(GL_PIXEL_PACK_BUFFER, spare_pbos.top());
1706         spare_pbos.pop();
1707         glGetTextureImage(tex, 0, Type::gl_format, Type::gl_type, width * height * bytes_per_pixel, nullptr);
1708         glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
1709 }
1710
1711 void compute_flow_only(int argc, char **argv, int optind)
1712 {
1713         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1714         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1715         const char *flow_filename = argc >= (optind + 3) ? argv[optind + 2] : "flow.flo";
1716
1717         // Load pictures.
1718         unsigned width1, height1, width2, height2;
1719         GLuint tex0 = load_texture(filename0, &width1, &height1, WITHOUT_MIPMAPS);
1720         GLuint tex1 = load_texture(filename1, &width2, &height2, WITHOUT_MIPMAPS);
1721
1722         if (width1 != width2 || height1 != height2) {
1723                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1724                         width1, height1, width2, height2);
1725                 exit(1);
1726         }
1727
1728         // Set up some PBOs to do asynchronous readback.
1729         GLuint pbos[5];
1730         glCreateBuffers(5, pbos);
1731         for (int i = 0; i < 5; ++i) {
1732                 glNamedBufferData(pbos[i], width1 * height1 * 2 * sizeof(float), nullptr, GL_STREAM_READ);
1733                 spare_pbos.push(pbos[i]);
1734         }
1735
1736         int levels = find_num_levels(width1, height1);
1737         GLuint tex0_gray, tex1_gray;
1738         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1739         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1740         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1741         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1742
1743         GrayscaleConversion gray;
1744         gray.exec(tex0, tex0_gray, width1, height1);
1745         glDeleteTextures(1, &tex0);
1746         glGenerateTextureMipmap(tex0_gray);
1747
1748         gray.exec(tex1, tex1_gray, width1, height1);
1749         glDeleteTextures(1, &tex1);
1750         glGenerateTextureMipmap(tex1_gray);
1751
1752         DISComputeFlow compute_flow(width1, height1);
1753         GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1754
1755         schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "flow.ppm");
1756         compute_flow.release_texture(final_tex);
1757
1758         // See if there are more flows on the command line (ie., more than three arguments),
1759         // and if so, process them.
1760         int num_flows = (argc - optind) / 3;
1761         for (int i = 1; i < num_flows; ++i) {
1762                 const char *filename0 = argv[optind + i * 3 + 0];
1763                 const char *filename1 = argv[optind + i * 3 + 1];
1764                 const char *flow_filename = argv[optind + i * 3 + 2];
1765                 GLuint width, height;
1766                 GLuint tex0 = load_texture(filename0, &width, &height, WITHOUT_MIPMAPS);
1767                 if (width != width1 || height != height1) {
1768                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1769                                 filename0, width, height, width1, height1);
1770                         exit(1);
1771                 }
1772                 gray.exec(tex0, tex0_gray, width, height);
1773                 glGenerateTextureMipmap(tex0_gray);
1774                 glDeleteTextures(1, &tex0);
1775
1776                 GLuint tex1 = load_texture(filename1, &width, &height, WITHOUT_MIPMAPS);
1777                 if (width != width1 || height != height1) {
1778                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1779                                 filename1, width, height, width1, height1);
1780                         exit(1);
1781                 }
1782                 gray.exec(tex1, tex1_gray, width, height);
1783                 glGenerateTextureMipmap(tex1_gray);
1784                 glDeleteTextures(1, &tex1);
1785
1786                 GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1787
1788                 schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "");
1789                 compute_flow.release_texture(final_tex);
1790         }
1791         glDeleteTextures(1, &tex0_gray);
1792         glDeleteTextures(1, &tex1_gray);
1793
1794         while (!reads_in_progress.empty()) {
1795                 finish_one_read<FlowType>(width1, height1);
1796         }
1797 }
1798
1799 // Interpolate images based on
1800 //
1801 //   Herbst, Seitz, Baker: “Occlusion Reasoning for Temporal Interpolation
1802 //   Using Optical Flow”
1803 //
1804 // or at least a reasonable subset thereof. Unfinished.
1805 void interpolate_image(int argc, char **argv, int optind)
1806 {
1807         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1808         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1809         //const char *out_filename = argc >= (optind + 3) ? argv[optind + 2] : "interpolated.png";
1810
1811         // Load pictures.
1812         unsigned width1, height1, width2, height2;
1813         GLuint tex0 = load_texture(filename0, &width1, &height1, WITH_MIPMAPS);
1814         GLuint tex1 = load_texture(filename1, &width2, &height2, WITH_MIPMAPS);
1815
1816         if (width1 != width2 || height1 != height2) {
1817                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1818                         width1, height1, width2, height2);
1819                 exit(1);
1820         }
1821
1822         // Set up some PBOs to do asynchronous readback.
1823         GLuint pbos[5];
1824         glCreateBuffers(5, pbos);
1825         for (int i = 0; i < 5; ++i) {
1826                 glNamedBufferData(pbos[i], width1 * height1 * 4 * sizeof(uint8_t), nullptr, GL_STREAM_READ);
1827                 spare_pbos.push(pbos[i]);
1828         }
1829
1830         DISComputeFlow compute_flow(width1, height1);
1831         GrayscaleConversion gray;
1832         Interpolate interpolate(width1, height1, finest_level);
1833
1834         int levels = find_num_levels(width1, height1);
1835         GLuint tex0_gray, tex1_gray;
1836         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1837         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1838         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1839         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1840
1841         gray.exec(tex0, tex0_gray, width1, height1);
1842         glGenerateTextureMipmap(tex0_gray);
1843
1844         gray.exec(tex1, tex1_gray, width1, height1);
1845         glGenerateTextureMipmap(tex1_gray);
1846
1847         GLuint forward_flow_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1848         GLuint backward_flow_tex = compute_flow.exec(tex1_gray, tex0_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1849
1850         for (int frameno = 1; frameno < 60; ++frameno) {
1851                 char ppm_filename[256];
1852                 snprintf(ppm_filename, sizeof(ppm_filename), "interp%04d.ppm", frameno);
1853
1854                 float alpha = frameno / 60.0f;
1855                 GLuint interpolated_tex = interpolate.exec(tex0, tex1, forward_flow_tex, backward_flow_tex, width1, height1, alpha);
1856
1857                 schedule_read<RGBAType>(interpolated_tex, width1, height1, filename0, filename1, "", ppm_filename);
1858                 interpolate.release_texture(interpolated_tex);
1859         }
1860
1861         while (!reads_in_progress.empty()) {
1862                 finish_one_read<RGBAType>(width1, height1);
1863         }
1864 }
1865
1866 int main(int argc, char **argv)
1867 {
1868         static const option long_options[] = {
1869                 { "smoothness-relative-weight", required_argument, 0, 's' },  // alpha.
1870                 { "intensity-relative-weight", required_argument, 0, 'i' },  // delta.
1871                 { "gradient-relative-weight", required_argument, 0, 'g' },  // gamma.
1872                 { "disable-timing", no_argument, 0, 1000 },
1873                 { "detailed-timing", no_argument, 0, 1003 },
1874                 { "ignore-variational-refinement", no_argument, 0, 1001 },  // Still calculates it, just doesn't apply it.
1875                 { "interpolate", no_argument, 0, 1002 }
1876         };
1877
1878         for ( ;; ) {
1879                 int option_index = 0;
1880                 int c = getopt_long(argc, argv, "s:i:g:", long_options, &option_index);
1881
1882                 if (c == -1) {
1883                         break;
1884                 }
1885                 switch (c) {
1886                 case 's':
1887                         vr_alpha = atof(optarg);
1888                         break;
1889                 case 'i':
1890                         vr_delta = atof(optarg);
1891                         break;
1892                 case 'g':
1893                         vr_gamma = atof(optarg);
1894                         break;
1895                 case 1000:
1896                         enable_timing = false;
1897                         break;
1898                 case 1001:
1899                         enable_variational_refinement = false;
1900                         break;
1901                 case 1002:
1902                         enable_interpolation = true;
1903                         break;
1904                 case 1003:
1905                         detailed_timing = true;
1906                         break;
1907                 default:
1908                         fprintf(stderr, "Unknown option '%s'\n", argv[option_index]);
1909                         exit(1);
1910                 };
1911         }
1912
1913         if (SDL_Init(SDL_INIT_EVERYTHING) == -1) {
1914                 fprintf(stderr, "SDL_Init failed: %s\n", SDL_GetError());
1915                 exit(1);
1916         }
1917         SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE, 8);
1918         SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 0);
1919         SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 0);
1920         SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);
1921
1922         SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
1923         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 4);
1924         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 5);
1925         // SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, SDL_GL_CONTEXT_DEBUG_FLAG);
1926         window = SDL_CreateWindow("OpenGL window",
1927                 SDL_WINDOWPOS_UNDEFINED,
1928                 SDL_WINDOWPOS_UNDEFINED,
1929                 64, 64,
1930                 SDL_WINDOW_OPENGL | SDL_WINDOW_HIDDEN);
1931         SDL_GLContext context = SDL_GL_CreateContext(window);
1932         assert(context != nullptr);
1933
1934         glDisable(GL_DITHER);
1935
1936         // FIXME: Should be part of DISComputeFlow (but needs to be initialized
1937         // before all the render passes).
1938         float vertices[] = {
1939                 0.0f, 1.0f,
1940                 0.0f, 0.0f,
1941                 1.0f, 1.0f,
1942                 1.0f, 0.0f,
1943         };
1944         glCreateBuffers(1, &vertex_vbo);
1945         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
1946         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1947
1948         if (enable_interpolation) {
1949                 interpolate_image(argc, argv, optind);
1950         } else {
1951                 compute_flow_only(argc, argv, optind);
1952         }
1953 }