]> git.sesse.net Git - nageru/blob - flow.cpp
Fix a bug where the first black pass of SOR would read junk data.
[nageru] / flow.cpp
1 #define NO_SDL_GLEXT 1
2
3 #include <epoxy/gl.h>
4
5 #include <SDL2/SDL.h>
6 #include <SDL2/SDL_error.h>
7 #include <SDL2/SDL_events.h>
8 #include <SDL2/SDL_image.h>
9 #include <SDL2/SDL_keyboard.h>
10 #include <SDL2/SDL_mouse.h>
11 #include <SDL2/SDL_video.h>
12
13 #include <assert.h>
14 #include <getopt.h>
15 #include <stdio.h>
16 #include <unistd.h>
17
18 #include "gpu_timers.h"
19 #include "util.h"
20
21 #include <algorithm>
22 #include <deque>
23 #include <memory>
24 #include <map>
25 #include <stack>
26 #include <vector>
27
28 #define BUFFER_OFFSET(i) ((char *)nullptr + (i))
29
30 using namespace std;
31
32 SDL_Window *window;
33
34 // Operating point 3 (10 Hz on CPU, excluding preprocessing).
35 constexpr float patch_overlap_ratio = 0.75f;
36 constexpr unsigned coarsest_level = 5;
37 constexpr unsigned finest_level = 1;
38 constexpr unsigned patch_size_pixels = 12;
39
40 // Weighting constants for the different parts of the variational refinement.
41 // These don't correspond 1:1 to the values given in the DIS paper,
42 // since we have different normalizations and ranges in some cases.
43 // These are found through a simple grid search on some MPI-Sintel data,
44 // although the error (EPE) seems to be fairly insensitive to the precise values.
45 // Only the relative values matter, so we fix alpha (the smoothness constant)
46 // at unity and tweak the others.
47 float vr_alpha = 1.0f, vr_delta = 0.25f, vr_gamma = 0.25f;
48
49 bool enable_timing = true;
50 bool detailed_timing = false;
51 bool enable_variational_refinement = true;  // Just for debugging.
52 bool enable_interpolation = false;
53
54 // Some global OpenGL objects.
55 // TODO: These should really be part of DISComputeFlow.
56 GLuint nearest_sampler, linear_sampler, zero_border_sampler;
57 GLuint vertex_vbo;
58
59 // Structures for asynchronous readback. We assume everything is the same size (and GL_RG16F).
60 struct ReadInProgress {
61         GLuint pbo;
62         string filename0, filename1;
63         string flow_filename, ppm_filename;  // Either may be empty for no write.
64 };
65 stack<GLuint> spare_pbos;
66 deque<ReadInProgress> reads_in_progress;
67
68 int find_num_levels(int width, int height)
69 {
70         int levels = 1;
71         for (int w = width, h = height; w > 1 || h > 1; ) {
72                 w >>= 1;
73                 h >>= 1;
74                 ++levels;
75         }
76         return levels;
77 }
78
79 string read_file(const string &filename)
80 {
81         FILE *fp = fopen(filename.c_str(), "r");
82         if (fp == nullptr) {
83                 perror(filename.c_str());
84                 exit(1);
85         }
86
87         int ret = fseek(fp, 0, SEEK_END);
88         if (ret == -1) {
89                 perror("fseek(SEEK_END)");
90                 exit(1);
91         }
92
93         int size = ftell(fp);
94
95         ret = fseek(fp, 0, SEEK_SET);
96         if (ret == -1) {
97                 perror("fseek(SEEK_SET)");
98                 exit(1);
99         }
100
101         string str;
102         str.resize(size);
103         ret = fread(&str[0], size, 1, fp);
104         if (ret == -1) {
105                 perror("fread");
106                 exit(1);
107         }
108         if (ret == 0) {
109                 fprintf(stderr, "Short read when trying to read %d bytes from %s\n",
110                                 size, filename.c_str());
111                 exit(1);
112         }
113         fclose(fp);
114
115         return str;
116 }
117
118
119 GLuint compile_shader(const string &shader_src, GLenum type)
120 {
121         GLuint obj = glCreateShader(type);
122         const GLchar* source[] = { shader_src.data() };
123         const GLint length[] = { (GLint)shader_src.size() };
124         glShaderSource(obj, 1, source, length);
125         glCompileShader(obj);
126
127         GLchar info_log[4096];
128         GLsizei log_length = sizeof(info_log) - 1;
129         glGetShaderInfoLog(obj, log_length, &log_length, info_log);
130         info_log[log_length] = 0;
131         if (strlen(info_log) > 0) {
132                 fprintf(stderr, "Shader compile log: %s\n", info_log);
133         }
134
135         GLint status;
136         glGetShaderiv(obj, GL_COMPILE_STATUS, &status);
137         if (status == GL_FALSE) {
138                 // Add some line numbers to easier identify compile errors.
139                 string src_with_lines = "/*   1 */ ";
140                 size_t lineno = 1;
141                 for (char ch : shader_src) {
142                         src_with_lines.push_back(ch);
143                         if (ch == '\n') {
144                                 char buf[32];
145                                 snprintf(buf, sizeof(buf), "/* %3zu */ ", ++lineno);
146                                 src_with_lines += buf;
147                         }
148                 }
149
150                 fprintf(stderr, "Failed to compile shader:\n%s\n", src_with_lines.c_str());
151                 exit(1);
152         }
153
154         return obj;
155 }
156
157 enum MipmapPolicy {
158         WITHOUT_MIPMAPS,
159         WITH_MIPMAPS
160 };
161
162 GLuint load_texture(const char *filename, unsigned *width_ret, unsigned *height_ret, MipmapPolicy mipmaps)
163 {
164         SDL_Surface *surf = IMG_Load(filename);
165         if (surf == nullptr) {
166                 fprintf(stderr, "IMG_Load(%s): %s\n", filename, IMG_GetError());
167                 exit(1);
168         }
169
170         // For whatever reason, SDL doesn't support converting to YUV surfaces
171         // nor grayscale, so we'll do it ourselves.
172         SDL_Surface *rgb_surf = SDL_ConvertSurfaceFormat(surf, SDL_PIXELFORMAT_RGBA32, /*flags=*/0);
173         if (rgb_surf == nullptr) {
174                 fprintf(stderr, "SDL_ConvertSurfaceFormat(%s): %s\n", filename, SDL_GetError());
175                 exit(1);
176         }
177
178         SDL_FreeSurface(surf);
179
180         unsigned width = rgb_surf->w, height = rgb_surf->h;
181         const uint8_t *sptr = (uint8_t *)rgb_surf->pixels;
182         unique_ptr<uint8_t[]> pix(new uint8_t[width * height * 4]);
183
184         // Extract the Y component, and convert to bottom-left origin.
185         for (unsigned y = 0; y < height; ++y) {
186                 unsigned y2 = height - 1 - y;
187                 memcpy(pix.get() + y * width * 4, sptr + y2 * rgb_surf->pitch, width * 4);
188         }
189         SDL_FreeSurface(rgb_surf);
190
191         int num_levels = (mipmaps == WITH_MIPMAPS) ? find_num_levels(width, height) : 1;
192
193         GLuint tex;
194         glCreateTextures(GL_TEXTURE_2D, 1, &tex);
195         glTextureStorage2D(tex, num_levels, GL_RGBA8, width, height);
196         glTextureSubImage2D(tex, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pix.get());
197
198         if (mipmaps == WITH_MIPMAPS) {
199                 glGenerateTextureMipmap(tex);
200         }
201
202         *width_ret = width;
203         *height_ret = height;
204
205         return tex;
206 }
207
208 GLuint link_program(GLuint vs_obj, GLuint fs_obj)
209 {
210         GLuint program = glCreateProgram();
211         glAttachShader(program, vs_obj);
212         glAttachShader(program, fs_obj);
213         glLinkProgram(program);
214         GLint success;
215         glGetProgramiv(program, GL_LINK_STATUS, &success);
216         if (success == GL_FALSE) {
217                 GLchar error_log[1024] = {0};
218                 glGetProgramInfoLog(program, 1024, nullptr, error_log);
219                 fprintf(stderr, "Error linking program: %s\n", error_log);
220                 exit(1);
221         }
222         return program;
223 }
224
225 void bind_sampler(GLuint program, GLint location, GLuint texture_unit, GLuint tex, GLuint sampler)
226 {
227         if (location == -1) {
228                 return;
229         }
230
231         glBindTextureUnit(texture_unit, tex);
232         glBindSampler(texture_unit, sampler);
233         glProgramUniform1i(program, location, texture_unit);
234 }
235
236 // A class that caches FBOs that render to a given set of textures.
237 // It never frees anything, so it is only suitable for rendering to
238 // the same (small) set of textures over and over again.
239 template<size_t num_elements>
240 class PersistentFBOSet {
241 public:
242         void render_to(const array<GLuint, num_elements> &textures);
243
244         // Convenience wrappers.
245         void render_to(GLuint texture0) {
246                 render_to({{texture0}});
247         }
248
249         void render_to(GLuint texture0, GLuint texture1) {
250                 render_to({{texture0, texture1}});
251         }
252
253         void render_to(GLuint texture0, GLuint texture1, GLuint texture2) {
254                 render_to({{texture0, texture1, texture2}});
255         }
256
257         void render_to(GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
258                 render_to({{texture0, texture1, texture2, texture3}});
259         }
260
261 private:
262         // TODO: Delete these on destruction.
263         map<array<GLuint, num_elements>, GLuint> fbos;
264 };
265
266 template<size_t num_elements>
267 void PersistentFBOSet<num_elements>::render_to(const array<GLuint, num_elements> &textures)
268 {
269         auto it = fbos.find(textures);
270         if (it != fbos.end()) {
271                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
272                 return;
273         }
274
275         GLuint fbo;
276         glCreateFramebuffers(1, &fbo);
277         GLenum bufs[num_elements];
278         for (size_t i = 0; i < num_elements; ++i) {
279                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
280                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
281         }
282         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
283
284         fbos[textures] = fbo;
285         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
286 }
287
288 // Same, but with a depth texture.
289 template<size_t num_elements>
290 class PersistentFBOSetWithDepth {
291 public:
292         void render_to(GLuint depth_tex, const array<GLuint, num_elements> &textures);
293
294         // Convenience wrappers.
295         void render_to(GLuint depth_tex, GLuint texture0) {
296                 render_to(depth_tex, {{texture0}});
297         }
298
299         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1) {
300                 render_to(depth_tex, {{texture0, texture1}});
301         }
302
303         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1, GLuint texture2) {
304                 render_to(depth_tex, {{texture0, texture1, texture2}});
305         }
306
307         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
308                 render_to(depth_tex, {{texture0, texture1, texture2, texture3}});
309         }
310
311 private:
312         // TODO: Delete these on destruction.
313         map<pair<GLuint, array<GLuint, num_elements>>, GLuint> fbos;
314 };
315
316 template<size_t num_elements>
317 void PersistentFBOSetWithDepth<num_elements>::render_to(GLuint depth_tex, const array<GLuint, num_elements> &textures)
318 {
319         auto key = make_pair(depth_tex, textures);
320
321         auto it = fbos.find(key);
322         if (it != fbos.end()) {
323                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
324                 return;
325         }
326
327         GLuint fbo;
328         glCreateFramebuffers(1, &fbo);
329         GLenum bufs[num_elements];
330         glNamedFramebufferTexture(fbo, GL_DEPTH_ATTACHMENT, depth_tex, 0);
331         for (size_t i = 0; i < num_elements; ++i) {
332                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
333                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
334         }
335         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
336
337         fbos[key] = fbo;
338         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
339 }
340
341 // Convert RGB to grayscale, using Rec. 709 coefficients.
342 class GrayscaleConversion {
343 public:
344         GrayscaleConversion();
345         void exec(GLint tex, GLint gray_tex, int width, int height);
346
347 private:
348         PersistentFBOSet<1> fbos;
349         GLuint gray_vs_obj;
350         GLuint gray_fs_obj;
351         GLuint gray_program;
352         GLuint gray_vao;
353
354         GLuint uniform_tex;
355 };
356
357 GrayscaleConversion::GrayscaleConversion()
358 {
359         gray_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
360         gray_fs_obj = compile_shader(read_file("gray.frag"), GL_FRAGMENT_SHADER);
361         gray_program = link_program(gray_vs_obj, gray_fs_obj);
362
363         // Set up the VAO containing all the required position/texcoord data.
364         glCreateVertexArrays(1, &gray_vao);
365         glBindVertexArray(gray_vao);
366
367         GLint position_attrib = glGetAttribLocation(gray_program, "position");
368         glEnableVertexArrayAttrib(gray_vao, position_attrib);
369         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
370
371         uniform_tex = glGetUniformLocation(gray_program, "tex");
372 }
373
374 void GrayscaleConversion::exec(GLint tex, GLint gray_tex, int width, int height)
375 {
376         glUseProgram(gray_program);
377         bind_sampler(gray_program, uniform_tex, 0, tex, nearest_sampler);
378
379         glViewport(0, 0, width, height);
380         fbos.render_to(gray_tex);
381         glBindVertexArray(gray_vao);
382         glDisable(GL_BLEND);
383         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
384 }
385
386 // Compute gradients in every point, used for the motion search.
387 // The DIS paper doesn't actually mention how these are computed,
388 // but seemingly, a 3x3 Sobel operator is used here (at least in
389 // later versions of the code), while a [1 -8 0 8 -1] kernel is
390 // used for all the derivatives in the variational refinement part
391 // (which borrows code from DeepFlow). This is inconsistent,
392 // but I guess we're better off with staying with the original
393 // decisions until we actually know having different ones would be better.
394 class Sobel {
395 public:
396         Sobel();
397         void exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height);
398
399 private:
400         PersistentFBOSet<1> fbos;
401         GLuint sobel_vs_obj;
402         GLuint sobel_fs_obj;
403         GLuint sobel_program;
404
405         GLuint uniform_tex;
406 };
407
408 Sobel::Sobel()
409 {
410         sobel_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
411         sobel_fs_obj = compile_shader(read_file("sobel.frag"), GL_FRAGMENT_SHADER);
412         sobel_program = link_program(sobel_vs_obj, sobel_fs_obj);
413
414         uniform_tex = glGetUniformLocation(sobel_program, "tex");
415 }
416
417 void Sobel::exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height)
418 {
419         glUseProgram(sobel_program);
420         bind_sampler(sobel_program, uniform_tex, 0, tex0_view, nearest_sampler);
421
422         glViewport(0, 0, level_width, level_height);
423         fbos.render_to(grad0_tex);
424         glDisable(GL_BLEND);
425         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
426 }
427
428 // Motion search to find the initial flow. See motion_search.frag for documentation.
429 class MotionSearch {
430 public:
431         MotionSearch();
432         void exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches);
433
434 private:
435         PersistentFBOSet<1> fbos;
436
437         GLuint motion_vs_obj;
438         GLuint motion_fs_obj;
439         GLuint motion_search_program;
440
441         GLuint uniform_inv_image_size, uniform_inv_prev_level_size;
442         GLuint uniform_image1_tex, uniform_grad0_tex, uniform_flow_tex;
443 };
444
445 MotionSearch::MotionSearch()
446 {
447         motion_vs_obj = compile_shader(read_file("motion_search.vert"), GL_VERTEX_SHADER);
448         motion_fs_obj = compile_shader(read_file("motion_search.frag"), GL_FRAGMENT_SHADER);
449         motion_search_program = link_program(motion_vs_obj, motion_fs_obj);
450
451         uniform_inv_image_size = glGetUniformLocation(motion_search_program, "inv_image_size");
452         uniform_inv_prev_level_size = glGetUniformLocation(motion_search_program, "inv_prev_level_size");
453         uniform_image1_tex = glGetUniformLocation(motion_search_program, "image1_tex");
454         uniform_grad0_tex = glGetUniformLocation(motion_search_program, "grad0_tex");
455         uniform_flow_tex = glGetUniformLocation(motion_search_program, "flow_tex");
456 }
457
458 void MotionSearch::exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches)
459 {
460         glUseProgram(motion_search_program);
461
462         bind_sampler(motion_search_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
463         bind_sampler(motion_search_program, uniform_grad0_tex, 2, grad0_tex, nearest_sampler);
464         bind_sampler(motion_search_program, uniform_flow_tex, 3, flow_tex, linear_sampler);
465
466         glProgramUniform2f(motion_search_program, uniform_inv_image_size, 1.0f / level_width, 1.0f / level_height);
467         glProgramUniform2f(motion_search_program, uniform_inv_prev_level_size, 1.0f / prev_level_width, 1.0f / prev_level_height);
468
469         glViewport(0, 0, width_patches, height_patches);
470         fbos.render_to(flow_out_tex);
471         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
472 }
473
474 // Do “densification”, ie., upsampling of the flow patches to the flow field
475 // (the same size as the image at this level). We draw one quad per patch
476 // over its entire covered area (using instancing in the vertex shader),
477 // and then weight the contributions in the pixel shader by post-warp difference.
478 // This is equation (3) in the paper.
479 //
480 // We accumulate the flow vectors in the R/G channels (for u/v) and the total
481 // weight in the B channel. Dividing R and G by B gives the normalized values.
482 class Densify {
483 public:
484         Densify();
485         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches);
486
487 private:
488         PersistentFBOSet<1> fbos;
489
490         GLuint densify_vs_obj;
491         GLuint densify_fs_obj;
492         GLuint densify_program;
493
494         GLuint uniform_patch_size;
495         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
496 };
497
498 Densify::Densify()
499 {
500         densify_vs_obj = compile_shader(read_file("densify.vert"), GL_VERTEX_SHADER);
501         densify_fs_obj = compile_shader(read_file("densify.frag"), GL_FRAGMENT_SHADER);
502         densify_program = link_program(densify_vs_obj, densify_fs_obj);
503
504         uniform_patch_size = glGetUniformLocation(densify_program, "patch_size");
505         uniform_image0_tex = glGetUniformLocation(densify_program, "image0_tex");
506         uniform_image1_tex = glGetUniformLocation(densify_program, "image1_tex");
507         uniform_flow_tex = glGetUniformLocation(densify_program, "flow_tex");
508 }
509
510 void Densify::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches)
511 {
512         glUseProgram(densify_program);
513
514         bind_sampler(densify_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
515         bind_sampler(densify_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
516         bind_sampler(densify_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
517
518         glProgramUniform2f(densify_program, uniform_patch_size,
519                 float(patch_size_pixels) / level_width,
520                 float(patch_size_pixels) / level_height);
521
522         glViewport(0, 0, level_width, level_height);
523         glEnable(GL_BLEND);
524         glBlendFunc(GL_ONE, GL_ONE);
525         fbos.render_to(dense_flow_tex);
526         glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
527         glClear(GL_COLOR_BUFFER_BIT);
528         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width_patches * height_patches);
529 }
530
531 // Warp I_1 to I_w, and then compute the mean (I) and difference (I_t) of
532 // I_0 and I_w. The prewarping is what enables us to solve the variational
533 // flow for du,dv instead of u,v.
534 //
535 // Also calculates the normalized flow, ie. divides by z (this is needed because
536 // Densify works by additive blending) and multiplies by the image size.
537 //
538 // See variational_refinement.txt for more information.
539 class Prewarp {
540 public:
541         Prewarp();
542         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint normalized_flow_tex, GLuint I_tex, GLuint I_t_tex, int level_width, int level_height);
543
544 private:
545         PersistentFBOSet<3> fbos;
546
547         GLuint prewarp_vs_obj;
548         GLuint prewarp_fs_obj;
549         GLuint prewarp_program;
550
551         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
552 };
553
554 Prewarp::Prewarp()
555 {
556         prewarp_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
557         prewarp_fs_obj = compile_shader(read_file("prewarp.frag"), GL_FRAGMENT_SHADER);
558         prewarp_program = link_program(prewarp_vs_obj, prewarp_fs_obj);
559
560         uniform_image0_tex = glGetUniformLocation(prewarp_program, "image0_tex");
561         uniform_image1_tex = glGetUniformLocation(prewarp_program, "image1_tex");
562         uniform_flow_tex = glGetUniformLocation(prewarp_program, "flow_tex");
563 }
564
565 void Prewarp::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint I_tex, GLuint I_t_tex, GLuint normalized_flow_tex, int level_width, int level_height)
566 {
567         glUseProgram(prewarp_program);
568
569         bind_sampler(prewarp_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
570         bind_sampler(prewarp_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
571         bind_sampler(prewarp_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
572
573         glViewport(0, 0, level_width, level_height);
574         glDisable(GL_BLEND);
575         fbos.render_to(I_tex, I_t_tex, normalized_flow_tex);
576         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
577 }
578
579 // From I, calculate the partial derivatives I_x and I_y. We use a four-tap
580 // central difference filter, since apparently, that's tradition (I haven't
581 // measured quality versus a more normal 0.5 (I[x+1] - I[x-1]).)
582 // The coefficients come from
583 //
584 //   https://en.wikipedia.org/wiki/Finite_difference_coefficient
585 //
586 // Also computes β_0, since it depends only on I_x and I_y.
587 class Derivatives {
588 public:
589         Derivatives();
590         void exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height);
591
592 private:
593         PersistentFBOSet<2> fbos;
594
595         GLuint derivatives_vs_obj;
596         GLuint derivatives_fs_obj;
597         GLuint derivatives_program;
598
599         GLuint uniform_tex;
600 };
601
602 Derivatives::Derivatives()
603 {
604         derivatives_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
605         derivatives_fs_obj = compile_shader(read_file("derivatives.frag"), GL_FRAGMENT_SHADER);
606         derivatives_program = link_program(derivatives_vs_obj, derivatives_fs_obj);
607
608         uniform_tex = glGetUniformLocation(derivatives_program, "tex");
609 }
610
611 void Derivatives::exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height)
612 {
613         glUseProgram(derivatives_program);
614
615         bind_sampler(derivatives_program, uniform_tex, 0, input_tex, nearest_sampler);
616
617         glViewport(0, 0, level_width, level_height);
618         glDisable(GL_BLEND);
619         fbos.render_to(I_x_y_tex, beta_0_tex);
620         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
621 }
622
623 // Calculate the diffusivity for each pixels, g(x,y). Smoothness (s) will
624 // be calculated in the shaders on-the-fly by sampling in-between two
625 // neighboring g(x,y) pixels, plus a border tweak to make sure we get
626 // zero smoothness at the border.
627 //
628 // See variational_refinement.txt for more information.
629 class ComputeDiffusivity {
630 public:
631         ComputeDiffusivity();
632         void exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow);
633
634 private:
635         PersistentFBOSet<1> fbos;
636
637         GLuint diffusivity_vs_obj;
638         GLuint diffusivity_fs_obj;
639         GLuint diffusivity_program;
640
641         GLuint uniform_flow_tex, uniform_diff_flow_tex;
642         GLuint uniform_alpha, uniform_zero_diff_flow;
643 };
644
645 ComputeDiffusivity::ComputeDiffusivity()
646 {
647         diffusivity_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
648         diffusivity_fs_obj = compile_shader(read_file("diffusivity.frag"), GL_FRAGMENT_SHADER);
649         diffusivity_program = link_program(diffusivity_vs_obj, diffusivity_fs_obj);
650
651         uniform_flow_tex = glGetUniformLocation(diffusivity_program, "flow_tex");
652         uniform_diff_flow_tex = glGetUniformLocation(diffusivity_program, "diff_flow_tex");
653         uniform_alpha = glGetUniformLocation(diffusivity_program, "alpha");
654         uniform_zero_diff_flow = glGetUniformLocation(diffusivity_program, "zero_diff_flow");
655 }
656
657 void ComputeDiffusivity::exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow)
658 {
659         glUseProgram(diffusivity_program);
660
661         bind_sampler(diffusivity_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
662         bind_sampler(diffusivity_program, uniform_diff_flow_tex, 1, diff_flow_tex, nearest_sampler);
663         glProgramUniform1f(diffusivity_program, uniform_alpha, vr_alpha);
664         glProgramUniform1i(diffusivity_program, uniform_zero_diff_flow, zero_diff_flow);
665
666         glViewport(0, 0, level_width, level_height);
667
668         glDisable(GL_BLEND);
669         fbos.render_to(diffusivity_tex);
670         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
671 }
672
673 // Set up the equations set (two equations in two unknowns, per pixel).
674 // We store five floats; the three non-redundant elements of the 2x2 matrix (A)
675 // as 32-bit floats, and the two elements on the right-hand side (b) as 16-bit
676 // floats. (Actually, we store the inverse of the diagonal elements, because
677 // we only ever need to divide by them.) This fits into four u32 values;
678 // R, G, B for the matrix (the last element is symmetric) and A for the two b values.
679 // All the values of the energy term (E_I, E_G, E_S), except the smoothness
680 // terms that depend on other pixels, are calculated in one pass.
681 //
682 // The equation set is split in two; one contains only the pixels needed for
683 // the red pass, and one only for the black pass (see sor.frag). This reduces
684 // the amount of data the SOR shader has to pull in, at the cost of some
685 // complexity when the equation texture ends up with half the size and we need
686 // to adjust texture coordinates.  The contraction is done along the horizontal
687 // axis, so that on even rows (0, 2, 4, ...), the “red” texture will contain
688 // pixels 0, 2, 4, 6, etc., and on odd rows 1, 3, 5, etc..
689 //
690 // See variational_refinement.txt for more information about the actual
691 // equations in use.
692 class SetupEquations {
693 public:
694         SetupEquations();
695         void exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_red_tex, GLuint equation_black_tex, int level_width, int level_height, bool zero_diff_flow);
696
697 private:
698         PersistentFBOSet<2> fbos;
699
700         GLuint equations_vs_obj;
701         GLuint equations_fs_obj;
702         GLuint equations_program;
703
704         GLuint uniform_I_x_y_tex, uniform_I_t_tex;
705         GLuint uniform_diff_flow_tex, uniform_base_flow_tex;
706         GLuint uniform_beta_0_tex;
707         GLuint uniform_diffusivity_tex;
708         GLuint uniform_gamma, uniform_delta, uniform_zero_diff_flow;
709 };
710
711 SetupEquations::SetupEquations()
712 {
713         equations_vs_obj = compile_shader(read_file("equations.vert"), GL_VERTEX_SHADER);
714         equations_fs_obj = compile_shader(read_file("equations.frag"), GL_FRAGMENT_SHADER);
715         equations_program = link_program(equations_vs_obj, equations_fs_obj);
716
717         uniform_I_x_y_tex = glGetUniformLocation(equations_program, "I_x_y_tex");
718         uniform_I_t_tex = glGetUniformLocation(equations_program, "I_t_tex");
719         uniform_diff_flow_tex = glGetUniformLocation(equations_program, "diff_flow_tex");
720         uniform_base_flow_tex = glGetUniformLocation(equations_program, "base_flow_tex");
721         uniform_beta_0_tex = glGetUniformLocation(equations_program, "beta_0_tex");
722         uniform_diffusivity_tex = glGetUniformLocation(equations_program, "diffusivity_tex");
723         uniform_gamma = glGetUniformLocation(equations_program, "gamma");
724         uniform_delta = glGetUniformLocation(equations_program, "delta");
725         uniform_zero_diff_flow = glGetUniformLocation(equations_program, "zero_diff_flow");
726 }
727
728 void SetupEquations::exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint base_flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_red_tex, GLuint equation_black_tex, int level_width, int level_height, bool zero_diff_flow)
729 {
730         glUseProgram(equations_program);
731
732         bind_sampler(equations_program, uniform_I_x_y_tex, 0, I_x_y_tex, nearest_sampler);
733         bind_sampler(equations_program, uniform_I_t_tex, 1, I_t_tex, nearest_sampler);
734         bind_sampler(equations_program, uniform_diff_flow_tex, 2, diff_flow_tex, nearest_sampler);
735         bind_sampler(equations_program, uniform_base_flow_tex, 3, base_flow_tex, nearest_sampler);
736         bind_sampler(equations_program, uniform_beta_0_tex, 4, beta_0_tex, nearest_sampler);
737         bind_sampler(equations_program, uniform_diffusivity_tex, 5, diffusivity_tex, zero_border_sampler);
738         glProgramUniform1f(equations_program, uniform_delta, vr_delta);
739         glProgramUniform1f(equations_program, uniform_gamma, vr_gamma);
740         glProgramUniform1i(equations_program, uniform_zero_diff_flow, zero_diff_flow);
741
742         glViewport(0, 0, (level_width + 1) / 2, level_height);
743         glDisable(GL_BLEND);
744         fbos.render_to({equation_red_tex, equation_black_tex});
745         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
746 }
747
748 // Actually solve the equation sets made by SetupEquations, by means of
749 // successive over-relaxation (SOR).
750 //
751 // See variational_refinement.txt for more information.
752 class SOR {
753 public:
754         SOR();
755         void exec(GLuint diff_flow_tex, GLuint equation_red_tex, GLuint equation_black_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, ScopedTimer *sor_timer);
756
757 private:
758         PersistentFBOSet<1> fbos;
759
760         GLuint sor_vs_obj;
761         GLuint sor_fs_obj;
762         GLuint sor_program;
763
764         GLuint uniform_diff_flow_tex;
765         GLuint uniform_equation_red_tex, uniform_equation_black_tex;
766         GLuint uniform_diffusivity_tex;
767         GLuint uniform_phase, uniform_num_nonzero_phases;
768 };
769
770 SOR::SOR()
771 {
772         sor_vs_obj = compile_shader(read_file("sor.vert"), GL_VERTEX_SHADER);
773         sor_fs_obj = compile_shader(read_file("sor.frag"), GL_FRAGMENT_SHADER);
774         sor_program = link_program(sor_vs_obj, sor_fs_obj);
775
776         uniform_diff_flow_tex = glGetUniformLocation(sor_program, "diff_flow_tex");
777         uniform_equation_red_tex = glGetUniformLocation(sor_program, "equation_red_tex");
778         uniform_equation_black_tex = glGetUniformLocation(sor_program, "equation_black_tex");
779         uniform_diffusivity_tex = glGetUniformLocation(sor_program, "diffusivity_tex");
780         uniform_phase = glGetUniformLocation(sor_program, "phase");
781         uniform_num_nonzero_phases = glGetUniformLocation(sor_program, "num_nonzero_phases");
782 }
783
784 void SOR::exec(GLuint diff_flow_tex, GLuint equation_red_tex, GLuint equation_black_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, ScopedTimer *sor_timer)
785 {
786         glUseProgram(sor_program);
787
788         bind_sampler(sor_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
789         bind_sampler(sor_program, uniform_diffusivity_tex, 1, diffusivity_tex, zero_border_sampler);
790         bind_sampler(sor_program, uniform_equation_red_tex, 2, equation_red_tex, nearest_sampler);
791         bind_sampler(sor_program, uniform_equation_black_tex, 3, equation_black_tex, nearest_sampler);
792
793         if (!zero_diff_flow) {
794                 glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 2);
795         }
796
797         // NOTE: We bind to the texture we are rendering from, but we never write any value
798         // that we read in the same shader pass (we call discard for red values when we compute
799         // black, and vice versa), and we have barriers between the passes, so we're fine
800         // as per the spec.
801         glViewport(0, 0, level_width, level_height);
802         glDisable(GL_BLEND);
803         fbos.render_to(diff_flow_tex);
804
805         for (int i = 0; i < num_iterations; ++i) {
806                 {
807                         ScopedTimer timer("Red pass", sor_timer);
808                         if (zero_diff_flow && i == 0) {
809                                 glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 0);
810                         }
811                         glProgramUniform1i(sor_program, uniform_phase, 0);
812                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
813                         glTextureBarrier();
814                 }
815                 {
816                         ScopedTimer timer("Black pass", sor_timer);
817                         if (zero_diff_flow && i == 0) {
818                                 glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 1);
819                         }
820                         glProgramUniform1i(sor_program, uniform_phase, 1);
821                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
822                         if (zero_diff_flow && i == 0) {
823                                 glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 2);
824                         }
825                         if (i != num_iterations - 1) {
826                                 glTextureBarrier();
827                         }
828                 }
829         }
830 }
831
832 // Simply add the differential flow found by the variational refinement to the base flow.
833 // The output is in base_flow_tex; we don't need to make a new texture.
834 class AddBaseFlow {
835 public:
836         AddBaseFlow();
837         void exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height);
838
839 private:
840         PersistentFBOSet<1> fbos;
841
842         GLuint add_flow_vs_obj;
843         GLuint add_flow_fs_obj;
844         GLuint add_flow_program;
845
846         GLuint uniform_diff_flow_tex;
847 };
848
849 AddBaseFlow::AddBaseFlow()
850 {
851         add_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
852         add_flow_fs_obj = compile_shader(read_file("add_base_flow.frag"), GL_FRAGMENT_SHADER);
853         add_flow_program = link_program(add_flow_vs_obj, add_flow_fs_obj);
854
855         uniform_diff_flow_tex = glGetUniformLocation(add_flow_program, "diff_flow_tex");
856 }
857
858 void AddBaseFlow::exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height)
859 {
860         glUseProgram(add_flow_program);
861
862         bind_sampler(add_flow_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
863
864         glViewport(0, 0, level_width, level_height);
865         glEnable(GL_BLEND);
866         glBlendFunc(GL_ONE, GL_ONE);
867         fbos.render_to(base_flow_tex);
868
869         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
870 }
871
872 // Take a copy of the flow, bilinearly interpolated and scaled up.
873 class ResizeFlow {
874 public:
875         ResizeFlow();
876         void exec(GLuint in_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height);
877
878 private:
879         PersistentFBOSet<1> fbos;
880
881         GLuint resize_flow_vs_obj;
882         GLuint resize_flow_fs_obj;
883         GLuint resize_flow_program;
884
885         GLuint uniform_flow_tex;
886         GLuint uniform_scale_factor;
887 };
888
889 ResizeFlow::ResizeFlow()
890 {
891         resize_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
892         resize_flow_fs_obj = compile_shader(read_file("resize_flow.frag"), GL_FRAGMENT_SHADER);
893         resize_flow_program = link_program(resize_flow_vs_obj, resize_flow_fs_obj);
894
895         uniform_flow_tex = glGetUniformLocation(resize_flow_program, "flow_tex");
896         uniform_scale_factor = glGetUniformLocation(resize_flow_program, "scale_factor");
897 }
898
899 void ResizeFlow::exec(GLuint flow_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height)
900 {
901         glUseProgram(resize_flow_program);
902
903         bind_sampler(resize_flow_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
904
905         glProgramUniform2f(resize_flow_program, uniform_scale_factor, float(output_width) / input_width, float(output_height) / input_height);
906
907         glViewport(0, 0, output_width, output_height);
908         glDisable(GL_BLEND);
909         fbos.render_to(out_tex);
910
911         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
912 }
913
914 class TexturePool {
915 public:
916         GLuint get_texture(GLenum format, GLuint width, GLuint height);
917         void release_texture(GLuint tex_num);
918
919 private:
920         struct Texture {
921                 GLuint tex_num;
922                 GLenum format;
923                 GLuint width, height;
924                 bool in_use = false;
925         };
926         vector<Texture> textures;
927 };
928
929 class DISComputeFlow {
930 public:
931         DISComputeFlow(int width, int height);
932
933         enum ResizeStrategy {
934                 DO_NOT_RESIZE_FLOW,
935                 RESIZE_FLOW_TO_FULL_SIZE
936         };
937
938         // Returns a texture that must be released with release_texture()
939         // after use.
940         GLuint exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy);
941
942         void release_texture(GLuint tex) {
943                 pool.release_texture(tex);
944         }
945
946 private:
947         int width, height;
948         GLuint initial_flow_tex;
949         GLuint vertex_vbo, vao;
950         TexturePool pool;
951
952         // The various passes.
953         Sobel sobel;
954         MotionSearch motion_search;
955         Densify densify;
956         Prewarp prewarp;
957         Derivatives derivatives;
958         ComputeDiffusivity compute_diffusivity;
959         SetupEquations setup_equations;
960         SOR sor;
961         AddBaseFlow add_base_flow;
962         ResizeFlow resize_flow;
963 };
964
965 DISComputeFlow::DISComputeFlow(int width, int height)
966         : width(width), height(height)
967 {
968         // Make some samplers.
969         glCreateSamplers(1, &nearest_sampler);
970         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
971         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
972         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
973         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
974
975         glCreateSamplers(1, &linear_sampler);
976         glSamplerParameteri(linear_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
977         glSamplerParameteri(linear_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
978         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
979         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
980
981         // The smoothness is sampled so that once we get to a smoothness involving
982         // a value outside the border, the diffusivity between the two becomes zero.
983         // Similarly, gradients are zero outside the border, since the edge is taken
984         // to be constant.
985         glCreateSamplers(1, &zero_border_sampler);
986         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
987         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
988         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
989         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
990         float zero[] = { 0.0f, 0.0f, 0.0f, 0.0f };  // Note that zero alpha means we can also see whether we sampled outside the border or not.
991         glSamplerParameterfv(zero_border_sampler, GL_TEXTURE_BORDER_COLOR, zero);
992
993         // Initial flow is zero, 1x1.
994         glCreateTextures(GL_TEXTURE_2D, 1, &initial_flow_tex);
995         glTextureStorage2D(initial_flow_tex, 1, GL_RG16F, 1, 1);
996         glClearTexImage(initial_flow_tex, 0, GL_RG, GL_FLOAT, nullptr);
997
998         // Set up the vertex data that will be shared between all passes.
999         float vertices[] = {
1000                 0.0f, 1.0f,
1001                 0.0f, 0.0f,
1002                 1.0f, 1.0f,
1003                 1.0f, 0.0f,
1004         };
1005         glCreateBuffers(1, &vertex_vbo);
1006         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
1007
1008         glCreateVertexArrays(1, &vao);
1009         glBindVertexArray(vao);
1010         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1011
1012         GLint position_attrib = 0;  // Hard-coded in every vertex shader.
1013         glEnableVertexArrayAttrib(vao, position_attrib);
1014         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1015 }
1016
1017 GLuint DISComputeFlow::exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy)
1018 {
1019         int prev_level_width = 1, prev_level_height = 1;
1020         GLuint prev_level_flow_tex = initial_flow_tex;
1021
1022         GPUTimers timers;
1023
1024         glBindVertexArray(vao);
1025
1026         ScopedTimer total_timer("Total", &timers);
1027         for (int level = coarsest_level; level >= int(finest_level); --level) {
1028                 char timer_name[256];
1029                 snprintf(timer_name, sizeof(timer_name), "Level %d (%d x %d)", level, width >> level, height >> level);
1030                 ScopedTimer level_timer(timer_name, &total_timer);
1031
1032                 int level_width = width >> level;
1033                 int level_height = height >> level;
1034                 float patch_spacing_pixels = patch_size_pixels * (1.0f - patch_overlap_ratio);
1035
1036                 // Make sure we have patches at least every Nth pixel, e.g. for width=9
1037                 // and patch_spacing=3 (the default), we put out patch centers in
1038                 // x=0, x=3, x=6, x=9, which is four patches. The fragment shader will
1039                 // lock all the centers to integer coordinates if needed.
1040                 int width_patches = 1 + ceil(level_width / patch_spacing_pixels);
1041                 int height_patches = 1 + ceil(level_height / patch_spacing_pixels);
1042
1043                 // Make sure we always read from the correct level; the chosen
1044                 // mipmapping could otherwise be rather unpredictable, especially
1045                 // during motion search.
1046                 GLuint tex0_view, tex1_view;
1047                 glGenTextures(1, &tex0_view);
1048                 glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_R8, level, 1, 0, 1);
1049                 glGenTextures(1, &tex1_view);
1050                 glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_R8, level, 1, 0, 1);
1051
1052                 // Create a new texture; we could be fancy and render use a multi-level
1053                 // texture, but meh.
1054                 GLuint grad0_tex = pool.get_texture(GL_R32UI, level_width, level_height);
1055
1056                 // Find the derivative.
1057                 {
1058                         ScopedTimer timer("Sobel", &level_timer);
1059                         sobel.exec(tex0_view, grad0_tex, level_width, level_height);
1060                 }
1061
1062                 // Motion search to find the initial flow. We use the flow from the previous
1063                 // level (sampled bilinearly; no fancy tricks) as a guide, then search from there.
1064
1065                 // Create an output flow texture.
1066                 GLuint flow_out_tex = pool.get_texture(GL_RGB16F, width_patches, height_patches);
1067
1068                 // And draw.
1069                 {
1070                         ScopedTimer timer("Motion search", &level_timer);
1071                         motion_search.exec(tex0_view, tex1_view, grad0_tex, prev_level_flow_tex, flow_out_tex, level_width, level_height, prev_level_width, prev_level_height, width_patches, height_patches);
1072                 }
1073                 pool.release_texture(grad0_tex);
1074
1075                 // Densification.
1076
1077                 // Set up an output texture (cleared in Densify).
1078                 GLuint dense_flow_tex = pool.get_texture(GL_RGB16F, level_width, level_height);
1079
1080                 // And draw.
1081                 {
1082                         ScopedTimer timer("Densification", &level_timer);
1083                         densify.exec(tex0_view, tex1_view, flow_out_tex, dense_flow_tex, level_width, level_height, width_patches, height_patches);
1084                 }
1085                 pool.release_texture(flow_out_tex);
1086
1087                 // Everything below here in the loop belongs to variational refinement.
1088                 ScopedTimer varref_timer("Variational refinement", &level_timer);
1089
1090                 // Prewarping; create I and I_t, and a normalized base flow (so we don't
1091                 // have to normalize it over and over again, and also save some bandwidth).
1092                 //
1093                 // During the entire rest of the variational refinement, flow will be measured
1094                 // in pixels, not 0..1 normalized OpenGL texture coordinates.
1095                 // This is because variational refinement depends so heavily on derivatives,
1096                 // which are measured in intensity levels per pixel.
1097                 GLuint I_tex = pool.get_texture(GL_R16F, level_width, level_height);
1098                 GLuint I_t_tex = pool.get_texture(GL_R16F, level_width, level_height);
1099                 GLuint base_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1100                 {
1101                         ScopedTimer timer("Prewarping", &varref_timer);
1102                         prewarp.exec(tex0_view, tex1_view, dense_flow_tex, I_tex, I_t_tex, base_flow_tex, level_width, level_height);
1103                 }
1104                 pool.release_texture(dense_flow_tex);
1105                 glDeleteTextures(1, &tex0_view);
1106                 glDeleteTextures(1, &tex1_view);
1107
1108                 // Calculate I_x and I_y. We're only calculating first derivatives;
1109                 // the others will be taken on-the-fly in order to sample from fewer
1110                 // textures overall, since sampling from the L1 cache is cheap.
1111                 // (TODO: Verify that this is indeed faster than making separate
1112                 // double-derivative textures.)
1113                 GLuint I_x_y_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1114                 GLuint beta_0_tex = pool.get_texture(GL_R16F, level_width, level_height);
1115                 {
1116                         ScopedTimer timer("First derivatives", &varref_timer);
1117                         derivatives.exec(I_tex, I_x_y_tex, beta_0_tex, level_width, level_height);
1118                 }
1119                 pool.release_texture(I_tex);
1120
1121                 // We need somewhere to store du and dv (the flow increment, relative
1122                 // to the non-refined base flow u0 and v0). It's initially garbage,
1123                 // but not read until we've written something sane to it.
1124                 GLuint diff_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1125
1126                 // And for diffusivity.
1127                 GLuint diffusivity_tex = pool.get_texture(GL_R16F, level_width, level_height);
1128
1129                 // And finally for the equation set. See SetupEquations for
1130                 // the storage format.
1131                 GLuint equation_red_tex = pool.get_texture(GL_RGBA32UI, (level_width + 1) / 2, level_height);
1132                 GLuint equation_black_tex = pool.get_texture(GL_RGBA32UI, (level_width + 1) / 2, level_height);
1133
1134                 for (int outer_idx = 0; outer_idx < level + 1; ++outer_idx) {
1135                         // Calculate the diffusivity term for each pixel.
1136                         {
1137                                 ScopedTimer timer("Compute diffusivity", &varref_timer);
1138                                 compute_diffusivity.exec(base_flow_tex, diff_flow_tex, diffusivity_tex, level_width, level_height, outer_idx == 0);
1139                         }
1140
1141                         // Set up the 2x2 equation system for each pixel.
1142                         {
1143                                 ScopedTimer timer("Set up equations", &varref_timer);
1144                                 setup_equations.exec(I_x_y_tex, I_t_tex, diff_flow_tex, base_flow_tex, beta_0_tex, diffusivity_tex, equation_red_tex, equation_black_tex, level_width, level_height, outer_idx == 0);
1145                         }
1146
1147                         // Run a few SOR iterations. Note that these are to/from the same texture.
1148                         {
1149                                 ScopedTimer timer("SOR", &varref_timer);
1150                                 sor.exec(diff_flow_tex, equation_red_tex, equation_black_tex, diffusivity_tex, level_width, level_height, 5, outer_idx == 0, &timer);
1151                         }
1152                 }
1153
1154                 pool.release_texture(I_t_tex);
1155                 pool.release_texture(I_x_y_tex);
1156                 pool.release_texture(beta_0_tex);
1157                 pool.release_texture(diffusivity_tex);
1158                 pool.release_texture(equation_red_tex);
1159                 pool.release_texture(equation_black_tex);
1160
1161                 // Add the differential flow found by the variational refinement to the base flow,
1162                 // giving the final flow estimate for this level.
1163                 // The output is in diff_flow_tex; we don't need to make a new texture.
1164                 //
1165                 // Disabling this doesn't save any time (although we could easily make it so that
1166                 // it is more efficient), but it helps debug the motion search.
1167                 if (enable_variational_refinement) {
1168                         ScopedTimer timer("Add differential flow", &varref_timer);
1169                         add_base_flow.exec(base_flow_tex, diff_flow_tex, level_width, level_height);
1170                 }
1171                 pool.release_texture(diff_flow_tex);
1172
1173                 if (prev_level_flow_tex != initial_flow_tex) {
1174                         pool.release_texture(prev_level_flow_tex);
1175                 }
1176                 prev_level_flow_tex = base_flow_tex;
1177                 prev_level_width = level_width;
1178                 prev_level_height = level_height;
1179         }
1180         total_timer.end();
1181
1182         timers.print();
1183
1184         // Scale up the flow to the final size (if needed).
1185         if (finest_level == 0 || resize_strategy == DO_NOT_RESIZE_FLOW) {
1186                 return prev_level_flow_tex;
1187         } else {
1188                 GLuint final_tex = pool.get_texture(GL_RG16F, width, height);
1189                 resize_flow.exec(prev_level_flow_tex, final_tex, prev_level_width, prev_level_height, width, height);
1190                 pool.release_texture(prev_level_flow_tex);
1191                 return final_tex;
1192         }
1193 }
1194
1195 // Forward-warp the flow half-way (or rather, by alpha). A non-zero “splatting”
1196 // radius fills most of the holes.
1197 class Splat {
1198 public:
1199         Splat();
1200
1201         // alpha is the time of the interpolated frame (0..1).
1202         void exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_tex, int width, int height, float alpha);
1203
1204 private:
1205         PersistentFBOSetWithDepth<1> fbos;
1206
1207         GLuint splat_vs_obj;
1208         GLuint splat_fs_obj;
1209         GLuint splat_program;
1210
1211         GLuint uniform_invert_flow, uniform_splat_size, uniform_alpha;
1212         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1213         GLuint uniform_inv_flow_size;
1214 };
1215
1216 Splat::Splat()
1217 {
1218         splat_vs_obj = compile_shader(read_file("splat.vert"), GL_VERTEX_SHADER);
1219         splat_fs_obj = compile_shader(read_file("splat.frag"), GL_FRAGMENT_SHADER);
1220         splat_program = link_program(splat_vs_obj, splat_fs_obj);
1221
1222         uniform_invert_flow = glGetUniformLocation(splat_program, "invert_flow");
1223         uniform_splat_size = glGetUniformLocation(splat_program, "splat_size");
1224         uniform_alpha = glGetUniformLocation(splat_program, "alpha");
1225         uniform_image0_tex = glGetUniformLocation(splat_program, "image0_tex");
1226         uniform_image1_tex = glGetUniformLocation(splat_program, "image1_tex");
1227         uniform_flow_tex = glGetUniformLocation(splat_program, "flow_tex");
1228         uniform_inv_flow_size = glGetUniformLocation(splat_program, "inv_flow_size");
1229 }
1230
1231 void Splat::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_tex, int width, int height, float alpha)
1232 {
1233         glUseProgram(splat_program);
1234
1235         bind_sampler(splat_program, uniform_image0_tex, 0, tex0, linear_sampler);
1236         bind_sampler(splat_program, uniform_image1_tex, 1, tex1, linear_sampler);
1237
1238         // FIXME: This is set to 1.0 right now so not to trigger Haswell's “PMA stall”.
1239         // Move to 2.0 later, or even 4.0.
1240         // (Since we have hole filling, it's not critical, but larger values seem to do
1241         // better than hole filling for large motion, blurs etc.)
1242         float splat_size = 1.0f;  // 4x4 splat means 16x overdraw, 2x2 splat means 4x overdraw.
1243         glProgramUniform2f(splat_program, uniform_splat_size, splat_size / width, splat_size / height);
1244         glProgramUniform1f(splat_program, uniform_alpha, alpha);
1245         glProgramUniform2f(splat_program, uniform_inv_flow_size, 1.0f / width, 1.0f / height);
1246
1247         glViewport(0, 0, width, height);
1248         glDisable(GL_BLEND);
1249         glEnable(GL_DEPTH_TEST);
1250         glDepthFunc(GL_LESS);  // We store the difference between I_0 and I_1, where less difference is good. (Default 1.0 is effectively +inf, which always loses.)
1251
1252         fbos.render_to(depth_tex, flow_tex);
1253
1254         // Evidently NVIDIA doesn't use fast clears for glClearTexImage, so clear now that
1255         // we've got it bound.
1256         glClearColor(1000.0f, 1000.0f, 0.0f, 1.0f);  // Invalid flow.
1257         glClearDepth(1.0f);  // Effectively infinity.
1258         glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
1259
1260         // Do forward splatting.
1261         bind_sampler(splat_program, uniform_flow_tex, 2, forward_flow_tex, nearest_sampler);
1262         glProgramUniform1i(splat_program, uniform_invert_flow, 0);
1263         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1264
1265         // Do backward splatting.
1266         bind_sampler(splat_program, uniform_flow_tex, 2, backward_flow_tex, nearest_sampler);
1267         glProgramUniform1i(splat_program, uniform_invert_flow, 1);
1268         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1269
1270         glDisable(GL_DEPTH_TEST);
1271 }
1272
1273 // Doing good and fast hole-filling on a GPU is nontrivial. We choose an option
1274 // that's fairly simple (given that most holes are really small) and also hopefully
1275 // cheap should the holes not be so small. Conceptually, we look for the first
1276 // non-hole to the left of us (ie., shoot a ray until we hit something), then
1277 // the first non-hole to the right of us, then up and down, and then average them
1278 // all together. It's going to create “stars” if the holes are big, but OK, that's
1279 // a tradeoff.
1280 //
1281 // Our implementation here is efficient assuming that the hierarchical Z-buffer is
1282 // on even for shaders that do discard (this typically kills early Z, but hopefully
1283 // not hierarchical Z); we set up Z so that only holes are written to, which means
1284 // that as soon as a hole is filled, the rasterizer should just skip it. Most of the
1285 // fullscreen quads should just be discarded outright, really.
1286 class HoleFill {
1287 public:
1288         HoleFill();
1289
1290         // Output will be in flow_tex, temp_tex[0, 1, 2], representing the filling
1291         // from the down, left, right and up, respectively. Use HoleBlend to merge
1292         // them into one.
1293         void exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height);
1294
1295 private:
1296         PersistentFBOSetWithDepth<1> fbos;
1297
1298         GLuint fill_vs_obj;
1299         GLuint fill_fs_obj;
1300         GLuint fill_program;
1301
1302         GLuint uniform_tex;
1303         GLuint uniform_z, uniform_sample_offset;
1304 };
1305
1306 HoleFill::HoleFill()
1307 {
1308         fill_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);
1309         fill_fs_obj = compile_shader(read_file("hole_fill.frag"), GL_FRAGMENT_SHADER);
1310         fill_program = link_program(fill_vs_obj, fill_fs_obj);
1311
1312         uniform_tex = glGetUniformLocation(fill_program, "tex");
1313         uniform_z = glGetUniformLocation(fill_program, "z");
1314         uniform_sample_offset = glGetUniformLocation(fill_program, "sample_offset");
1315 }
1316
1317 void HoleFill::exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height)
1318 {
1319         glUseProgram(fill_program);
1320
1321         bind_sampler(fill_program, uniform_tex, 0, flow_tex, nearest_sampler);
1322
1323         glProgramUniform1f(fill_program, uniform_z, 1.0f - 1.0f / 1024.0f);
1324
1325         glViewport(0, 0, width, height);
1326         glDisable(GL_BLEND);
1327         glEnable(GL_DEPTH_TEST);
1328         glDepthFunc(GL_LESS);  // Only update the values > 0.999f (ie., only invalid pixels).
1329
1330         fbos.render_to(depth_tex, flow_tex);  // NOTE: Reading and writing to the same texture.
1331
1332         // Fill holes from the left, by shifting 1, 2, 4, 8, etc. pixels to the right.
1333         for (int offs = 1; offs < width; offs *= 2) {
1334                 glProgramUniform2f(fill_program, uniform_sample_offset, -offs / float(width), 0.0f);
1335                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1336                 glTextureBarrier();
1337         }
1338         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[0], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1339
1340         // Similar to the right; adjust Z a bit down, so that we re-fill the pixels that
1341         // were overwritten in the last algorithm.
1342         glProgramUniform1f(fill_program, uniform_z, 1.0f - 2.0f / 1024.0f);
1343         for (int offs = 1; offs < width; offs *= 2) {
1344                 glProgramUniform2f(fill_program, uniform_sample_offset, offs / float(width), 0.0f);
1345                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1346                 glTextureBarrier();
1347         }
1348         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[1], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1349
1350         // Up.
1351         glProgramUniform1f(fill_program, uniform_z, 1.0f - 3.0f / 1024.0f);
1352         for (int offs = 1; offs < height; offs *= 2) {
1353                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, -offs / float(height));
1354                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1355                 glTextureBarrier();
1356         }
1357         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[2], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1358
1359         // Down.
1360         glProgramUniform1f(fill_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1361         for (int offs = 1; offs < height; offs *= 2) {
1362                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, offs / float(height));
1363                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1364                 glTextureBarrier();
1365         }
1366
1367         glDisable(GL_DEPTH_TEST);
1368 }
1369
1370 // Blend the four directions from HoleFill into one pixel, so that single-pixel
1371 // holes become the average of their four neighbors.
1372 class HoleBlend {
1373 public:
1374         HoleBlend();
1375
1376         void exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height);
1377
1378 private:
1379         PersistentFBOSetWithDepth<1> fbos;
1380
1381         GLuint blend_vs_obj;
1382         GLuint blend_fs_obj;
1383         GLuint blend_program;
1384
1385         GLuint uniform_left_tex, uniform_right_tex, uniform_up_tex, uniform_down_tex;
1386         GLuint uniform_z, uniform_sample_offset;
1387 };
1388
1389 HoleBlend::HoleBlend()
1390 {
1391         blend_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);  // Reuse the vertex shader from the fill.
1392         blend_fs_obj = compile_shader(read_file("hole_blend.frag"), GL_FRAGMENT_SHADER);
1393         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1394
1395         uniform_left_tex = glGetUniformLocation(blend_program, "left_tex");
1396         uniform_right_tex = glGetUniformLocation(blend_program, "right_tex");
1397         uniform_up_tex = glGetUniformLocation(blend_program, "up_tex");
1398         uniform_down_tex = glGetUniformLocation(blend_program, "down_tex");
1399         uniform_z = glGetUniformLocation(blend_program, "z");
1400         uniform_sample_offset = glGetUniformLocation(blend_program, "sample_offset");
1401 }
1402
1403 void HoleBlend::exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height)
1404 {
1405         glUseProgram(blend_program);
1406
1407         bind_sampler(blend_program, uniform_left_tex, 0, temp_tex[0], nearest_sampler);
1408         bind_sampler(blend_program, uniform_right_tex, 1, temp_tex[1], nearest_sampler);
1409         bind_sampler(blend_program, uniform_up_tex, 2, temp_tex[2], nearest_sampler);
1410         bind_sampler(blend_program, uniform_down_tex, 3, flow_tex, nearest_sampler);
1411
1412         glProgramUniform1f(blend_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1413         glProgramUniform2f(blend_program, uniform_sample_offset, 0.0f, 0.0f);
1414
1415         glViewport(0, 0, width, height);
1416         glDisable(GL_BLEND);
1417         glEnable(GL_DEPTH_TEST);
1418         glDepthFunc(GL_LEQUAL);  // Skip over all of the pixels that were never holes to begin with.
1419
1420         fbos.render_to(depth_tex, flow_tex);  // NOTE: Reading and writing to the same texture.
1421
1422         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1423
1424         glDisable(GL_DEPTH_TEST);
1425 }
1426
1427 class Blend {
1428 public:
1429         Blend();
1430         void exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int width, int height, float alpha);
1431
1432 private:
1433         PersistentFBOSet<1> fbos;
1434         GLuint blend_vs_obj;
1435         GLuint blend_fs_obj;
1436         GLuint blend_program;
1437
1438         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1439         GLuint uniform_alpha, uniform_flow_consistency_tolerance;
1440 };
1441
1442 Blend::Blend()
1443 {
1444         blend_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
1445         blend_fs_obj = compile_shader(read_file("blend.frag"), GL_FRAGMENT_SHADER);
1446         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1447
1448         uniform_image0_tex = glGetUniformLocation(blend_program, "image0_tex");
1449         uniform_image1_tex = glGetUniformLocation(blend_program, "image1_tex");
1450         uniform_flow_tex = glGetUniformLocation(blend_program, "flow_tex");
1451         uniform_alpha = glGetUniformLocation(blend_program, "alpha");
1452         uniform_flow_consistency_tolerance = glGetUniformLocation(blend_program, "flow_consistency_tolerance");
1453 }
1454
1455 void Blend::exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int level_width, int level_height, float alpha)
1456 {
1457         glUseProgram(blend_program);
1458         bind_sampler(blend_program, uniform_image0_tex, 0, tex0, linear_sampler);
1459         bind_sampler(blend_program, uniform_image1_tex, 1, tex1, linear_sampler);
1460         bind_sampler(blend_program, uniform_flow_tex, 2, flow_tex, linear_sampler);  // May be upsampled.
1461         glProgramUniform1f(blend_program, uniform_alpha, alpha);
1462
1463         glViewport(0, 0, level_width, level_height);
1464         fbos.render_to(output_tex);
1465         glDisable(GL_BLEND);  // A bit ironic, perhaps.
1466         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1467 }
1468
1469 class Interpolate {
1470 public:
1471         Interpolate(int width, int height, int flow_level);
1472
1473         // Returns a texture that must be released with release_texture()
1474         // after use. tex0 and tex1 must be RGBA8 textures with mipmaps
1475         // (unless flow_level == 0).
1476         GLuint exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha);
1477
1478         void release_texture(GLuint tex) {
1479                 pool.release_texture(tex);
1480         }
1481
1482 private:
1483         int width, height, flow_level;
1484         GLuint vertex_vbo, vao;
1485         TexturePool pool;
1486
1487         Splat splat;
1488         HoleFill hole_fill;
1489         HoleBlend hole_blend;
1490         Blend blend;
1491 };
1492
1493 Interpolate::Interpolate(int width, int height, int flow_level)
1494         : width(width), height(height), flow_level(flow_level) {
1495         // Set up the vertex data that will be shared between all passes.
1496         float vertices[] = {
1497                 0.0f, 1.0f,
1498                 0.0f, 0.0f,
1499                 1.0f, 1.0f,
1500                 1.0f, 0.0f,
1501         };
1502         glCreateBuffers(1, &vertex_vbo);
1503         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
1504
1505         glCreateVertexArrays(1, &vao);
1506         glBindVertexArray(vao);
1507         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1508
1509         GLint position_attrib = 0;  // Hard-coded in every vertex shader.
1510         glEnableVertexArrayAttrib(vao, position_attrib);
1511         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1512 }
1513
1514 GLuint Interpolate::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha)
1515 {
1516         GPUTimers timers;
1517
1518         ScopedTimer total_timer("Total", &timers);
1519
1520         glBindVertexArray(vao);
1521
1522         // Pick out the right level to test splatting results on.
1523         GLuint tex0_view, tex1_view;
1524         glGenTextures(1, &tex0_view);
1525         glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_RGBA8, flow_level, 1, 0, 1);
1526         glGenTextures(1, &tex1_view);
1527         glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_RGBA8, flow_level, 1, 0, 1);
1528
1529         int flow_width = width >> flow_level;
1530         int flow_height = height >> flow_level;
1531
1532         GLuint flow_tex = pool.get_texture(GL_RG16F, flow_width, flow_height);
1533         GLuint depth_tex = pool.get_texture(GL_DEPTH_COMPONENT32F, flow_width, flow_height);  // Used for ranking flows.
1534
1535         {
1536                 ScopedTimer timer("Splat", &total_timer);
1537                 splat.exec(tex0_view, tex1_view, forward_flow_tex, backward_flow_tex, flow_tex, depth_tex, flow_width, flow_height, alpha);
1538         }
1539         glDeleteTextures(1, &tex0_view);
1540         glDeleteTextures(1, &tex1_view);
1541
1542         GLuint temp_tex[3];
1543         temp_tex[0] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1544         temp_tex[1] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1545         temp_tex[2] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1546
1547         {
1548                 ScopedTimer timer("Fill holes", &total_timer);
1549                 hole_fill.exec(flow_tex, depth_tex, temp_tex, flow_width, flow_height);
1550                 hole_blend.exec(flow_tex, depth_tex, temp_tex, flow_width, flow_height);
1551         }
1552
1553         pool.release_texture(temp_tex[0]);
1554         pool.release_texture(temp_tex[1]);
1555         pool.release_texture(temp_tex[2]);
1556         pool.release_texture(depth_tex);
1557
1558         GLuint output_tex = pool.get_texture(GL_RGBA8, width, height);
1559         {
1560                 ScopedTimer timer("Blend", &total_timer);
1561                 blend.exec(tex0, tex1, flow_tex, output_tex, width, height, alpha);
1562         }
1563         pool.release_texture(flow_tex);
1564         total_timer.end();
1565         timers.print();
1566
1567         return output_tex;
1568 }
1569
1570 GLuint TexturePool::get_texture(GLenum format, GLuint width, GLuint height)
1571 {
1572         for (Texture &tex : textures) {
1573                 if (!tex.in_use && tex.format == format &&
1574                     tex.width == width && tex.height == height) {
1575                         tex.in_use = true;
1576                         return tex.tex_num;
1577                 }
1578         }
1579
1580         Texture tex;
1581         glCreateTextures(GL_TEXTURE_2D, 1, &tex.tex_num);
1582         glTextureStorage2D(tex.tex_num, 1, format, width, height);
1583         tex.format = format;
1584         tex.width = width;
1585         tex.height = height;
1586         tex.in_use = true;
1587         textures.push_back(tex);
1588         return tex.tex_num;
1589 }
1590
1591 void TexturePool::release_texture(GLuint tex_num)
1592 {
1593         for (Texture &tex : textures) {
1594                 if (tex.tex_num == tex_num) {
1595                         assert(tex.in_use);
1596                         tex.in_use = false;
1597                         return;
1598                 }
1599         }
1600         assert(false);
1601 }
1602
1603 // OpenGL uses a bottom-left coordinate system, .flo files use a top-left coordinate system.
1604 void flip_coordinate_system(float *dense_flow, unsigned width, unsigned height)
1605 {
1606         for (unsigned i = 0; i < width * height; ++i) {
1607                 dense_flow[i * 2 + 1] = -dense_flow[i * 2 + 1];
1608         }
1609 }
1610
1611 // Not relevant for RGB.
1612 void flip_coordinate_system(uint8_t *dense_flow, unsigned width, unsigned height)
1613 {
1614 }
1615
1616 void write_flow(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1617 {
1618         FILE *flowfp = fopen(filename, "wb");
1619         fprintf(flowfp, "FEIH");
1620         fwrite(&width, 4, 1, flowfp);
1621         fwrite(&height, 4, 1, flowfp);
1622         for (unsigned y = 0; y < height; ++y) {
1623                 int yy = height - y - 1;
1624                 fwrite(&dense_flow[yy * width * 2], width * 2 * sizeof(float), 1, flowfp);
1625         }
1626         fclose(flowfp);
1627 }
1628
1629 // Not relevant for RGB.
1630 void write_flow(const char *filename, const uint8_t *dense_flow, unsigned width, unsigned height)
1631 {
1632         assert(false);
1633 }
1634
1635 void write_ppm(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1636 {
1637         FILE *fp = fopen(filename, "wb");
1638         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1639         for (unsigned y = 0; y < unsigned(height); ++y) {
1640                 int yy = height - y - 1;
1641                 for (unsigned x = 0; x < unsigned(width); ++x) {
1642                         float du = dense_flow[(yy * width + x) * 2 + 0];
1643                         float dv = dense_flow[(yy * width + x) * 2 + 1];
1644
1645                         uint8_t r, g, b;
1646                         flow2rgb(du, dv, &r, &g, &b);
1647                         putc(r, fp);
1648                         putc(g, fp);
1649                         putc(b, fp);
1650                 }
1651         }
1652         fclose(fp);
1653 }
1654
1655 void write_ppm(const char *filename, const uint8_t *rgba, unsigned width, unsigned height)
1656 {
1657         unique_ptr<uint8_t[]> rgb_line(new uint8_t[width * 3 + 1]);
1658
1659         FILE *fp = fopen(filename, "wb");
1660         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1661         for (unsigned y = 0; y < height; ++y) {
1662                 unsigned y2 = height - 1 - y;
1663                 for (size_t x = 0; x < width; ++x) {
1664                         memcpy(&rgb_line[x * 3], &rgba[(y2 * width + x) * 4], 4);
1665                 }
1666                 fwrite(rgb_line.get(), width * 3, 1, fp);
1667         }
1668         fclose(fp);
1669 }
1670
1671 struct FlowType {
1672         using type = float;
1673         static constexpr GLenum gl_format = GL_RG;
1674         static constexpr GLenum gl_type = GL_FLOAT;
1675         static constexpr int num_channels = 2;
1676 };
1677
1678 struct RGBAType {
1679         using type = uint8_t;
1680         static constexpr GLenum gl_format = GL_RGBA;
1681         static constexpr GLenum gl_type = GL_UNSIGNED_BYTE;
1682         static constexpr int num_channels = 4;
1683 };
1684
1685 template <class Type>
1686 void finish_one_read(GLuint width, GLuint height)
1687 {
1688         using T = typename Type::type;
1689         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1690
1691         assert(!reads_in_progress.empty());
1692         ReadInProgress read = reads_in_progress.front();
1693         reads_in_progress.pop_front();
1694
1695         unique_ptr<T[]> flow(new typename Type::type[width * height * Type::num_channels]);
1696         void *buf = glMapNamedBufferRange(read.pbo, 0, width * height * bytes_per_pixel, GL_MAP_READ_BIT);  // Blocks if the read isn't done yet.
1697         memcpy(flow.get(), buf, width * height * bytes_per_pixel);  // TODO: Unneeded for RGBType, since flip_coordinate_system() does nothing.:
1698         glUnmapNamedBuffer(read.pbo);
1699         spare_pbos.push(read.pbo);
1700
1701         flip_coordinate_system(flow.get(), width, height);
1702         if (!read.flow_filename.empty()) {
1703                 write_flow(read.flow_filename.c_str(), flow.get(), width, height);
1704                 fprintf(stderr, "%s %s -> %s\n", read.filename0.c_str(), read.filename1.c_str(), read.flow_filename.c_str());
1705         }
1706         if (!read.ppm_filename.empty()) {
1707                 write_ppm(read.ppm_filename.c_str(), flow.get(), width, height);
1708         }
1709 }
1710
1711 template <class Type>
1712 void schedule_read(GLuint tex, GLuint width, GLuint height, const char *filename0, const char *filename1, const char *flow_filename, const char *ppm_filename)
1713 {
1714         using T = typename Type::type;
1715         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1716
1717         if (spare_pbos.empty()) {
1718                 finish_one_read<Type>(width, height);
1719         }
1720         assert(!spare_pbos.empty());
1721         reads_in_progress.emplace_back(ReadInProgress{ spare_pbos.top(), filename0, filename1, flow_filename, ppm_filename });
1722         glBindBuffer(GL_PIXEL_PACK_BUFFER, spare_pbos.top());
1723         spare_pbos.pop();
1724         glGetTextureImage(tex, 0, Type::gl_format, Type::gl_type, width * height * bytes_per_pixel, nullptr);
1725         glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
1726 }
1727
1728 void compute_flow_only(int argc, char **argv, int optind)
1729 {
1730         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1731         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1732         const char *flow_filename = argc >= (optind + 3) ? argv[optind + 2] : "flow.flo";
1733
1734         // Load pictures.
1735         unsigned width1, height1, width2, height2;
1736         GLuint tex0 = load_texture(filename0, &width1, &height1, WITHOUT_MIPMAPS);
1737         GLuint tex1 = load_texture(filename1, &width2, &height2, WITHOUT_MIPMAPS);
1738
1739         if (width1 != width2 || height1 != height2) {
1740                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1741                         width1, height1, width2, height2);
1742                 exit(1);
1743         }
1744
1745         // Set up some PBOs to do asynchronous readback.
1746         GLuint pbos[5];
1747         glCreateBuffers(5, pbos);
1748         for (int i = 0; i < 5; ++i) {
1749                 glNamedBufferData(pbos[i], width1 * height1 * 2 * sizeof(float), nullptr, GL_STREAM_READ);
1750                 spare_pbos.push(pbos[i]);
1751         }
1752
1753         int levels = find_num_levels(width1, height1);
1754         GLuint tex0_gray, tex1_gray;
1755         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1756         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1757         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1758         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1759
1760         GrayscaleConversion gray;
1761         gray.exec(tex0, tex0_gray, width1, height1);
1762         glDeleteTextures(1, &tex0);
1763         glGenerateTextureMipmap(tex0_gray);
1764
1765         gray.exec(tex1, tex1_gray, width1, height1);
1766         glDeleteTextures(1, &tex1);
1767         glGenerateTextureMipmap(tex1_gray);
1768
1769         DISComputeFlow compute_flow(width1, height1);
1770         GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1771
1772         schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "flow.ppm");
1773         compute_flow.release_texture(final_tex);
1774
1775         // See if there are more flows on the command line (ie., more than three arguments),
1776         // and if so, process them.
1777         int num_flows = (argc - optind) / 3;
1778         for (int i = 1; i < num_flows; ++i) {
1779                 const char *filename0 = argv[optind + i * 3 + 0];
1780                 const char *filename1 = argv[optind + i * 3 + 1];
1781                 const char *flow_filename = argv[optind + i * 3 + 2];
1782                 GLuint width, height;
1783                 GLuint tex0 = load_texture(filename0, &width, &height, WITHOUT_MIPMAPS);
1784                 if (width != width1 || height != height1) {
1785                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1786                                 filename0, width, height, width1, height1);
1787                         exit(1);
1788                 }
1789                 gray.exec(tex0, tex0_gray, width, height);
1790                 glGenerateTextureMipmap(tex0_gray);
1791                 glDeleteTextures(1, &tex0);
1792
1793                 GLuint tex1 = load_texture(filename1, &width, &height, WITHOUT_MIPMAPS);
1794                 if (width != width1 || height != height1) {
1795                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1796                                 filename1, width, height, width1, height1);
1797                         exit(1);
1798                 }
1799                 gray.exec(tex1, tex1_gray, width, height);
1800                 glGenerateTextureMipmap(tex1_gray);
1801                 glDeleteTextures(1, &tex1);
1802
1803                 GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1804
1805                 schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "");
1806                 compute_flow.release_texture(final_tex);
1807         }
1808         glDeleteTextures(1, &tex0_gray);
1809         glDeleteTextures(1, &tex1_gray);
1810
1811         while (!reads_in_progress.empty()) {
1812                 finish_one_read<FlowType>(width1, height1);
1813         }
1814 }
1815
1816 // Interpolate images based on
1817 //
1818 //   Herbst, Seitz, Baker: “Occlusion Reasoning for Temporal Interpolation
1819 //   Using Optical Flow”
1820 //
1821 // or at least a reasonable subset thereof. Unfinished.
1822 void interpolate_image(int argc, char **argv, int optind)
1823 {
1824         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1825         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1826         //const char *out_filename = argc >= (optind + 3) ? argv[optind + 2] : "interpolated.png";
1827
1828         // Load pictures.
1829         unsigned width1, height1, width2, height2;
1830         GLuint tex0 = load_texture(filename0, &width1, &height1, WITH_MIPMAPS);
1831         GLuint tex1 = load_texture(filename1, &width2, &height2, WITH_MIPMAPS);
1832
1833         if (width1 != width2 || height1 != height2) {
1834                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1835                         width1, height1, width2, height2);
1836                 exit(1);
1837         }
1838
1839         // Set up some PBOs to do asynchronous readback.
1840         GLuint pbos[5];
1841         glCreateBuffers(5, pbos);
1842         for (int i = 0; i < 5; ++i) {
1843                 glNamedBufferData(pbos[i], width1 * height1 * 4 * sizeof(uint8_t), nullptr, GL_STREAM_READ);
1844                 spare_pbos.push(pbos[i]);
1845         }
1846
1847         DISComputeFlow compute_flow(width1, height1);
1848         GrayscaleConversion gray;
1849         Interpolate interpolate(width1, height1, finest_level);
1850
1851         int levels = find_num_levels(width1, height1);
1852         GLuint tex0_gray, tex1_gray;
1853         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1854         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1855         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1856         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1857
1858         gray.exec(tex0, tex0_gray, width1, height1);
1859         glGenerateTextureMipmap(tex0_gray);
1860
1861         gray.exec(tex1, tex1_gray, width1, height1);
1862         glGenerateTextureMipmap(tex1_gray);
1863
1864         GLuint forward_flow_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1865         GLuint backward_flow_tex = compute_flow.exec(tex1_gray, tex0_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1866
1867         for (int frameno = 1; frameno < 60; ++frameno) {
1868                 char ppm_filename[256];
1869                 snprintf(ppm_filename, sizeof(ppm_filename), "interp%04d.ppm", frameno);
1870
1871                 float alpha = frameno / 60.0f;
1872                 GLuint interpolated_tex = interpolate.exec(tex0, tex1, forward_flow_tex, backward_flow_tex, width1, height1, alpha);
1873
1874                 schedule_read<RGBAType>(interpolated_tex, width1, height1, filename0, filename1, "", ppm_filename);
1875                 interpolate.release_texture(interpolated_tex);
1876         }
1877
1878         while (!reads_in_progress.empty()) {
1879                 finish_one_read<RGBAType>(width1, height1);
1880         }
1881 }
1882
1883 int main(int argc, char **argv)
1884 {
1885         static const option long_options[] = {
1886                 { "smoothness-relative-weight", required_argument, 0, 's' },  // alpha.
1887                 { "intensity-relative-weight", required_argument, 0, 'i' },  // delta.
1888                 { "gradient-relative-weight", required_argument, 0, 'g' },  // gamma.
1889                 { "disable-timing", no_argument, 0, 1000 },
1890                 { "detailed-timing", no_argument, 0, 1003 },
1891                 { "ignore-variational-refinement", no_argument, 0, 1001 },  // Still calculates it, just doesn't apply it.
1892                 { "interpolate", no_argument, 0, 1002 }
1893         };
1894
1895         for ( ;; ) {
1896                 int option_index = 0;
1897                 int c = getopt_long(argc, argv, "s:i:g:", long_options, &option_index);
1898
1899                 if (c == -1) {
1900                         break;
1901                 }
1902                 switch (c) {
1903                 case 's':
1904                         vr_alpha = atof(optarg);
1905                         break;
1906                 case 'i':
1907                         vr_delta = atof(optarg);
1908                         break;
1909                 case 'g':
1910                         vr_gamma = atof(optarg);
1911                         break;
1912                 case 1000:
1913                         enable_timing = false;
1914                         break;
1915                 case 1001:
1916                         enable_variational_refinement = false;
1917                         break;
1918                 case 1002:
1919                         enable_interpolation = true;
1920                         break;
1921                 case 1003:
1922                         detailed_timing = true;
1923                         break;
1924                 default:
1925                         fprintf(stderr, "Unknown option '%s'\n", argv[option_index]);
1926                         exit(1);
1927                 };
1928         }
1929
1930         if (SDL_Init(SDL_INIT_EVERYTHING) == -1) {
1931                 fprintf(stderr, "SDL_Init failed: %s\n", SDL_GetError());
1932                 exit(1);
1933         }
1934         SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE, 8);
1935         SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 0);
1936         SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 0);
1937         SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);
1938
1939         SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
1940         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 4);
1941         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 5);
1942         // SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, SDL_GL_CONTEXT_DEBUG_FLAG);
1943         window = SDL_CreateWindow("OpenGL window",
1944                 SDL_WINDOWPOS_UNDEFINED,
1945                 SDL_WINDOWPOS_UNDEFINED,
1946                 64, 64,
1947                 SDL_WINDOW_OPENGL | SDL_WINDOW_HIDDEN);
1948         SDL_GLContext context = SDL_GL_CreateContext(window);
1949         assert(context != nullptr);
1950
1951         glDisable(GL_DITHER);
1952
1953         // FIXME: Should be part of DISComputeFlow (but needs to be initialized
1954         // before all the render passes).
1955         float vertices[] = {
1956                 0.0f, 1.0f,
1957                 0.0f, 0.0f,
1958                 1.0f, 1.0f,
1959                 1.0f, 0.0f,
1960         };
1961         glCreateBuffers(1, &vertex_vbo);
1962         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
1963         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1964
1965         if (enable_interpolation) {
1966                 interpolate_image(argc, argv, optind);
1967         } else {
1968                 compute_flow_only(argc, argv, optind);
1969         }
1970 }