]> git.sesse.net Git - nageru/blob - flow.cpp
16-bit depth should be plenty.
[nageru] / flow.cpp
1 #define NO_SDL_GLEXT 1
2
3 #include <epoxy/gl.h>
4
5 #include <SDL2/SDL.h>
6 #include <SDL2/SDL_error.h>
7 #include <SDL2/SDL_events.h>
8 #include <SDL2/SDL_image.h>
9 #include <SDL2/SDL_keyboard.h>
10 #include <SDL2/SDL_mouse.h>
11 #include <SDL2/SDL_video.h>
12
13 #include <assert.h>
14 #include <getopt.h>
15 #include <stdio.h>
16 #include <unistd.h>
17
18 #include "gpu_timers.h"
19 #include "util.h"
20
21 #include <algorithm>
22 #include <deque>
23 #include <memory>
24 #include <map>
25 #include <stack>
26 #include <vector>
27
28 #define BUFFER_OFFSET(i) ((char *)nullptr + (i))
29
30 using namespace std;
31
32 SDL_Window *window;
33
34 // Operating point 3 (10 Hz on CPU, excluding preprocessing).
35 constexpr float patch_overlap_ratio = 0.75f;
36 constexpr unsigned coarsest_level = 5;
37 constexpr unsigned finest_level = 1;
38 constexpr unsigned patch_size_pixels = 12;
39
40 // Weighting constants for the different parts of the variational refinement.
41 // These don't correspond 1:1 to the values given in the DIS paper,
42 // since we have different normalizations and ranges in some cases.
43 // These are found through a simple grid search on some MPI-Sintel data,
44 // although the error (EPE) seems to be fairly insensitive to the precise values.
45 // Only the relative values matter, so we fix alpha (the smoothness constant)
46 // at unity and tweak the others.
47 float vr_alpha = 1.0f, vr_delta = 0.25f, vr_gamma = 0.25f;
48
49 bool enable_timing = true;
50 bool detailed_timing = false;
51 bool enable_warmup = false;
52 bool in_warmup = false;
53 bool enable_variational_refinement = true;  // Just for debugging.
54 bool enable_interpolation = false;
55
56 // Some global OpenGL objects.
57 // TODO: These should really be part of DISComputeFlow.
58 GLuint nearest_sampler, linear_sampler, zero_border_sampler;
59 GLuint vertex_vbo;
60
61 // Structures for asynchronous readback. We assume everything is the same size (and GL_RG16F).
62 struct ReadInProgress {
63         GLuint pbo;
64         string filename0, filename1;
65         string flow_filename, ppm_filename;  // Either may be empty for no write.
66 };
67 stack<GLuint> spare_pbos;
68 deque<ReadInProgress> reads_in_progress;
69
70 int find_num_levels(int width, int height)
71 {
72         int levels = 1;
73         for (int w = width, h = height; w > 1 || h > 1; ) {
74                 w >>= 1;
75                 h >>= 1;
76                 ++levels;
77         }
78         return levels;
79 }
80
81 string read_file(const string &filename)
82 {
83         FILE *fp = fopen(filename.c_str(), "r");
84         if (fp == nullptr) {
85                 perror(filename.c_str());
86                 exit(1);
87         }
88
89         int ret = fseek(fp, 0, SEEK_END);
90         if (ret == -1) {
91                 perror("fseek(SEEK_END)");
92                 exit(1);
93         }
94
95         int size = ftell(fp);
96
97         ret = fseek(fp, 0, SEEK_SET);
98         if (ret == -1) {
99                 perror("fseek(SEEK_SET)");
100                 exit(1);
101         }
102
103         string str;
104         str.resize(size);
105         ret = fread(&str[0], size, 1, fp);
106         if (ret == -1) {
107                 perror("fread");
108                 exit(1);
109         }
110         if (ret == 0) {
111                 fprintf(stderr, "Short read when trying to read %d bytes from %s\n",
112                                 size, filename.c_str());
113                 exit(1);
114         }
115         fclose(fp);
116
117         return str;
118 }
119
120
121 GLuint compile_shader(const string &shader_src, GLenum type)
122 {
123         GLuint obj = glCreateShader(type);
124         const GLchar* source[] = { shader_src.data() };
125         const GLint length[] = { (GLint)shader_src.size() };
126         glShaderSource(obj, 1, source, length);
127         glCompileShader(obj);
128
129         GLchar info_log[4096];
130         GLsizei log_length = sizeof(info_log) - 1;
131         glGetShaderInfoLog(obj, log_length, &log_length, info_log);
132         info_log[log_length] = 0;
133         if (strlen(info_log) > 0) {
134                 fprintf(stderr, "Shader compile log: %s\n", info_log);
135         }
136
137         GLint status;
138         glGetShaderiv(obj, GL_COMPILE_STATUS, &status);
139         if (status == GL_FALSE) {
140                 // Add some line numbers to easier identify compile errors.
141                 string src_with_lines = "/*   1 */ ";
142                 size_t lineno = 1;
143                 for (char ch : shader_src) {
144                         src_with_lines.push_back(ch);
145                         if (ch == '\n') {
146                                 char buf[32];
147                                 snprintf(buf, sizeof(buf), "/* %3zu */ ", ++lineno);
148                                 src_with_lines += buf;
149                         }
150                 }
151
152                 fprintf(stderr, "Failed to compile shader:\n%s\n", src_with_lines.c_str());
153                 exit(1);
154         }
155
156         return obj;
157 }
158
159 enum MipmapPolicy {
160         WITHOUT_MIPMAPS,
161         WITH_MIPMAPS
162 };
163
164 GLuint load_texture(const char *filename, unsigned *width_ret, unsigned *height_ret, MipmapPolicy mipmaps)
165 {
166         SDL_Surface *surf = IMG_Load(filename);
167         if (surf == nullptr) {
168                 fprintf(stderr, "IMG_Load(%s): %s\n", filename, IMG_GetError());
169                 exit(1);
170         }
171
172         // For whatever reason, SDL doesn't support converting to YUV surfaces
173         // nor grayscale, so we'll do it ourselves.
174         SDL_Surface *rgb_surf = SDL_ConvertSurfaceFormat(surf, SDL_PIXELFORMAT_RGBA32, /*flags=*/0);
175         if (rgb_surf == nullptr) {
176                 fprintf(stderr, "SDL_ConvertSurfaceFormat(%s): %s\n", filename, SDL_GetError());
177                 exit(1);
178         }
179
180         SDL_FreeSurface(surf);
181
182         unsigned width = rgb_surf->w, height = rgb_surf->h;
183         const uint8_t *sptr = (uint8_t *)rgb_surf->pixels;
184         unique_ptr<uint8_t[]> pix(new uint8_t[width * height * 4]);
185
186         // Extract the Y component, and convert to bottom-left origin.
187         for (unsigned y = 0; y < height; ++y) {
188                 unsigned y2 = height - 1 - y;
189                 memcpy(pix.get() + y * width * 4, sptr + y2 * rgb_surf->pitch, width * 4);
190         }
191         SDL_FreeSurface(rgb_surf);
192
193         int num_levels = (mipmaps == WITH_MIPMAPS) ? find_num_levels(width, height) : 1;
194
195         GLuint tex;
196         glCreateTextures(GL_TEXTURE_2D, 1, &tex);
197         glTextureStorage2D(tex, num_levels, GL_RGBA8, width, height);
198         glTextureSubImage2D(tex, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pix.get());
199
200         if (mipmaps == WITH_MIPMAPS) {
201                 glGenerateTextureMipmap(tex);
202         }
203
204         *width_ret = width;
205         *height_ret = height;
206
207         return tex;
208 }
209
210 GLuint link_program(GLuint vs_obj, GLuint fs_obj)
211 {
212         GLuint program = glCreateProgram();
213         glAttachShader(program, vs_obj);
214         glAttachShader(program, fs_obj);
215         glLinkProgram(program);
216         GLint success;
217         glGetProgramiv(program, GL_LINK_STATUS, &success);
218         if (success == GL_FALSE) {
219                 GLchar error_log[1024] = {0};
220                 glGetProgramInfoLog(program, 1024, nullptr, error_log);
221                 fprintf(stderr, "Error linking program: %s\n", error_log);
222                 exit(1);
223         }
224         return program;
225 }
226
227 void bind_sampler(GLuint program, GLint location, GLuint texture_unit, GLuint tex, GLuint sampler)
228 {
229         if (location == -1) {
230                 return;
231         }
232
233         glBindTextureUnit(texture_unit, tex);
234         glBindSampler(texture_unit, sampler);
235         glProgramUniform1i(program, location, texture_unit);
236 }
237
238 // A class that caches FBOs that render to a given set of textures.
239 // It never frees anything, so it is only suitable for rendering to
240 // the same (small) set of textures over and over again.
241 template<size_t num_elements>
242 class PersistentFBOSet {
243 public:
244         void render_to(const array<GLuint, num_elements> &textures);
245
246         // Convenience wrappers.
247         void render_to(GLuint texture0) {
248                 render_to({{texture0}});
249         }
250
251         void render_to(GLuint texture0, GLuint texture1) {
252                 render_to({{texture0, texture1}});
253         }
254
255         void render_to(GLuint texture0, GLuint texture1, GLuint texture2) {
256                 render_to({{texture0, texture1, texture2}});
257         }
258
259         void render_to(GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
260                 render_to({{texture0, texture1, texture2, texture3}});
261         }
262
263 private:
264         // TODO: Delete these on destruction.
265         map<array<GLuint, num_elements>, GLuint> fbos;
266 };
267
268 template<size_t num_elements>
269 void PersistentFBOSet<num_elements>::render_to(const array<GLuint, num_elements> &textures)
270 {
271         auto it = fbos.find(textures);
272         if (it != fbos.end()) {
273                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
274                 return;
275         }
276
277         GLuint fbo;
278         glCreateFramebuffers(1, &fbo);
279         GLenum bufs[num_elements];
280         for (size_t i = 0; i < num_elements; ++i) {
281                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
282                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
283         }
284         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
285
286         fbos[textures] = fbo;
287         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
288 }
289
290 // Same, but with a depth texture.
291 template<size_t num_elements>
292 class PersistentFBOSetWithDepth {
293 public:
294         void render_to(GLuint depth_rb, const array<GLuint, num_elements> &textures);
295
296         // Convenience wrappers.
297         void render_to(GLuint depth_rb, GLuint texture0) {
298                 render_to(depth_rb, {{texture0}});
299         }
300
301         void render_to(GLuint depth_rb, GLuint texture0, GLuint texture1) {
302                 render_to(depth_rb, {{texture0, texture1}});
303         }
304
305         void render_to(GLuint depth_rb, GLuint texture0, GLuint texture1, GLuint texture2) {
306                 render_to(depth_rb, {{texture0, texture1, texture2}});
307         }
308
309         void render_to(GLuint depth_rb, GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
310                 render_to(depth_rb, {{texture0, texture1, texture2, texture3}});
311         }
312
313 private:
314         // TODO: Delete these on destruction.
315         map<pair<GLuint, array<GLuint, num_elements>>, GLuint> fbos;
316 };
317
318 template<size_t num_elements>
319 void PersistentFBOSetWithDepth<num_elements>::render_to(GLuint depth_rb, const array<GLuint, num_elements> &textures)
320 {
321         auto key = make_pair(depth_rb, textures);
322
323         auto it = fbos.find(key);
324         if (it != fbos.end()) {
325                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
326                 return;
327         }
328
329         GLuint fbo;
330         glCreateFramebuffers(1, &fbo);
331         GLenum bufs[num_elements];
332         glNamedFramebufferRenderbuffer(fbo, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depth_rb);
333         for (size_t i = 0; i < num_elements; ++i) {
334                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
335                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
336         }
337         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
338
339         fbos[key] = fbo;
340         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
341 }
342
343 // Convert RGB to grayscale, using Rec. 709 coefficients.
344 class GrayscaleConversion {
345 public:
346         GrayscaleConversion();
347         void exec(GLint tex, GLint gray_tex, int width, int height);
348
349 private:
350         PersistentFBOSet<1> fbos;
351         GLuint gray_vs_obj;
352         GLuint gray_fs_obj;
353         GLuint gray_program;
354         GLuint gray_vao;
355
356         GLuint uniform_tex;
357 };
358
359 GrayscaleConversion::GrayscaleConversion()
360 {
361         gray_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
362         gray_fs_obj = compile_shader(read_file("gray.frag"), GL_FRAGMENT_SHADER);
363         gray_program = link_program(gray_vs_obj, gray_fs_obj);
364
365         // Set up the VAO containing all the required position/texcoord data.
366         glCreateVertexArrays(1, &gray_vao);
367         glBindVertexArray(gray_vao);
368
369         GLint position_attrib = glGetAttribLocation(gray_program, "position");
370         glEnableVertexArrayAttrib(gray_vao, position_attrib);
371         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
372
373         uniform_tex = glGetUniformLocation(gray_program, "tex");
374 }
375
376 void GrayscaleConversion::exec(GLint tex, GLint gray_tex, int width, int height)
377 {
378         glUseProgram(gray_program);
379         bind_sampler(gray_program, uniform_tex, 0, tex, nearest_sampler);
380
381         glViewport(0, 0, width, height);
382         fbos.render_to(gray_tex);
383         glBindVertexArray(gray_vao);
384         glDisable(GL_BLEND);
385         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
386 }
387
388 // Compute gradients in every point, used for the motion search.
389 // The DIS paper doesn't actually mention how these are computed,
390 // but seemingly, a 3x3 Sobel operator is used here (at least in
391 // later versions of the code), while a [1 -8 0 8 -1] kernel is
392 // used for all the derivatives in the variational refinement part
393 // (which borrows code from DeepFlow). This is inconsistent,
394 // but I guess we're better off with staying with the original
395 // decisions until we actually know having different ones would be better.
396 class Sobel {
397 public:
398         Sobel();
399         void exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height);
400
401 private:
402         PersistentFBOSet<1> fbos;
403         GLuint sobel_vs_obj;
404         GLuint sobel_fs_obj;
405         GLuint sobel_program;
406
407         GLuint uniform_tex;
408 };
409
410 Sobel::Sobel()
411 {
412         sobel_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
413         sobel_fs_obj = compile_shader(read_file("sobel.frag"), GL_FRAGMENT_SHADER);
414         sobel_program = link_program(sobel_vs_obj, sobel_fs_obj);
415
416         uniform_tex = glGetUniformLocation(sobel_program, "tex");
417 }
418
419 void Sobel::exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height)
420 {
421         glUseProgram(sobel_program);
422         bind_sampler(sobel_program, uniform_tex, 0, tex0_view, nearest_sampler);
423
424         glViewport(0, 0, level_width, level_height);
425         fbos.render_to(grad0_tex);
426         glDisable(GL_BLEND);
427         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
428 }
429
430 // Motion search to find the initial flow. See motion_search.frag for documentation.
431 class MotionSearch {
432 public:
433         MotionSearch();
434         void exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches);
435
436 private:
437         PersistentFBOSet<1> fbos;
438
439         GLuint motion_vs_obj;
440         GLuint motion_fs_obj;
441         GLuint motion_search_program;
442
443         GLuint uniform_inv_image_size, uniform_inv_prev_level_size, uniform_out_flow_size;
444         GLuint uniform_image1_tex, uniform_grad0_tex, uniform_flow_tex;
445 };
446
447 MotionSearch::MotionSearch()
448 {
449         motion_vs_obj = compile_shader(read_file("motion_search.vert"), GL_VERTEX_SHADER);
450         motion_fs_obj = compile_shader(read_file("motion_search.frag"), GL_FRAGMENT_SHADER);
451         motion_search_program = link_program(motion_vs_obj, motion_fs_obj);
452
453         uniform_inv_image_size = glGetUniformLocation(motion_search_program, "inv_image_size");
454         uniform_inv_prev_level_size = glGetUniformLocation(motion_search_program, "inv_prev_level_size");
455         uniform_out_flow_size = glGetUniformLocation(motion_search_program, "out_flow_size");
456         uniform_image1_tex = glGetUniformLocation(motion_search_program, "image1_tex");
457         uniform_grad0_tex = glGetUniformLocation(motion_search_program, "grad0_tex");
458         uniform_flow_tex = glGetUniformLocation(motion_search_program, "flow_tex");
459 }
460
461 void MotionSearch::exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches)
462 {
463         glUseProgram(motion_search_program);
464
465         bind_sampler(motion_search_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
466         bind_sampler(motion_search_program, uniform_grad0_tex, 2, grad0_tex, nearest_sampler);
467         bind_sampler(motion_search_program, uniform_flow_tex, 3, flow_tex, linear_sampler);
468
469         glProgramUniform2f(motion_search_program, uniform_inv_image_size, 1.0f / level_width, 1.0f / level_height);
470         glProgramUniform2f(motion_search_program, uniform_inv_prev_level_size, 1.0f / prev_level_width, 1.0f / prev_level_height);
471         glProgramUniform2f(motion_search_program, uniform_out_flow_size, width_patches, height_patches);
472
473         glViewport(0, 0, width_patches, height_patches);
474         fbos.render_to(flow_out_tex);
475         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
476 }
477
478 // Do “densification”, ie., upsampling of the flow patches to the flow field
479 // (the same size as the image at this level). We draw one quad per patch
480 // over its entire covered area (using instancing in the vertex shader),
481 // and then weight the contributions in the pixel shader by post-warp difference.
482 // This is equation (3) in the paper.
483 //
484 // We accumulate the flow vectors in the R/G channels (for u/v) and the total
485 // weight in the B channel. Dividing R and G by B gives the normalized values.
486 class Densify {
487 public:
488         Densify();
489         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches);
490
491 private:
492         PersistentFBOSet<1> fbos;
493
494         GLuint densify_vs_obj;
495         GLuint densify_fs_obj;
496         GLuint densify_program;
497
498         GLuint uniform_patch_size;
499         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
500 };
501
502 Densify::Densify()
503 {
504         densify_vs_obj = compile_shader(read_file("densify.vert"), GL_VERTEX_SHADER);
505         densify_fs_obj = compile_shader(read_file("densify.frag"), GL_FRAGMENT_SHADER);
506         densify_program = link_program(densify_vs_obj, densify_fs_obj);
507
508         uniform_patch_size = glGetUniformLocation(densify_program, "patch_size");
509         uniform_image0_tex = glGetUniformLocation(densify_program, "image0_tex");
510         uniform_image1_tex = glGetUniformLocation(densify_program, "image1_tex");
511         uniform_flow_tex = glGetUniformLocation(densify_program, "flow_tex");
512 }
513
514 void Densify::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches)
515 {
516         glUseProgram(densify_program);
517
518         bind_sampler(densify_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
519         bind_sampler(densify_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
520         bind_sampler(densify_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
521
522         glProgramUniform2f(densify_program, uniform_patch_size,
523                 float(patch_size_pixels) / level_width,
524                 float(patch_size_pixels) / level_height);
525
526         glViewport(0, 0, level_width, level_height);
527         glEnable(GL_BLEND);
528         glBlendFunc(GL_ONE, GL_ONE);
529         fbos.render_to(dense_flow_tex);
530         glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
531         glClear(GL_COLOR_BUFFER_BIT);
532         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width_patches * height_patches);
533 }
534
535 // Warp I_1 to I_w, and then compute the mean (I) and difference (I_t) of
536 // I_0 and I_w. The prewarping is what enables us to solve the variational
537 // flow for du,dv instead of u,v.
538 //
539 // Also calculates the normalized flow, ie. divides by z (this is needed because
540 // Densify works by additive blending) and multiplies by the image size.
541 //
542 // See variational_refinement.txt for more information.
543 class Prewarp {
544 public:
545         Prewarp();
546         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint normalized_flow_tex, GLuint I_tex, GLuint I_t_tex, int level_width, int level_height);
547
548 private:
549         PersistentFBOSet<3> fbos;
550
551         GLuint prewarp_vs_obj;
552         GLuint prewarp_fs_obj;
553         GLuint prewarp_program;
554
555         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
556 };
557
558 Prewarp::Prewarp()
559 {
560         prewarp_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
561         prewarp_fs_obj = compile_shader(read_file("prewarp.frag"), GL_FRAGMENT_SHADER);
562         prewarp_program = link_program(prewarp_vs_obj, prewarp_fs_obj);
563
564         uniform_image0_tex = glGetUniformLocation(prewarp_program, "image0_tex");
565         uniform_image1_tex = glGetUniformLocation(prewarp_program, "image1_tex");
566         uniform_flow_tex = glGetUniformLocation(prewarp_program, "flow_tex");
567 }
568
569 void Prewarp::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint I_tex, GLuint I_t_tex, GLuint normalized_flow_tex, int level_width, int level_height)
570 {
571         glUseProgram(prewarp_program);
572
573         bind_sampler(prewarp_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
574         bind_sampler(prewarp_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
575         bind_sampler(prewarp_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
576
577         glViewport(0, 0, level_width, level_height);
578         glDisable(GL_BLEND);
579         fbos.render_to(I_tex, I_t_tex, normalized_flow_tex);
580         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
581 }
582
583 // From I, calculate the partial derivatives I_x and I_y. We use a four-tap
584 // central difference filter, since apparently, that's tradition (I haven't
585 // measured quality versus a more normal 0.5 (I[x+1] - I[x-1]).)
586 // The coefficients come from
587 //
588 //   https://en.wikipedia.org/wiki/Finite_difference_coefficient
589 //
590 // Also computes β_0, since it depends only on I_x and I_y.
591 class Derivatives {
592 public:
593         Derivatives();
594         void exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height);
595
596 private:
597         PersistentFBOSet<2> fbos;
598
599         GLuint derivatives_vs_obj;
600         GLuint derivatives_fs_obj;
601         GLuint derivatives_program;
602
603         GLuint uniform_tex;
604 };
605
606 Derivatives::Derivatives()
607 {
608         derivatives_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
609         derivatives_fs_obj = compile_shader(read_file("derivatives.frag"), GL_FRAGMENT_SHADER);
610         derivatives_program = link_program(derivatives_vs_obj, derivatives_fs_obj);
611
612         uniform_tex = glGetUniformLocation(derivatives_program, "tex");
613 }
614
615 void Derivatives::exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height)
616 {
617         glUseProgram(derivatives_program);
618
619         bind_sampler(derivatives_program, uniform_tex, 0, input_tex, nearest_sampler);
620
621         glViewport(0, 0, level_width, level_height);
622         glDisable(GL_BLEND);
623         fbos.render_to(I_x_y_tex, beta_0_tex);
624         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
625 }
626
627 // Calculate the diffusivity for each pixels, g(x,y). Smoothness (s) will
628 // be calculated in the shaders on-the-fly by sampling in-between two
629 // neighboring g(x,y) pixels, plus a border tweak to make sure we get
630 // zero smoothness at the border.
631 //
632 // See variational_refinement.txt for more information.
633 class ComputeDiffusivity {
634 public:
635         ComputeDiffusivity();
636         void exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow);
637
638 private:
639         PersistentFBOSet<1> fbos;
640
641         GLuint diffusivity_vs_obj;
642         GLuint diffusivity_fs_obj;
643         GLuint diffusivity_program;
644
645         GLuint uniform_flow_tex, uniform_diff_flow_tex;
646         GLuint uniform_alpha, uniform_zero_diff_flow;
647 };
648
649 ComputeDiffusivity::ComputeDiffusivity()
650 {
651         diffusivity_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
652         diffusivity_fs_obj = compile_shader(read_file("diffusivity.frag"), GL_FRAGMENT_SHADER);
653         diffusivity_program = link_program(diffusivity_vs_obj, diffusivity_fs_obj);
654
655         uniform_flow_tex = glGetUniformLocation(diffusivity_program, "flow_tex");
656         uniform_diff_flow_tex = glGetUniformLocation(diffusivity_program, "diff_flow_tex");
657         uniform_alpha = glGetUniformLocation(diffusivity_program, "alpha");
658         uniform_zero_diff_flow = glGetUniformLocation(diffusivity_program, "zero_diff_flow");
659 }
660
661 void ComputeDiffusivity::exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow)
662 {
663         glUseProgram(diffusivity_program);
664
665         bind_sampler(diffusivity_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
666         bind_sampler(diffusivity_program, uniform_diff_flow_tex, 1, diff_flow_tex, nearest_sampler);
667         glProgramUniform1f(diffusivity_program, uniform_alpha, vr_alpha);
668         glProgramUniform1i(diffusivity_program, uniform_zero_diff_flow, zero_diff_flow);
669
670         glViewport(0, 0, level_width, level_height);
671
672         glDisable(GL_BLEND);
673         fbos.render_to(diffusivity_tex);
674         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
675 }
676
677 // Set up the equations set (two equations in two unknowns, per pixel).
678 // We store five floats; the three non-redundant elements of the 2x2 matrix (A)
679 // as 32-bit floats, and the two elements on the right-hand side (b) as 16-bit
680 // floats. (Actually, we store the inverse of the diagonal elements, because
681 // we only ever need to divide by them.) This fits into four u32 values;
682 // R, G, B for the matrix (the last element is symmetric) and A for the two b values.
683 // All the values of the energy term (E_I, E_G, E_S), except the smoothness
684 // terms that depend on other pixels, are calculated in one pass.
685 //
686 // The equation set is split in two; one contains only the pixels needed for
687 // the red pass, and one only for the black pass (see sor.frag). This reduces
688 // the amount of data the SOR shader has to pull in, at the cost of some
689 // complexity when the equation texture ends up with half the size and we need
690 // to adjust texture coordinates.  The contraction is done along the horizontal
691 // axis, so that on even rows (0, 2, 4, ...), the “red” texture will contain
692 // pixels 0, 2, 4, 6, etc., and on odd rows 1, 3, 5, etc..
693 //
694 // See variational_refinement.txt for more information about the actual
695 // equations in use.
696 class SetupEquations {
697 public:
698         SetupEquations();
699         void exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_red_tex, GLuint equation_black_tex, int level_width, int level_height, bool zero_diff_flow);
700
701 private:
702         PersistentFBOSet<2> fbos;
703
704         GLuint equations_vs_obj;
705         GLuint equations_fs_obj;
706         GLuint equations_program;
707
708         GLuint uniform_I_x_y_tex, uniform_I_t_tex;
709         GLuint uniform_diff_flow_tex, uniform_base_flow_tex;
710         GLuint uniform_beta_0_tex;
711         GLuint uniform_diffusivity_tex;
712         GLuint uniform_gamma, uniform_delta, uniform_zero_diff_flow;
713 };
714
715 SetupEquations::SetupEquations()
716 {
717         equations_vs_obj = compile_shader(read_file("equations.vert"), GL_VERTEX_SHADER);
718         equations_fs_obj = compile_shader(read_file("equations.frag"), GL_FRAGMENT_SHADER);
719         equations_program = link_program(equations_vs_obj, equations_fs_obj);
720
721         uniform_I_x_y_tex = glGetUniformLocation(equations_program, "I_x_y_tex");
722         uniform_I_t_tex = glGetUniformLocation(equations_program, "I_t_tex");
723         uniform_diff_flow_tex = glGetUniformLocation(equations_program, "diff_flow_tex");
724         uniform_base_flow_tex = glGetUniformLocation(equations_program, "base_flow_tex");
725         uniform_beta_0_tex = glGetUniformLocation(equations_program, "beta_0_tex");
726         uniform_diffusivity_tex = glGetUniformLocation(equations_program, "diffusivity_tex");
727         uniform_gamma = glGetUniformLocation(equations_program, "gamma");
728         uniform_delta = glGetUniformLocation(equations_program, "delta");
729         uniform_zero_diff_flow = glGetUniformLocation(equations_program, "zero_diff_flow");
730 }
731
732 void SetupEquations::exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint base_flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_red_tex, GLuint equation_black_tex, int level_width, int level_height, bool zero_diff_flow)
733 {
734         glUseProgram(equations_program);
735
736         bind_sampler(equations_program, uniform_I_x_y_tex, 0, I_x_y_tex, nearest_sampler);
737         bind_sampler(equations_program, uniform_I_t_tex, 1, I_t_tex, nearest_sampler);
738         bind_sampler(equations_program, uniform_diff_flow_tex, 2, diff_flow_tex, nearest_sampler);
739         bind_sampler(equations_program, uniform_base_flow_tex, 3, base_flow_tex, nearest_sampler);
740         bind_sampler(equations_program, uniform_beta_0_tex, 4, beta_0_tex, nearest_sampler);
741         bind_sampler(equations_program, uniform_diffusivity_tex, 5, diffusivity_tex, zero_border_sampler);
742         glProgramUniform1f(equations_program, uniform_delta, vr_delta);
743         glProgramUniform1f(equations_program, uniform_gamma, vr_gamma);
744         glProgramUniform1i(equations_program, uniform_zero_diff_flow, zero_diff_flow);
745
746         glViewport(0, 0, (level_width + 1) / 2, level_height);
747         glDisable(GL_BLEND);
748         fbos.render_to({equation_red_tex, equation_black_tex});
749         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
750 }
751
752 // Actually solve the equation sets made by SetupEquations, by means of
753 // successive over-relaxation (SOR).
754 //
755 // See variational_refinement.txt for more information.
756 class SOR {
757 public:
758         SOR();
759         void exec(GLuint diff_flow_tex, GLuint equation_red_tex, GLuint equation_black_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, ScopedTimer *sor_timer);
760
761 private:
762         PersistentFBOSet<1> fbos;
763
764         GLuint sor_vs_obj;
765         GLuint sor_fs_obj;
766         GLuint sor_program;
767
768         GLuint uniform_diff_flow_tex;
769         GLuint uniform_equation_red_tex, uniform_equation_black_tex;
770         GLuint uniform_diffusivity_tex;
771         GLuint uniform_phase, uniform_num_nonzero_phases;
772 };
773
774 SOR::SOR()
775 {
776         sor_vs_obj = compile_shader(read_file("sor.vert"), GL_VERTEX_SHADER);
777         sor_fs_obj = compile_shader(read_file("sor.frag"), GL_FRAGMENT_SHADER);
778         sor_program = link_program(sor_vs_obj, sor_fs_obj);
779
780         uniform_diff_flow_tex = glGetUniformLocation(sor_program, "diff_flow_tex");
781         uniform_equation_red_tex = glGetUniformLocation(sor_program, "equation_red_tex");
782         uniform_equation_black_tex = glGetUniformLocation(sor_program, "equation_black_tex");
783         uniform_diffusivity_tex = glGetUniformLocation(sor_program, "diffusivity_tex");
784         uniform_phase = glGetUniformLocation(sor_program, "phase");
785         uniform_num_nonzero_phases = glGetUniformLocation(sor_program, "num_nonzero_phases");
786 }
787
788 void SOR::exec(GLuint diff_flow_tex, GLuint equation_red_tex, GLuint equation_black_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, ScopedTimer *sor_timer)
789 {
790         glUseProgram(sor_program);
791
792         bind_sampler(sor_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
793         bind_sampler(sor_program, uniform_diffusivity_tex, 1, diffusivity_tex, zero_border_sampler);
794         bind_sampler(sor_program, uniform_equation_red_tex, 2, equation_red_tex, nearest_sampler);
795         bind_sampler(sor_program, uniform_equation_black_tex, 3, equation_black_tex, nearest_sampler);
796
797         if (!zero_diff_flow) {
798                 glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 2);
799         }
800
801         // NOTE: We bind to the texture we are rendering from, but we never write any value
802         // that we read in the same shader pass (we call discard for red values when we compute
803         // black, and vice versa), and we have barriers between the passes, so we're fine
804         // as per the spec.
805         glViewport(0, 0, level_width, level_height);
806         glDisable(GL_BLEND);
807         fbos.render_to(diff_flow_tex);
808
809         for (int i = 0; i < num_iterations; ++i) {
810                 {
811                         ScopedTimer timer("Red pass", sor_timer);
812                         if (zero_diff_flow && i == 0) {
813                                 glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 0);
814                         }
815                         glProgramUniform1i(sor_program, uniform_phase, 0);
816                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
817                         glTextureBarrier();
818                 }
819                 {
820                         ScopedTimer timer("Black pass", sor_timer);
821                         if (zero_diff_flow && i == 0) {
822                                 glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 1);
823                         }
824                         glProgramUniform1i(sor_program, uniform_phase, 1);
825                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
826                         if (zero_diff_flow && i == 0) {
827                                 glProgramUniform1i(sor_program, uniform_num_nonzero_phases, 2);
828                         }
829                         if (i != num_iterations - 1) {
830                                 glTextureBarrier();
831                         }
832                 }
833         }
834 }
835
836 // Simply add the differential flow found by the variational refinement to the base flow.
837 // The output is in base_flow_tex; we don't need to make a new texture.
838 class AddBaseFlow {
839 public:
840         AddBaseFlow();
841         void exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height);
842
843 private:
844         PersistentFBOSet<1> fbos;
845
846         GLuint add_flow_vs_obj;
847         GLuint add_flow_fs_obj;
848         GLuint add_flow_program;
849
850         GLuint uniform_diff_flow_tex;
851 };
852
853 AddBaseFlow::AddBaseFlow()
854 {
855         add_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
856         add_flow_fs_obj = compile_shader(read_file("add_base_flow.frag"), GL_FRAGMENT_SHADER);
857         add_flow_program = link_program(add_flow_vs_obj, add_flow_fs_obj);
858
859         uniform_diff_flow_tex = glGetUniformLocation(add_flow_program, "diff_flow_tex");
860 }
861
862 void AddBaseFlow::exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height)
863 {
864         glUseProgram(add_flow_program);
865
866         bind_sampler(add_flow_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
867
868         glViewport(0, 0, level_width, level_height);
869         glEnable(GL_BLEND);
870         glBlendFunc(GL_ONE, GL_ONE);
871         fbos.render_to(base_flow_tex);
872
873         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
874 }
875
876 // Take a copy of the flow, bilinearly interpolated and scaled up.
877 class ResizeFlow {
878 public:
879         ResizeFlow();
880         void exec(GLuint in_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height);
881
882 private:
883         PersistentFBOSet<1> fbos;
884
885         GLuint resize_flow_vs_obj;
886         GLuint resize_flow_fs_obj;
887         GLuint resize_flow_program;
888
889         GLuint uniform_flow_tex;
890         GLuint uniform_scale_factor;
891 };
892
893 ResizeFlow::ResizeFlow()
894 {
895         resize_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
896         resize_flow_fs_obj = compile_shader(read_file("resize_flow.frag"), GL_FRAGMENT_SHADER);
897         resize_flow_program = link_program(resize_flow_vs_obj, resize_flow_fs_obj);
898
899         uniform_flow_tex = glGetUniformLocation(resize_flow_program, "flow_tex");
900         uniform_scale_factor = glGetUniformLocation(resize_flow_program, "scale_factor");
901 }
902
903 void ResizeFlow::exec(GLuint flow_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height)
904 {
905         glUseProgram(resize_flow_program);
906
907         bind_sampler(resize_flow_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
908
909         glProgramUniform2f(resize_flow_program, uniform_scale_factor, float(output_width) / input_width, float(output_height) / input_height);
910
911         glViewport(0, 0, output_width, output_height);
912         glDisable(GL_BLEND);
913         fbos.render_to(out_tex);
914
915         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
916 }
917
918 class TexturePool {
919 public:
920         GLuint get_texture(GLenum format, GLuint width, GLuint height);
921         void release_texture(GLuint tex_num);
922         GLuint get_renderbuffer(GLenum format, GLuint width, GLuint height);
923         void release_renderbuffer(GLuint tex_num);
924
925 private:
926         struct Texture {
927                 GLuint tex_num;
928                 GLenum format;
929                 GLuint width, height;
930                 bool in_use = false;
931                 bool is_renderbuffer = false;
932         };
933         vector<Texture> textures;
934 };
935
936 class DISComputeFlow {
937 public:
938         DISComputeFlow(int width, int height);
939
940         enum ResizeStrategy {
941                 DO_NOT_RESIZE_FLOW,
942                 RESIZE_FLOW_TO_FULL_SIZE
943         };
944
945         // Returns a texture that must be released with release_texture()
946         // after use.
947         GLuint exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy);
948
949         void release_texture(GLuint tex) {
950                 pool.release_texture(tex);
951         }
952
953 private:
954         int width, height;
955         GLuint initial_flow_tex;
956         GLuint vertex_vbo, vao;
957         TexturePool pool;
958
959         // The various passes.
960         Sobel sobel;
961         MotionSearch motion_search;
962         Densify densify;
963         Prewarp prewarp;
964         Derivatives derivatives;
965         ComputeDiffusivity compute_diffusivity;
966         SetupEquations setup_equations;
967         SOR sor;
968         AddBaseFlow add_base_flow;
969         ResizeFlow resize_flow;
970 };
971
972 DISComputeFlow::DISComputeFlow(int width, int height)
973         : width(width), height(height)
974 {
975         // Make some samplers.
976         glCreateSamplers(1, &nearest_sampler);
977         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
978         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
979         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
980         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
981
982         glCreateSamplers(1, &linear_sampler);
983         glSamplerParameteri(linear_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
984         glSamplerParameteri(linear_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
985         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
986         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
987
988         // The smoothness is sampled so that once we get to a smoothness involving
989         // a value outside the border, the diffusivity between the two becomes zero.
990         // Similarly, gradients are zero outside the border, since the edge is taken
991         // to be constant.
992         glCreateSamplers(1, &zero_border_sampler);
993         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
994         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
995         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
996         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
997         float zero[] = { 0.0f, 0.0f, 0.0f, 0.0f };  // Note that zero alpha means we can also see whether we sampled outside the border or not.
998         glSamplerParameterfv(zero_border_sampler, GL_TEXTURE_BORDER_COLOR, zero);
999
1000         // Initial flow is zero, 1x1.
1001         glCreateTextures(GL_TEXTURE_2D, 1, &initial_flow_tex);
1002         glTextureStorage2D(initial_flow_tex, 1, GL_RG16F, 1, 1);
1003         glClearTexImage(initial_flow_tex, 0, GL_RG, GL_FLOAT, nullptr);
1004
1005         // Set up the vertex data that will be shared between all passes.
1006         float vertices[] = {
1007                 0.0f, 1.0f,
1008                 0.0f, 0.0f,
1009                 1.0f, 1.0f,
1010                 1.0f, 0.0f,
1011         };
1012         glCreateBuffers(1, &vertex_vbo);
1013         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
1014
1015         glCreateVertexArrays(1, &vao);
1016         glBindVertexArray(vao);
1017         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1018
1019         GLint position_attrib = 0;  // Hard-coded in every vertex shader.
1020         glEnableVertexArrayAttrib(vao, position_attrib);
1021         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1022 }
1023
1024 GLuint DISComputeFlow::exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy)
1025 {
1026         int prev_level_width = 1, prev_level_height = 1;
1027         GLuint prev_level_flow_tex = initial_flow_tex;
1028
1029         GPUTimers timers;
1030
1031         glBindVertexArray(vao);
1032
1033         ScopedTimer total_timer("Compute flow", &timers);
1034         for (int level = coarsest_level; level >= int(finest_level); --level) {
1035                 char timer_name[256];
1036                 snprintf(timer_name, sizeof(timer_name), "Level %d (%d x %d)", level, width >> level, height >> level);
1037                 ScopedTimer level_timer(timer_name, &total_timer);
1038
1039                 int level_width = width >> level;
1040                 int level_height = height >> level;
1041                 float patch_spacing_pixels = patch_size_pixels * (1.0f - patch_overlap_ratio);
1042
1043                 // Make sure we have patches at least every Nth pixel, e.g. for width=9
1044                 // and patch_spacing=3 (the default), we put out patch centers in
1045                 // x=0, x=3, x=6, x=9, which is four patches. The fragment shader will
1046                 // lock all the centers to integer coordinates if needed.
1047                 int width_patches = 1 + ceil(level_width / patch_spacing_pixels);
1048                 int height_patches = 1 + ceil(level_height / patch_spacing_pixels);
1049
1050                 // Make sure we always read from the correct level; the chosen
1051                 // mipmapping could otherwise be rather unpredictable, especially
1052                 // during motion search.
1053                 GLuint tex0_view, tex1_view;
1054                 glGenTextures(1, &tex0_view);
1055                 glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_R8, level, 1, 0, 1);
1056                 glGenTextures(1, &tex1_view);
1057                 glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_R8, level, 1, 0, 1);
1058
1059                 // Create a new texture; we could be fancy and render use a multi-level
1060                 // texture, but meh.
1061                 GLuint grad0_tex = pool.get_texture(GL_R32UI, level_width, level_height);
1062
1063                 // Find the derivative.
1064                 {
1065                         ScopedTimer timer("Sobel", &level_timer);
1066                         sobel.exec(tex0_view, grad0_tex, level_width, level_height);
1067                 }
1068
1069                 // Motion search to find the initial flow. We use the flow from the previous
1070                 // level (sampled bilinearly; no fancy tricks) as a guide, then search from there.
1071
1072                 // Create an output flow texture.
1073                 GLuint flow_out_tex = pool.get_texture(GL_RGB16F, width_patches, height_patches);
1074
1075                 // And draw.
1076                 {
1077                         ScopedTimer timer("Motion search", &level_timer);
1078                         motion_search.exec(tex0_view, tex1_view, grad0_tex, prev_level_flow_tex, flow_out_tex, level_width, level_height, prev_level_width, prev_level_height, width_patches, height_patches);
1079                 }
1080                 pool.release_texture(grad0_tex);
1081
1082                 // Densification.
1083
1084                 // Set up an output texture (cleared in Densify).
1085                 GLuint dense_flow_tex = pool.get_texture(GL_RGB16F, level_width, level_height);
1086
1087                 // And draw.
1088                 {
1089                         ScopedTimer timer("Densification", &level_timer);
1090                         densify.exec(tex0_view, tex1_view, flow_out_tex, dense_flow_tex, level_width, level_height, width_patches, height_patches);
1091                 }
1092                 pool.release_texture(flow_out_tex);
1093
1094                 // Everything below here in the loop belongs to variational refinement.
1095                 ScopedTimer varref_timer("Variational refinement", &level_timer);
1096
1097                 // Prewarping; create I and I_t, and a normalized base flow (so we don't
1098                 // have to normalize it over and over again, and also save some bandwidth).
1099                 //
1100                 // During the entire rest of the variational refinement, flow will be measured
1101                 // in pixels, not 0..1 normalized OpenGL texture coordinates.
1102                 // This is because variational refinement depends so heavily on derivatives,
1103                 // which are measured in intensity levels per pixel.
1104                 GLuint I_tex = pool.get_texture(GL_R16F, level_width, level_height);
1105                 GLuint I_t_tex = pool.get_texture(GL_R16F, level_width, level_height);
1106                 GLuint base_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1107                 {
1108                         ScopedTimer timer("Prewarping", &varref_timer);
1109                         prewarp.exec(tex0_view, tex1_view, dense_flow_tex, I_tex, I_t_tex, base_flow_tex, level_width, level_height);
1110                 }
1111                 pool.release_texture(dense_flow_tex);
1112                 glDeleteTextures(1, &tex0_view);
1113                 glDeleteTextures(1, &tex1_view);
1114
1115                 // Calculate I_x and I_y. We're only calculating first derivatives;
1116                 // the others will be taken on-the-fly in order to sample from fewer
1117                 // textures overall, since sampling from the L1 cache is cheap.
1118                 // (TODO: Verify that this is indeed faster than making separate
1119                 // double-derivative textures.)
1120                 GLuint I_x_y_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1121                 GLuint beta_0_tex = pool.get_texture(GL_R16F, level_width, level_height);
1122                 {
1123                         ScopedTimer timer("First derivatives", &varref_timer);
1124                         derivatives.exec(I_tex, I_x_y_tex, beta_0_tex, level_width, level_height);
1125                 }
1126                 pool.release_texture(I_tex);
1127
1128                 // We need somewhere to store du and dv (the flow increment, relative
1129                 // to the non-refined base flow u0 and v0). It's initially garbage,
1130                 // but not read until we've written something sane to it.
1131                 GLuint diff_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1132
1133                 // And for diffusivity.
1134                 GLuint diffusivity_tex = pool.get_texture(GL_R16F, level_width, level_height);
1135
1136                 // And finally for the equation set. See SetupEquations for
1137                 // the storage format.
1138                 GLuint equation_red_tex = pool.get_texture(GL_RGBA32UI, (level_width + 1) / 2, level_height);
1139                 GLuint equation_black_tex = pool.get_texture(GL_RGBA32UI, (level_width + 1) / 2, level_height);
1140
1141                 for (int outer_idx = 0; outer_idx < level + 1; ++outer_idx) {
1142                         // Calculate the diffusivity term for each pixel.
1143                         {
1144                                 ScopedTimer timer("Compute diffusivity", &varref_timer);
1145                                 compute_diffusivity.exec(base_flow_tex, diff_flow_tex, diffusivity_tex, level_width, level_height, outer_idx == 0);
1146                         }
1147
1148                         // Set up the 2x2 equation system for each pixel.
1149                         {
1150                                 ScopedTimer timer("Set up equations", &varref_timer);
1151                                 setup_equations.exec(I_x_y_tex, I_t_tex, diff_flow_tex, base_flow_tex, beta_0_tex, diffusivity_tex, equation_red_tex, equation_black_tex, level_width, level_height, outer_idx == 0);
1152                         }
1153
1154                         // Run a few SOR iterations. Note that these are to/from the same texture.
1155                         {
1156                                 ScopedTimer timer("SOR", &varref_timer);
1157                                 sor.exec(diff_flow_tex, equation_red_tex, equation_black_tex, diffusivity_tex, level_width, level_height, 5, outer_idx == 0, &timer);
1158                         }
1159                 }
1160
1161                 pool.release_texture(I_t_tex);
1162                 pool.release_texture(I_x_y_tex);
1163                 pool.release_texture(beta_0_tex);
1164                 pool.release_texture(diffusivity_tex);
1165                 pool.release_texture(equation_red_tex);
1166                 pool.release_texture(equation_black_tex);
1167
1168                 // Add the differential flow found by the variational refinement to the base flow,
1169                 // giving the final flow estimate for this level.
1170                 // The output is in diff_flow_tex; we don't need to make a new texture.
1171                 //
1172                 // Disabling this doesn't save any time (although we could easily make it so that
1173                 // it is more efficient), but it helps debug the motion search.
1174                 if (enable_variational_refinement) {
1175                         ScopedTimer timer("Add differential flow", &varref_timer);
1176                         add_base_flow.exec(base_flow_tex, diff_flow_tex, level_width, level_height);
1177                 }
1178                 pool.release_texture(diff_flow_tex);
1179
1180                 if (prev_level_flow_tex != initial_flow_tex) {
1181                         pool.release_texture(prev_level_flow_tex);
1182                 }
1183                 prev_level_flow_tex = base_flow_tex;
1184                 prev_level_width = level_width;
1185                 prev_level_height = level_height;
1186         }
1187         total_timer.end();
1188
1189         if (!in_warmup) {
1190                 timers.print();
1191         }
1192
1193         // Scale up the flow to the final size (if needed).
1194         if (finest_level == 0 || resize_strategy == DO_NOT_RESIZE_FLOW) {
1195                 return prev_level_flow_tex;
1196         } else {
1197                 GLuint final_tex = pool.get_texture(GL_RG16F, width, height);
1198                 resize_flow.exec(prev_level_flow_tex, final_tex, prev_level_width, prev_level_height, width, height);
1199                 pool.release_texture(prev_level_flow_tex);
1200                 return final_tex;
1201         }
1202 }
1203
1204 // Forward-warp the flow half-way (or rather, by alpha). A non-zero “splatting”
1205 // radius fills most of the holes.
1206 class Splat {
1207 public:
1208         Splat();
1209
1210         // alpha is the time of the interpolated frame (0..1).
1211         void exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_rb, int width, int height, float alpha);
1212
1213 private:
1214         PersistentFBOSetWithDepth<1> fbos;
1215
1216         GLuint splat_vs_obj;
1217         GLuint splat_fs_obj;
1218         GLuint splat_program;
1219
1220         GLuint uniform_invert_flow, uniform_splat_size, uniform_alpha;
1221         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1222         GLuint uniform_inv_flow_size;
1223 };
1224
1225 Splat::Splat()
1226 {
1227         splat_vs_obj = compile_shader(read_file("splat.vert"), GL_VERTEX_SHADER);
1228         splat_fs_obj = compile_shader(read_file("splat.frag"), GL_FRAGMENT_SHADER);
1229         splat_program = link_program(splat_vs_obj, splat_fs_obj);
1230
1231         uniform_invert_flow = glGetUniformLocation(splat_program, "invert_flow");
1232         uniform_splat_size = glGetUniformLocation(splat_program, "splat_size");
1233         uniform_alpha = glGetUniformLocation(splat_program, "alpha");
1234         uniform_image0_tex = glGetUniformLocation(splat_program, "image0_tex");
1235         uniform_image1_tex = glGetUniformLocation(splat_program, "image1_tex");
1236         uniform_flow_tex = glGetUniformLocation(splat_program, "flow_tex");
1237         uniform_inv_flow_size = glGetUniformLocation(splat_program, "inv_flow_size");
1238 }
1239
1240 void Splat::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_rb, int width, int height, float alpha)
1241 {
1242         glUseProgram(splat_program);
1243
1244         bind_sampler(splat_program, uniform_image0_tex, 0, tex0, linear_sampler);
1245         bind_sampler(splat_program, uniform_image1_tex, 1, tex1, linear_sampler);
1246
1247         // FIXME: This is set to 1.0 right now so not to trigger Haswell's “PMA stall”.
1248         // Move to 2.0 later, or even 4.0.
1249         // (Since we have hole filling, it's not critical, but larger values seem to do
1250         // better than hole filling for large motion, blurs etc.)
1251         float splat_size = 1.0f;  // 4x4 splat means 16x overdraw, 2x2 splat means 4x overdraw.
1252         glProgramUniform2f(splat_program, uniform_splat_size, splat_size / width, splat_size / height);
1253         glProgramUniform1f(splat_program, uniform_alpha, alpha);
1254         glProgramUniform2f(splat_program, uniform_inv_flow_size, 1.0f / width, 1.0f / height);
1255
1256         glViewport(0, 0, width, height);
1257         glDisable(GL_BLEND);
1258         glEnable(GL_DEPTH_TEST);
1259         glDepthFunc(GL_LESS);  // We store the difference between I_0 and I_1, where less difference is good. (Default 1.0 is effectively +inf, which always loses.)
1260
1261         fbos.render_to(depth_rb, flow_tex);
1262
1263         // Evidently NVIDIA doesn't use fast clears for glClearTexImage, so clear now that
1264         // we've got it bound.
1265         glClearColor(1000.0f, 1000.0f, 0.0f, 1.0f);  // Invalid flow.
1266         glClearDepth(1.0f);  // Effectively infinity.
1267         glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
1268
1269         // Do forward splatting.
1270         bind_sampler(splat_program, uniform_flow_tex, 2, forward_flow_tex, nearest_sampler);
1271         glProgramUniform1i(splat_program, uniform_invert_flow, 0);
1272         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1273
1274         // Do backward splatting.
1275         bind_sampler(splat_program, uniform_flow_tex, 2, backward_flow_tex, nearest_sampler);
1276         glProgramUniform1i(splat_program, uniform_invert_flow, 1);
1277         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1278
1279         glDisable(GL_DEPTH_TEST);
1280 }
1281
1282 // Doing good and fast hole-filling on a GPU is nontrivial. We choose an option
1283 // that's fairly simple (given that most holes are really small) and also hopefully
1284 // cheap should the holes not be so small. Conceptually, we look for the first
1285 // non-hole to the left of us (ie., shoot a ray until we hit something), then
1286 // the first non-hole to the right of us, then up and down, and then average them
1287 // all together. It's going to create “stars” if the holes are big, but OK, that's
1288 // a tradeoff.
1289 //
1290 // Our implementation here is efficient assuming that the hierarchical Z-buffer is
1291 // on even for shaders that do discard (this typically kills early Z, but hopefully
1292 // not hierarchical Z); we set up Z so that only holes are written to, which means
1293 // that as soon as a hole is filled, the rasterizer should just skip it. Most of the
1294 // fullscreen quads should just be discarded outright, really.
1295 class HoleFill {
1296 public:
1297         HoleFill();
1298
1299         // Output will be in flow_tex, temp_tex[0, 1, 2], representing the filling
1300         // from the down, left, right and up, respectively. Use HoleBlend to merge
1301         // them into one.
1302         void exec(GLuint flow_tex, GLuint depth_rb, GLuint temp_tex[3], int width, int height);
1303
1304 private:
1305         PersistentFBOSetWithDepth<1> fbos;
1306
1307         GLuint fill_vs_obj;
1308         GLuint fill_fs_obj;
1309         GLuint fill_program;
1310
1311         GLuint uniform_tex;
1312         GLuint uniform_z, uniform_sample_offset;
1313 };
1314
1315 HoleFill::HoleFill()
1316 {
1317         fill_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);
1318         fill_fs_obj = compile_shader(read_file("hole_fill.frag"), GL_FRAGMENT_SHADER);
1319         fill_program = link_program(fill_vs_obj, fill_fs_obj);
1320
1321         uniform_tex = glGetUniformLocation(fill_program, "tex");
1322         uniform_z = glGetUniformLocation(fill_program, "z");
1323         uniform_sample_offset = glGetUniformLocation(fill_program, "sample_offset");
1324 }
1325
1326 void HoleFill::exec(GLuint flow_tex, GLuint depth_rb, GLuint temp_tex[3], int width, int height)
1327 {
1328         glUseProgram(fill_program);
1329
1330         bind_sampler(fill_program, uniform_tex, 0, flow_tex, nearest_sampler);
1331
1332         glProgramUniform1f(fill_program, uniform_z, 1.0f - 1.0f / 1024.0f);
1333
1334         glViewport(0, 0, width, height);
1335         glDisable(GL_BLEND);
1336         glEnable(GL_DEPTH_TEST);
1337         glDepthFunc(GL_LESS);  // Only update the values > 0.999f (ie., only invalid pixels).
1338
1339         fbos.render_to(depth_rb, flow_tex);  // NOTE: Reading and writing to the same texture.
1340
1341         // Fill holes from the left, by shifting 1, 2, 4, 8, etc. pixels to the right.
1342         for (int offs = 1; offs < width; offs *= 2) {
1343                 glProgramUniform2f(fill_program, uniform_sample_offset, -offs / float(width), 0.0f);
1344                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1345                 glTextureBarrier();
1346         }
1347         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[0], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1348
1349         // Similar to the right; adjust Z a bit down, so that we re-fill the pixels that
1350         // were overwritten in the last algorithm.
1351         glProgramUniform1f(fill_program, uniform_z, 1.0f - 2.0f / 1024.0f);
1352         for (int offs = 1; offs < width; offs *= 2) {
1353                 glProgramUniform2f(fill_program, uniform_sample_offset, offs / float(width), 0.0f);
1354                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1355                 glTextureBarrier();
1356         }
1357         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[1], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1358
1359         // Up.
1360         glProgramUniform1f(fill_program, uniform_z, 1.0f - 3.0f / 1024.0f);
1361         for (int offs = 1; offs < height; offs *= 2) {
1362                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, -offs / float(height));
1363                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1364                 glTextureBarrier();
1365         }
1366         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[2], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1367
1368         // Down.
1369         glProgramUniform1f(fill_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1370         for (int offs = 1; offs < height; offs *= 2) {
1371                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, offs / float(height));
1372                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1373                 glTextureBarrier();
1374         }
1375
1376         glDisable(GL_DEPTH_TEST);
1377 }
1378
1379 // Blend the four directions from HoleFill into one pixel, so that single-pixel
1380 // holes become the average of their four neighbors.
1381 class HoleBlend {
1382 public:
1383         HoleBlend();
1384
1385         void exec(GLuint flow_tex, GLuint depth_rb, GLuint temp_tex[3], int width, int height);
1386
1387 private:
1388         PersistentFBOSetWithDepth<1> fbos;
1389
1390         GLuint blend_vs_obj;
1391         GLuint blend_fs_obj;
1392         GLuint blend_program;
1393
1394         GLuint uniform_left_tex, uniform_right_tex, uniform_up_tex, uniform_down_tex;
1395         GLuint uniform_z, uniform_sample_offset;
1396 };
1397
1398 HoleBlend::HoleBlend()
1399 {
1400         blend_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);  // Reuse the vertex shader from the fill.
1401         blend_fs_obj = compile_shader(read_file("hole_blend.frag"), GL_FRAGMENT_SHADER);
1402         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1403
1404         uniform_left_tex = glGetUniformLocation(blend_program, "left_tex");
1405         uniform_right_tex = glGetUniformLocation(blend_program, "right_tex");
1406         uniform_up_tex = glGetUniformLocation(blend_program, "up_tex");
1407         uniform_down_tex = glGetUniformLocation(blend_program, "down_tex");
1408         uniform_z = glGetUniformLocation(blend_program, "z");
1409         uniform_sample_offset = glGetUniformLocation(blend_program, "sample_offset");
1410 }
1411
1412 void HoleBlend::exec(GLuint flow_tex, GLuint depth_rb, GLuint temp_tex[3], int width, int height)
1413 {
1414         glUseProgram(blend_program);
1415
1416         bind_sampler(blend_program, uniform_left_tex, 0, temp_tex[0], nearest_sampler);
1417         bind_sampler(blend_program, uniform_right_tex, 1, temp_tex[1], nearest_sampler);
1418         bind_sampler(blend_program, uniform_up_tex, 2, temp_tex[2], nearest_sampler);
1419         bind_sampler(blend_program, uniform_down_tex, 3, flow_tex, nearest_sampler);
1420
1421         glProgramUniform1f(blend_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1422         glProgramUniform2f(blend_program, uniform_sample_offset, 0.0f, 0.0f);
1423
1424         glViewport(0, 0, width, height);
1425         glDisable(GL_BLEND);
1426         glEnable(GL_DEPTH_TEST);
1427         glDepthFunc(GL_LEQUAL);  // Skip over all of the pixels that were never holes to begin with.
1428
1429         fbos.render_to(depth_rb, flow_tex);  // NOTE: Reading and writing to the same texture.
1430
1431         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1432
1433         glDisable(GL_DEPTH_TEST);
1434 }
1435
1436 class Blend {
1437 public:
1438         Blend();
1439         void exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int width, int height, float alpha);
1440
1441 private:
1442         PersistentFBOSet<1> fbos;
1443         GLuint blend_vs_obj;
1444         GLuint blend_fs_obj;
1445         GLuint blend_program;
1446
1447         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1448         GLuint uniform_alpha, uniform_flow_consistency_tolerance;
1449 };
1450
1451 Blend::Blend()
1452 {
1453         blend_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
1454         blend_fs_obj = compile_shader(read_file("blend.frag"), GL_FRAGMENT_SHADER);
1455         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1456
1457         uniform_image0_tex = glGetUniformLocation(blend_program, "image0_tex");
1458         uniform_image1_tex = glGetUniformLocation(blend_program, "image1_tex");
1459         uniform_flow_tex = glGetUniformLocation(blend_program, "flow_tex");
1460         uniform_alpha = glGetUniformLocation(blend_program, "alpha");
1461         uniform_flow_consistency_tolerance = glGetUniformLocation(blend_program, "flow_consistency_tolerance");
1462 }
1463
1464 void Blend::exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int level_width, int level_height, float alpha)
1465 {
1466         glUseProgram(blend_program);
1467         bind_sampler(blend_program, uniform_image0_tex, 0, tex0, linear_sampler);
1468         bind_sampler(blend_program, uniform_image1_tex, 1, tex1, linear_sampler);
1469         bind_sampler(blend_program, uniform_flow_tex, 2, flow_tex, linear_sampler);  // May be upsampled.
1470         glProgramUniform1f(blend_program, uniform_alpha, alpha);
1471
1472         glViewport(0, 0, level_width, level_height);
1473         fbos.render_to(output_tex);
1474         glDisable(GL_BLEND);  // A bit ironic, perhaps.
1475         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1476 }
1477
1478 class Interpolate {
1479 public:
1480         Interpolate(int width, int height, int flow_level);
1481
1482         // Returns a texture that must be released with release_texture()
1483         // after use. tex0 and tex1 must be RGBA8 textures with mipmaps
1484         // (unless flow_level == 0).
1485         GLuint exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha);
1486
1487         void release_texture(GLuint tex) {
1488                 pool.release_texture(tex);
1489         }
1490
1491 private:
1492         int width, height, flow_level;
1493         GLuint vertex_vbo, vao;
1494         TexturePool pool;
1495
1496         Splat splat;
1497         HoleFill hole_fill;
1498         HoleBlend hole_blend;
1499         Blend blend;
1500 };
1501
1502 Interpolate::Interpolate(int width, int height, int flow_level)
1503         : width(width), height(height), flow_level(flow_level) {
1504         // Set up the vertex data that will be shared between all passes.
1505         float vertices[] = {
1506                 0.0f, 1.0f,
1507                 0.0f, 0.0f,
1508                 1.0f, 1.0f,
1509                 1.0f, 0.0f,
1510         };
1511         glCreateBuffers(1, &vertex_vbo);
1512         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
1513
1514         glCreateVertexArrays(1, &vao);
1515         glBindVertexArray(vao);
1516         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1517
1518         GLint position_attrib = 0;  // Hard-coded in every vertex shader.
1519         glEnableVertexArrayAttrib(vao, position_attrib);
1520         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1521 }
1522
1523 GLuint Interpolate::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha)
1524 {
1525         GPUTimers timers;
1526
1527         ScopedTimer total_timer("Interpolate", &timers);
1528
1529         glBindVertexArray(vao);
1530
1531         // Pick out the right level to test splatting results on.
1532         GLuint tex0_view, tex1_view;
1533         glGenTextures(1, &tex0_view);
1534         glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_RGBA8, flow_level, 1, 0, 1);
1535         glGenTextures(1, &tex1_view);
1536         glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_RGBA8, flow_level, 1, 0, 1);
1537
1538         int flow_width = width >> flow_level;
1539         int flow_height = height >> flow_level;
1540
1541         GLuint flow_tex = pool.get_texture(GL_RG16F, flow_width, flow_height);
1542         GLuint depth_rb = pool.get_renderbuffer(GL_DEPTH_COMPONENT16, flow_width, flow_height);  // Used for ranking flows.
1543
1544         {
1545                 ScopedTimer timer("Splat", &total_timer);
1546                 splat.exec(tex0_view, tex1_view, forward_flow_tex, backward_flow_tex, flow_tex, depth_rb, flow_width, flow_height, alpha);
1547         }
1548         glDeleteTextures(1, &tex0_view);
1549         glDeleteTextures(1, &tex1_view);
1550
1551         GLuint temp_tex[3];
1552         temp_tex[0] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1553         temp_tex[1] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1554         temp_tex[2] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1555
1556         {
1557                 ScopedTimer timer("Fill holes", &total_timer);
1558                 hole_fill.exec(flow_tex, depth_rb, temp_tex, flow_width, flow_height);
1559                 hole_blend.exec(flow_tex, depth_rb, temp_tex, flow_width, flow_height);
1560         }
1561
1562         pool.release_texture(temp_tex[0]);
1563         pool.release_texture(temp_tex[1]);
1564         pool.release_texture(temp_tex[2]);
1565         pool.release_renderbuffer(depth_rb);
1566
1567         GLuint output_tex = pool.get_texture(GL_RGBA8, width, height);
1568         {
1569                 ScopedTimer timer("Blend", &total_timer);
1570                 blend.exec(tex0, tex1, flow_tex, output_tex, width, height, alpha);
1571         }
1572         pool.release_texture(flow_tex);
1573         total_timer.end();
1574         if (!in_warmup) {
1575                 timers.print();
1576         }
1577
1578         return output_tex;
1579 }
1580
1581 GLuint TexturePool::get_texture(GLenum format, GLuint width, GLuint height)
1582 {
1583         for (Texture &tex : textures) {
1584                 if (!tex.in_use && !tex.is_renderbuffer && tex.format == format &&
1585                     tex.width == width && tex.height == height) {
1586                         tex.in_use = true;
1587                         return tex.tex_num;
1588                 }
1589         }
1590
1591         Texture tex;
1592         glCreateTextures(GL_TEXTURE_2D, 1, &tex.tex_num);
1593         glTextureStorage2D(tex.tex_num, 1, format, width, height);
1594         tex.format = format;
1595         tex.width = width;
1596         tex.height = height;
1597         tex.in_use = true;
1598         tex.is_renderbuffer = false;
1599         textures.push_back(tex);
1600         return tex.tex_num;
1601 }
1602
1603 GLuint TexturePool::get_renderbuffer(GLenum format, GLuint width, GLuint height)
1604 {
1605         for (Texture &tex : textures) {
1606                 if (!tex.in_use && tex.is_renderbuffer && tex.format == format &&
1607                     tex.width == width && tex.height == height) {
1608                         tex.in_use = true;
1609                         return tex.tex_num;
1610                 }
1611         }
1612
1613         Texture tex;
1614         glCreateRenderbuffers(1, &tex.tex_num);
1615         glNamedRenderbufferStorage(tex.tex_num, format, width, height);
1616
1617         tex.format = format;
1618         tex.width = width;
1619         tex.height = height;
1620         tex.in_use = true;
1621         tex.is_renderbuffer = true;
1622         textures.push_back(tex);
1623         return tex.tex_num;
1624 }
1625
1626 void TexturePool::release_texture(GLuint tex_num)
1627 {
1628         for (Texture &tex : textures) {
1629                 if (!tex.is_renderbuffer && tex.tex_num == tex_num) {
1630                         assert(tex.in_use);
1631                         tex.in_use = false;
1632                         return;
1633                 }
1634         }
1635         assert(false);
1636 }
1637
1638 void TexturePool::release_renderbuffer(GLuint tex_num)
1639 {
1640         for (Texture &tex : textures) {
1641                 if (tex.is_renderbuffer && tex.tex_num == tex_num) {
1642                         assert(tex.in_use);
1643                         tex.in_use = false;
1644                         return;
1645                 }
1646         }
1647         assert(false);
1648 }
1649
1650 // OpenGL uses a bottom-left coordinate system, .flo files use a top-left coordinate system.
1651 void flip_coordinate_system(float *dense_flow, unsigned width, unsigned height)
1652 {
1653         for (unsigned i = 0; i < width * height; ++i) {
1654                 dense_flow[i * 2 + 1] = -dense_flow[i * 2 + 1];
1655         }
1656 }
1657
1658 // Not relevant for RGB.
1659 void flip_coordinate_system(uint8_t *dense_flow, unsigned width, unsigned height)
1660 {
1661 }
1662
1663 void write_flow(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1664 {
1665         FILE *flowfp = fopen(filename, "wb");
1666         fprintf(flowfp, "FEIH");
1667         fwrite(&width, 4, 1, flowfp);
1668         fwrite(&height, 4, 1, flowfp);
1669         for (unsigned y = 0; y < height; ++y) {
1670                 int yy = height - y - 1;
1671                 fwrite(&dense_flow[yy * width * 2], width * 2 * sizeof(float), 1, flowfp);
1672         }
1673         fclose(flowfp);
1674 }
1675
1676 // Not relevant for RGB.
1677 void write_flow(const char *filename, const uint8_t *dense_flow, unsigned width, unsigned height)
1678 {
1679         assert(false);
1680 }
1681
1682 void write_ppm(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1683 {
1684         FILE *fp = fopen(filename, "wb");
1685         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1686         for (unsigned y = 0; y < unsigned(height); ++y) {
1687                 int yy = height - y - 1;
1688                 for (unsigned x = 0; x < unsigned(width); ++x) {
1689                         float du = dense_flow[(yy * width + x) * 2 + 0];
1690                         float dv = dense_flow[(yy * width + x) * 2 + 1];
1691
1692                         uint8_t r, g, b;
1693                         flow2rgb(du, dv, &r, &g, &b);
1694                         putc(r, fp);
1695                         putc(g, fp);
1696                         putc(b, fp);
1697                 }
1698         }
1699         fclose(fp);
1700 }
1701
1702 void write_ppm(const char *filename, const uint8_t *rgba, unsigned width, unsigned height)
1703 {
1704         unique_ptr<uint8_t[]> rgb_line(new uint8_t[width * 3 + 1]);
1705
1706         FILE *fp = fopen(filename, "wb");
1707         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1708         for (unsigned y = 0; y < height; ++y) {
1709                 unsigned y2 = height - 1 - y;
1710                 for (size_t x = 0; x < width; ++x) {
1711                         memcpy(&rgb_line[x * 3], &rgba[(y2 * width + x) * 4], 4);
1712                 }
1713                 fwrite(rgb_line.get(), width * 3, 1, fp);
1714         }
1715         fclose(fp);
1716 }
1717
1718 struct FlowType {
1719         using type = float;
1720         static constexpr GLenum gl_format = GL_RG;
1721         static constexpr GLenum gl_type = GL_FLOAT;
1722         static constexpr int num_channels = 2;
1723 };
1724
1725 struct RGBAType {
1726         using type = uint8_t;
1727         static constexpr GLenum gl_format = GL_RGBA;
1728         static constexpr GLenum gl_type = GL_UNSIGNED_BYTE;
1729         static constexpr int num_channels = 4;
1730 };
1731
1732 template <class Type>
1733 void finish_one_read(GLuint width, GLuint height)
1734 {
1735         using T = typename Type::type;
1736         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1737
1738         assert(!reads_in_progress.empty());
1739         ReadInProgress read = reads_in_progress.front();
1740         reads_in_progress.pop_front();
1741
1742         unique_ptr<T[]> flow(new typename Type::type[width * height * Type::num_channels]);
1743         void *buf = glMapNamedBufferRange(read.pbo, 0, width * height * bytes_per_pixel, GL_MAP_READ_BIT);  // Blocks if the read isn't done yet.
1744         memcpy(flow.get(), buf, width * height * bytes_per_pixel);  // TODO: Unneeded for RGBType, since flip_coordinate_system() does nothing.:
1745         glUnmapNamedBuffer(read.pbo);
1746         spare_pbos.push(read.pbo);
1747
1748         flip_coordinate_system(flow.get(), width, height);
1749         if (!read.flow_filename.empty()) {
1750                 write_flow(read.flow_filename.c_str(), flow.get(), width, height);
1751                 fprintf(stderr, "%s %s -> %s\n", read.filename0.c_str(), read.filename1.c_str(), read.flow_filename.c_str());
1752         }
1753         if (!read.ppm_filename.empty()) {
1754                 write_ppm(read.ppm_filename.c_str(), flow.get(), width, height);
1755         }
1756 }
1757
1758 template <class Type>
1759 void schedule_read(GLuint tex, GLuint width, GLuint height, const char *filename0, const char *filename1, const char *flow_filename, const char *ppm_filename)
1760 {
1761         using T = typename Type::type;
1762         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1763
1764         if (spare_pbos.empty()) {
1765                 finish_one_read<Type>(width, height);
1766         }
1767         assert(!spare_pbos.empty());
1768         reads_in_progress.emplace_back(ReadInProgress{ spare_pbos.top(), filename0, filename1, flow_filename, ppm_filename });
1769         glBindBuffer(GL_PIXEL_PACK_BUFFER, spare_pbos.top());
1770         spare_pbos.pop();
1771         glGetTextureImage(tex, 0, Type::gl_format, Type::gl_type, width * height * bytes_per_pixel, nullptr);
1772         glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
1773 }
1774
1775 void compute_flow_only(int argc, char **argv, int optind)
1776 {
1777         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1778         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1779         const char *flow_filename = argc >= (optind + 3) ? argv[optind + 2] : "flow.flo";
1780
1781         // Load pictures.
1782         unsigned width1, height1, width2, height2;
1783         GLuint tex0 = load_texture(filename0, &width1, &height1, WITHOUT_MIPMAPS);
1784         GLuint tex1 = load_texture(filename1, &width2, &height2, WITHOUT_MIPMAPS);
1785
1786         if (width1 != width2 || height1 != height2) {
1787                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1788                         width1, height1, width2, height2);
1789                 exit(1);
1790         }
1791
1792         // Set up some PBOs to do asynchronous readback.
1793         GLuint pbos[5];
1794         glCreateBuffers(5, pbos);
1795         for (int i = 0; i < 5; ++i) {
1796                 glNamedBufferData(pbos[i], width1 * height1 * 2 * sizeof(float), nullptr, GL_STREAM_READ);
1797                 spare_pbos.push(pbos[i]);
1798         }
1799
1800         int levels = find_num_levels(width1, height1);
1801         GLuint tex0_gray, tex1_gray;
1802         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1803         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1804         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1805         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1806
1807         GrayscaleConversion gray;
1808         gray.exec(tex0, tex0_gray, width1, height1);
1809         glDeleteTextures(1, &tex0);
1810         glGenerateTextureMipmap(tex0_gray);
1811
1812         gray.exec(tex1, tex1_gray, width1, height1);
1813         glDeleteTextures(1, &tex1);
1814         glGenerateTextureMipmap(tex1_gray);
1815
1816         DISComputeFlow compute_flow(width1, height1);
1817
1818         if (enable_warmup) {
1819                 in_warmup = true;
1820                 for (int i = 0; i < 10; ++i) {
1821                         GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1822                         compute_flow.release_texture(final_tex);
1823                 }
1824                 in_warmup = false;
1825         }
1826
1827         GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1828
1829         schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "flow.ppm");
1830         compute_flow.release_texture(final_tex);
1831
1832         // See if there are more flows on the command line (ie., more than three arguments),
1833         // and if so, process them.
1834         int num_flows = (argc - optind) / 3;
1835         for (int i = 1; i < num_flows; ++i) {
1836                 const char *filename0 = argv[optind + i * 3 + 0];
1837                 const char *filename1 = argv[optind + i * 3 + 1];
1838                 const char *flow_filename = argv[optind + i * 3 + 2];
1839                 GLuint width, height;
1840                 GLuint tex0 = load_texture(filename0, &width, &height, WITHOUT_MIPMAPS);
1841                 if (width != width1 || height != height1) {
1842                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1843                                 filename0, width, height, width1, height1);
1844                         exit(1);
1845                 }
1846                 gray.exec(tex0, tex0_gray, width, height);
1847                 glGenerateTextureMipmap(tex0_gray);
1848                 glDeleteTextures(1, &tex0);
1849
1850                 GLuint tex1 = load_texture(filename1, &width, &height, WITHOUT_MIPMAPS);
1851                 if (width != width1 || height != height1) {
1852                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1853                                 filename1, width, height, width1, height1);
1854                         exit(1);
1855                 }
1856                 gray.exec(tex1, tex1_gray, width, height);
1857                 glGenerateTextureMipmap(tex1_gray);
1858                 glDeleteTextures(1, &tex1);
1859
1860                 GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1861
1862                 schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "");
1863                 compute_flow.release_texture(final_tex);
1864         }
1865         glDeleteTextures(1, &tex0_gray);
1866         glDeleteTextures(1, &tex1_gray);
1867
1868         while (!reads_in_progress.empty()) {
1869                 finish_one_read<FlowType>(width1, height1);
1870         }
1871 }
1872
1873 // Interpolate images based on
1874 //
1875 //   Herbst, Seitz, Baker: “Occlusion Reasoning for Temporal Interpolation
1876 //   Using Optical Flow”
1877 //
1878 // or at least a reasonable subset thereof. Unfinished.
1879 void interpolate_image(int argc, char **argv, int optind)
1880 {
1881         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1882         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1883         //const char *out_filename = argc >= (optind + 3) ? argv[optind + 2] : "interpolated.png";
1884
1885         // Load pictures.
1886         unsigned width1, height1, width2, height2;
1887         GLuint tex0 = load_texture(filename0, &width1, &height1, WITH_MIPMAPS);
1888         GLuint tex1 = load_texture(filename1, &width2, &height2, WITH_MIPMAPS);
1889
1890         if (width1 != width2 || height1 != height2) {
1891                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1892                         width1, height1, width2, height2);
1893                 exit(1);
1894         }
1895
1896         // Set up some PBOs to do asynchronous readback.
1897         GLuint pbos[5];
1898         glCreateBuffers(5, pbos);
1899         for (int i = 0; i < 5; ++i) {
1900                 glNamedBufferData(pbos[i], width1 * height1 * 4 * sizeof(uint8_t), nullptr, GL_STREAM_READ);
1901                 spare_pbos.push(pbos[i]);
1902         }
1903
1904         DISComputeFlow compute_flow(width1, height1);
1905         GrayscaleConversion gray;
1906         Interpolate interpolate(width1, height1, finest_level);
1907
1908         int levels = find_num_levels(width1, height1);
1909         GLuint tex0_gray, tex1_gray;
1910         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1911         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1912         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1913         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1914
1915         gray.exec(tex0, tex0_gray, width1, height1);
1916         glGenerateTextureMipmap(tex0_gray);
1917
1918         gray.exec(tex1, tex1_gray, width1, height1);
1919         glGenerateTextureMipmap(tex1_gray);
1920
1921         if (enable_warmup) {
1922                 in_warmup = true;
1923                 for (int i = 0; i < 10; ++i) {
1924                         GLuint forward_flow_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1925                         GLuint backward_flow_tex = compute_flow.exec(tex1_gray, tex0_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1926                         GLuint interpolated_tex = interpolate.exec(tex0, tex1, forward_flow_tex, backward_flow_tex, width1, height1, 0.5f);
1927                         compute_flow.release_texture(forward_flow_tex);
1928                         compute_flow.release_texture(backward_flow_tex);
1929                         interpolate.release_texture(interpolated_tex);
1930                 }
1931                 in_warmup = false;
1932         }
1933
1934         GLuint forward_flow_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1935         GLuint backward_flow_tex = compute_flow.exec(tex1_gray, tex0_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1936
1937         for (int frameno = 1; frameno < 60; ++frameno) {
1938                 char ppm_filename[256];
1939                 snprintf(ppm_filename, sizeof(ppm_filename), "interp%04d.ppm", frameno);
1940
1941                 float alpha = frameno / 60.0f;
1942                 GLuint interpolated_tex = interpolate.exec(tex0, tex1, forward_flow_tex, backward_flow_tex, width1, height1, alpha);
1943
1944                 schedule_read<RGBAType>(interpolated_tex, width1, height1, filename0, filename1, "", ppm_filename);
1945                 interpolate.release_texture(interpolated_tex);
1946         }
1947
1948         while (!reads_in_progress.empty()) {
1949                 finish_one_read<RGBAType>(width1, height1);
1950         }
1951 }
1952
1953 int main(int argc, char **argv)
1954 {
1955         static const option long_options[] = {
1956                 { "smoothness-relative-weight", required_argument, 0, 's' },  // alpha.
1957                 { "intensity-relative-weight", required_argument, 0, 'i' },  // delta.
1958                 { "gradient-relative-weight", required_argument, 0, 'g' },  // gamma.
1959                 { "disable-timing", no_argument, 0, 1000 },
1960                 { "detailed-timing", no_argument, 0, 1003 },
1961                 { "ignore-variational-refinement", no_argument, 0, 1001 },  // Still calculates it, just doesn't apply it.
1962                 { "interpolate", no_argument, 0, 1002 },
1963                 { "warmup", no_argument, 0, 1004 }
1964         };
1965
1966         for ( ;; ) {
1967                 int option_index = 0;
1968                 int c = getopt_long(argc, argv, "s:i:g:", long_options, &option_index);
1969
1970                 if (c == -1) {
1971                         break;
1972                 }
1973                 switch (c) {
1974                 case 's':
1975                         vr_alpha = atof(optarg);
1976                         break;
1977                 case 'i':
1978                         vr_delta = atof(optarg);
1979                         break;
1980                 case 'g':
1981                         vr_gamma = atof(optarg);
1982                         break;
1983                 case 1000:
1984                         enable_timing = false;
1985                         break;
1986                 case 1001:
1987                         enable_variational_refinement = false;
1988                         break;
1989                 case 1002:
1990                         enable_interpolation = true;
1991                         break;
1992                 case 1003:
1993                         detailed_timing = true;
1994                         break;
1995                 case 1004:
1996                         enable_warmup = true;
1997                         break;
1998                 default:
1999                         fprintf(stderr, "Unknown option '%s'\n", argv[option_index]);
2000                         exit(1);
2001                 };
2002         }
2003
2004         if (SDL_Init(SDL_INIT_EVERYTHING) == -1) {
2005                 fprintf(stderr, "SDL_Init failed: %s\n", SDL_GetError());
2006                 exit(1);
2007         }
2008         SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE, 8);
2009         SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 0);
2010         SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 0);
2011         SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);
2012
2013         SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
2014         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 4);
2015         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 5);
2016         // SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, SDL_GL_CONTEXT_DEBUG_FLAG);
2017         window = SDL_CreateWindow("OpenGL window",
2018                 SDL_WINDOWPOS_UNDEFINED,
2019                 SDL_WINDOWPOS_UNDEFINED,
2020                 64, 64,
2021                 SDL_WINDOW_OPENGL | SDL_WINDOW_HIDDEN);
2022         SDL_GLContext context = SDL_GL_CreateContext(window);
2023         assert(context != nullptr);
2024
2025         glDisable(GL_DITHER);
2026
2027         // FIXME: Should be part of DISComputeFlow (but needs to be initialized
2028         // before all the render passes).
2029         float vertices[] = {
2030                 0.0f, 1.0f,
2031                 0.0f, 0.0f,
2032                 1.0f, 1.0f,
2033                 1.0f, 0.0f,
2034         };
2035         glCreateBuffers(1, &vertex_vbo);
2036         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
2037         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
2038
2039         if (enable_interpolation) {
2040                 interpolate_image(argc, argv, optind);
2041         } else {
2042                 compute_flow_only(argc, argv, optind);
2043         }
2044 }