]> git.sesse.net Git - nageru/blob - flow.cpp
Pack the gradients and image together into a single 32-bit texture; seems to help...
[nageru] / flow.cpp
1 #define NO_SDL_GLEXT 1
2
3 #include <epoxy/gl.h>
4
5 #include <SDL2/SDL.h>
6 #include <SDL2/SDL_error.h>
7 #include <SDL2/SDL_events.h>
8 #include <SDL2/SDL_image.h>
9 #include <SDL2/SDL_keyboard.h>
10 #include <SDL2/SDL_mouse.h>
11 #include <SDL2/SDL_video.h>
12
13 #include <assert.h>
14 #include <getopt.h>
15 #include <stdio.h>
16 #include <unistd.h>
17
18 #include "gpu_timers.h"
19 #include "util.h"
20
21 #include <algorithm>
22 #include <deque>
23 #include <memory>
24 #include <map>
25 #include <stack>
26 #include <vector>
27
28 #define BUFFER_OFFSET(i) ((char *)nullptr + (i))
29
30 using namespace std;
31
32 SDL_Window *window;
33
34 // Operating point 3 (10 Hz on CPU, excluding preprocessing).
35 constexpr float patch_overlap_ratio = 0.75f;
36 constexpr unsigned coarsest_level = 5;
37 constexpr unsigned finest_level = 1;
38 constexpr unsigned patch_size_pixels = 12;
39
40 // Weighting constants for the different parts of the variational refinement.
41 // These don't correspond 1:1 to the values given in the DIS paper,
42 // since we have different normalizations and ranges in some cases.
43 // These are found through a simple grid search on some MPI-Sintel data,
44 // although the error (EPE) seems to be fairly insensitive to the precise values.
45 // Only the relative values matter, so we fix alpha (the smoothness constant)
46 // at unity and tweak the others.
47 float vr_alpha = 1.0f, vr_delta = 0.25f, vr_gamma = 0.25f;
48
49 bool enable_timing = true;
50 bool detailed_timing = false;
51 bool enable_variational_refinement = true;  // Just for debugging.
52 bool enable_interpolation = false;
53
54 // Some global OpenGL objects.
55 // TODO: These should really be part of DISComputeFlow.
56 GLuint nearest_sampler, linear_sampler, zero_border_sampler;
57 GLuint vertex_vbo;
58
59 // Structures for asynchronous readback. We assume everything is the same size (and GL_RG16F).
60 struct ReadInProgress {
61         GLuint pbo;
62         string filename0, filename1;
63         string flow_filename, ppm_filename;  // Either may be empty for no write.
64 };
65 stack<GLuint> spare_pbos;
66 deque<ReadInProgress> reads_in_progress;
67
68 int find_num_levels(int width, int height)
69 {
70         int levels = 1;
71         for (int w = width, h = height; w > 1 || h > 1; ) {
72                 w >>= 1;
73                 h >>= 1;
74                 ++levels;
75         }
76         return levels;
77 }
78
79 string read_file(const string &filename)
80 {
81         FILE *fp = fopen(filename.c_str(), "r");
82         if (fp == nullptr) {
83                 perror(filename.c_str());
84                 exit(1);
85         }
86
87         int ret = fseek(fp, 0, SEEK_END);
88         if (ret == -1) {
89                 perror("fseek(SEEK_END)");
90                 exit(1);
91         }
92
93         int size = ftell(fp);
94
95         ret = fseek(fp, 0, SEEK_SET);
96         if (ret == -1) {
97                 perror("fseek(SEEK_SET)");
98                 exit(1);
99         }
100
101         string str;
102         str.resize(size);
103         ret = fread(&str[0], size, 1, fp);
104         if (ret == -1) {
105                 perror("fread");
106                 exit(1);
107         }
108         if (ret == 0) {
109                 fprintf(stderr, "Short read when trying to read %d bytes from %s\n",
110                                 size, filename.c_str());
111                 exit(1);
112         }
113         fclose(fp);
114
115         return str;
116 }
117
118
119 GLuint compile_shader(const string &shader_src, GLenum type)
120 {
121         GLuint obj = glCreateShader(type);
122         const GLchar* source[] = { shader_src.data() };
123         const GLint length[] = { (GLint)shader_src.size() };
124         glShaderSource(obj, 1, source, length);
125         glCompileShader(obj);
126
127         GLchar info_log[4096];
128         GLsizei log_length = sizeof(info_log) - 1;
129         glGetShaderInfoLog(obj, log_length, &log_length, info_log);
130         info_log[log_length] = 0;
131         if (strlen(info_log) > 0) {
132                 fprintf(stderr, "Shader compile log: %s\n", info_log);
133         }
134
135         GLint status;
136         glGetShaderiv(obj, GL_COMPILE_STATUS, &status);
137         if (status == GL_FALSE) {
138                 // Add some line numbers to easier identify compile errors.
139                 string src_with_lines = "/*   1 */ ";
140                 size_t lineno = 1;
141                 for (char ch : shader_src) {
142                         src_with_lines.push_back(ch);
143                         if (ch == '\n') {
144                                 char buf[32];
145                                 snprintf(buf, sizeof(buf), "/* %3zu */ ", ++lineno);
146                                 src_with_lines += buf;
147                         }
148                 }
149
150                 fprintf(stderr, "Failed to compile shader:\n%s\n", src_with_lines.c_str());
151                 exit(1);
152         }
153
154         return obj;
155 }
156
157 enum MipmapPolicy {
158         WITHOUT_MIPMAPS,
159         WITH_MIPMAPS
160 };
161
162 GLuint load_texture(const char *filename, unsigned *width_ret, unsigned *height_ret, MipmapPolicy mipmaps)
163 {
164         SDL_Surface *surf = IMG_Load(filename);
165         if (surf == nullptr) {
166                 fprintf(stderr, "IMG_Load(%s): %s\n", filename, IMG_GetError());
167                 exit(1);
168         }
169
170         // For whatever reason, SDL doesn't support converting to YUV surfaces
171         // nor grayscale, so we'll do it ourselves.
172         SDL_Surface *rgb_surf = SDL_ConvertSurfaceFormat(surf, SDL_PIXELFORMAT_RGBA32, /*flags=*/0);
173         if (rgb_surf == nullptr) {
174                 fprintf(stderr, "SDL_ConvertSurfaceFormat(%s): %s\n", filename, SDL_GetError());
175                 exit(1);
176         }
177
178         SDL_FreeSurface(surf);
179
180         unsigned width = rgb_surf->w, height = rgb_surf->h;
181         const uint8_t *sptr = (uint8_t *)rgb_surf->pixels;
182         unique_ptr<uint8_t[]> pix(new uint8_t[width * height * 4]);
183
184         // Extract the Y component, and convert to bottom-left origin.
185         for (unsigned y = 0; y < height; ++y) {
186                 unsigned y2 = height - 1 - y;
187                 memcpy(pix.get() + y * width * 4, sptr + y2 * rgb_surf->pitch, width * 4);
188         }
189         SDL_FreeSurface(rgb_surf);
190
191         int num_levels = (mipmaps == WITH_MIPMAPS) ? find_num_levels(width, height) : 1;
192
193         GLuint tex;
194         glCreateTextures(GL_TEXTURE_2D, 1, &tex);
195         glTextureStorage2D(tex, num_levels, GL_RGBA8, width, height);
196         glTextureSubImage2D(tex, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pix.get());
197
198         if (mipmaps == WITH_MIPMAPS) {
199                 glGenerateTextureMipmap(tex);
200         }
201
202         *width_ret = width;
203         *height_ret = height;
204
205         return tex;
206 }
207
208 GLuint link_program(GLuint vs_obj, GLuint fs_obj)
209 {
210         GLuint program = glCreateProgram();
211         glAttachShader(program, vs_obj);
212         glAttachShader(program, fs_obj);
213         glLinkProgram(program);
214         GLint success;
215         glGetProgramiv(program, GL_LINK_STATUS, &success);
216         if (success == GL_FALSE) {
217                 GLchar error_log[1024] = {0};
218                 glGetProgramInfoLog(program, 1024, nullptr, error_log);
219                 fprintf(stderr, "Error linking program: %s\n", error_log);
220                 exit(1);
221         }
222         return program;
223 }
224
225 void bind_sampler(GLuint program, GLint location, GLuint texture_unit, GLuint tex, GLuint sampler)
226 {
227         if (location == -1) {
228                 return;
229         }
230
231         glBindTextureUnit(texture_unit, tex);
232         glBindSampler(texture_unit, sampler);
233         glProgramUniform1i(program, location, texture_unit);
234 }
235
236 // A class that caches FBOs that render to a given set of textures.
237 // It never frees anything, so it is only suitable for rendering to
238 // the same (small) set of textures over and over again.
239 template<size_t num_elements>
240 class PersistentFBOSet {
241 public:
242         void render_to(const array<GLuint, num_elements> &textures);
243
244         // Convenience wrappers.
245         void render_to(GLuint texture0) {
246                 render_to({{texture0}});
247         }
248
249         void render_to(GLuint texture0, GLuint texture1) {
250                 render_to({{texture0, texture1}});
251         }
252
253         void render_to(GLuint texture0, GLuint texture1, GLuint texture2) {
254                 render_to({{texture0, texture1, texture2}});
255         }
256
257         void render_to(GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
258                 render_to({{texture0, texture1, texture2, texture3}});
259         }
260
261 private:
262         // TODO: Delete these on destruction.
263         map<array<GLuint, num_elements>, GLuint> fbos;
264 };
265
266 template<size_t num_elements>
267 void PersistentFBOSet<num_elements>::render_to(const array<GLuint, num_elements> &textures)
268 {
269         auto it = fbos.find(textures);
270         if (it != fbos.end()) {
271                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
272                 return;
273         }
274
275         GLuint fbo;
276         glCreateFramebuffers(1, &fbo);
277         GLenum bufs[num_elements];
278         for (size_t i = 0; i < num_elements; ++i) {
279                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
280                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
281         }
282         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
283
284         fbos[textures] = fbo;
285         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
286 }
287
288 // Same, but with a depth texture.
289 template<size_t num_elements>
290 class PersistentFBOSetWithDepth {
291 public:
292         void render_to(GLuint depth_tex, const array<GLuint, num_elements> &textures);
293
294         // Convenience wrappers.
295         void render_to(GLuint depth_tex, GLuint texture0) {
296                 render_to(depth_tex, {{texture0}});
297         }
298
299         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1) {
300                 render_to(depth_tex, {{texture0, texture1}});
301         }
302
303         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1, GLuint texture2) {
304                 render_to(depth_tex, {{texture0, texture1, texture2}});
305         }
306
307         void render_to(GLuint depth_tex, GLuint texture0, GLuint texture1, GLuint texture2, GLuint texture3) {
308                 render_to(depth_tex, {{texture0, texture1, texture2, texture3}});
309         }
310
311 private:
312         // TODO: Delete these on destruction.
313         map<pair<GLuint, array<GLuint, num_elements>>, GLuint> fbos;
314 };
315
316 template<size_t num_elements>
317 void PersistentFBOSetWithDepth<num_elements>::render_to(GLuint depth_tex, const array<GLuint, num_elements> &textures)
318 {
319         auto key = make_pair(depth_tex, textures);
320
321         auto it = fbos.find(key);
322         if (it != fbos.end()) {
323                 glBindFramebuffer(GL_FRAMEBUFFER, it->second);
324                 return;
325         }
326
327         GLuint fbo;
328         glCreateFramebuffers(1, &fbo);
329         GLenum bufs[num_elements];
330         glNamedFramebufferTexture(fbo, GL_DEPTH_ATTACHMENT, depth_tex, 0);
331         for (size_t i = 0; i < num_elements; ++i) {
332                 glNamedFramebufferTexture(fbo, GL_COLOR_ATTACHMENT0 + i, textures[i], 0);
333                 bufs[i] = GL_COLOR_ATTACHMENT0 + i;
334         }
335         glNamedFramebufferDrawBuffers(fbo, num_elements, bufs);
336
337         fbos[key] = fbo;
338         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
339 }
340
341 // Convert RGB to grayscale, using Rec. 709 coefficients.
342 class GrayscaleConversion {
343 public:
344         GrayscaleConversion();
345         void exec(GLint tex, GLint gray_tex, int width, int height);
346
347 private:
348         PersistentFBOSet<1> fbos;
349         GLuint gray_vs_obj;
350         GLuint gray_fs_obj;
351         GLuint gray_program;
352         GLuint gray_vao;
353
354         GLuint uniform_tex;
355 };
356
357 GrayscaleConversion::GrayscaleConversion()
358 {
359         gray_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
360         gray_fs_obj = compile_shader(read_file("gray.frag"), GL_FRAGMENT_SHADER);
361         gray_program = link_program(gray_vs_obj, gray_fs_obj);
362
363         // Set up the VAO containing all the required position/texcoord data.
364         glCreateVertexArrays(1, &gray_vao);
365         glBindVertexArray(gray_vao);
366
367         GLint position_attrib = glGetAttribLocation(gray_program, "position");
368         glEnableVertexArrayAttrib(gray_vao, position_attrib);
369         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
370
371         uniform_tex = glGetUniformLocation(gray_program, "tex");
372 }
373
374 void GrayscaleConversion::exec(GLint tex, GLint gray_tex, int width, int height)
375 {
376         glUseProgram(gray_program);
377         bind_sampler(gray_program, uniform_tex, 0, tex, nearest_sampler);
378
379         glViewport(0, 0, width, height);
380         fbos.render_to(gray_tex);
381         glBindVertexArray(gray_vao);
382         glDisable(GL_BLEND);
383         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
384 }
385
386 // Compute gradients in every point, used for the motion search.
387 // The DIS paper doesn't actually mention how these are computed,
388 // but seemingly, a 3x3 Sobel operator is used here (at least in
389 // later versions of the code), while a [1 -8 0 8 -1] kernel is
390 // used for all the derivatives in the variational refinement part
391 // (which borrows code from DeepFlow). This is inconsistent,
392 // but I guess we're better off with staying with the original
393 // decisions until we actually know having different ones would be better.
394 class Sobel {
395 public:
396         Sobel();
397         void exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height);
398
399 private:
400         PersistentFBOSet<1> fbos;
401         GLuint sobel_vs_obj;
402         GLuint sobel_fs_obj;
403         GLuint sobel_program;
404
405         GLuint uniform_tex;
406 };
407
408 Sobel::Sobel()
409 {
410         sobel_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
411         sobel_fs_obj = compile_shader(read_file("sobel.frag"), GL_FRAGMENT_SHADER);
412         sobel_program = link_program(sobel_vs_obj, sobel_fs_obj);
413
414         uniform_tex = glGetUniformLocation(sobel_program, "tex");
415 }
416
417 void Sobel::exec(GLint tex0_view, GLint grad0_tex, int level_width, int level_height)
418 {
419         glUseProgram(sobel_program);
420         bind_sampler(sobel_program, uniform_tex, 0, tex0_view, nearest_sampler);
421
422         glViewport(0, 0, level_width, level_height);
423         fbos.render_to(grad0_tex);
424         glDisable(GL_BLEND);
425         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
426 }
427
428 // Motion search to find the initial flow. See motion_search.frag for documentation.
429 class MotionSearch {
430 public:
431         MotionSearch();
432         void exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches);
433
434 private:
435         PersistentFBOSet<1> fbos;
436
437         GLuint motion_vs_obj;
438         GLuint motion_fs_obj;
439         GLuint motion_search_program;
440
441         GLuint uniform_inv_image_size, uniform_inv_prev_level_size;
442         GLuint uniform_image1_tex, uniform_grad0_tex, uniform_flow_tex;
443 };
444
445 MotionSearch::MotionSearch()
446 {
447         motion_vs_obj = compile_shader(read_file("motion_search.vert"), GL_VERTEX_SHADER);
448         motion_fs_obj = compile_shader(read_file("motion_search.frag"), GL_FRAGMENT_SHADER);
449         motion_search_program = link_program(motion_vs_obj, motion_fs_obj);
450
451         uniform_inv_image_size = glGetUniformLocation(motion_search_program, "inv_image_size");
452         uniform_inv_prev_level_size = glGetUniformLocation(motion_search_program, "inv_prev_level_size");
453         uniform_image1_tex = glGetUniformLocation(motion_search_program, "image1_tex");
454         uniform_grad0_tex = glGetUniformLocation(motion_search_program, "grad0_tex");
455         uniform_flow_tex = glGetUniformLocation(motion_search_program, "flow_tex");
456 }
457
458 void MotionSearch::exec(GLuint tex0_view, GLuint tex1_view, GLuint grad0_tex, GLuint flow_tex, GLuint flow_out_tex, int level_width, int level_height, int prev_level_width, int prev_level_height, int width_patches, int height_patches)
459 {
460         glUseProgram(motion_search_program);
461
462         bind_sampler(motion_search_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
463         bind_sampler(motion_search_program, uniform_grad0_tex, 2, grad0_tex, linear_sampler);
464         bind_sampler(motion_search_program, uniform_flow_tex, 3, flow_tex, linear_sampler);
465
466         glProgramUniform2f(motion_search_program, uniform_inv_image_size, 1.0f / level_width, 1.0f / level_height);
467         glProgramUniform2f(motion_search_program, uniform_inv_prev_level_size, 1.0f / prev_level_width, 1.0f / prev_level_height);
468
469         glViewport(0, 0, width_patches, height_patches);
470         fbos.render_to(flow_out_tex);
471         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
472 }
473
474 // Do “densification”, ie., upsampling of the flow patches to the flow field
475 // (the same size as the image at this level). We draw one quad per patch
476 // over its entire covered area (using instancing in the vertex shader),
477 // and then weight the contributions in the pixel shader by post-warp difference.
478 // This is equation (3) in the paper.
479 //
480 // We accumulate the flow vectors in the R/G channels (for u/v) and the total
481 // weight in the B channel. Dividing R and G by B gives the normalized values.
482 class Densify {
483 public:
484         Densify();
485         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches);
486
487 private:
488         PersistentFBOSet<1> fbos;
489
490         GLuint densify_vs_obj;
491         GLuint densify_fs_obj;
492         GLuint densify_program;
493
494         GLuint uniform_patch_size;
495         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
496 };
497
498 Densify::Densify()
499 {
500         densify_vs_obj = compile_shader(read_file("densify.vert"), GL_VERTEX_SHADER);
501         densify_fs_obj = compile_shader(read_file("densify.frag"), GL_FRAGMENT_SHADER);
502         densify_program = link_program(densify_vs_obj, densify_fs_obj);
503
504         uniform_patch_size = glGetUniformLocation(densify_program, "patch_size");
505         uniform_image0_tex = glGetUniformLocation(densify_program, "image0_tex");
506         uniform_image1_tex = glGetUniformLocation(densify_program, "image1_tex");
507         uniform_flow_tex = glGetUniformLocation(densify_program, "flow_tex");
508 }
509
510 void Densify::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint dense_flow_tex, int level_width, int level_height, int width_patches, int height_patches)
511 {
512         glUseProgram(densify_program);
513
514         bind_sampler(densify_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
515         bind_sampler(densify_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
516         bind_sampler(densify_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
517
518         glProgramUniform2f(densify_program, uniform_patch_size,
519                 float(patch_size_pixels) / level_width,
520                 float(patch_size_pixels) / level_height);
521
522         glViewport(0, 0, level_width, level_height);
523         glEnable(GL_BLEND);
524         glBlendFunc(GL_ONE, GL_ONE);
525         fbos.render_to(dense_flow_tex);
526         glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
527         glClear(GL_COLOR_BUFFER_BIT);
528         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width_patches * height_patches);
529 }
530
531 // Warp I_1 to I_w, and then compute the mean (I) and difference (I_t) of
532 // I_0 and I_w. The prewarping is what enables us to solve the variational
533 // flow for du,dv instead of u,v.
534 //
535 // Also calculates the normalized flow, ie. divides by z (this is needed because
536 // Densify works by additive blending) and multiplies by the image size.
537 //
538 // See variational_refinement.txt for more information.
539 class Prewarp {
540 public:
541         Prewarp();
542         void exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint normalized_flow_tex, GLuint I_tex, GLuint I_t_tex, int level_width, int level_height);
543
544 private:
545         PersistentFBOSet<3> fbos;
546
547         GLuint prewarp_vs_obj;
548         GLuint prewarp_fs_obj;
549         GLuint prewarp_program;
550
551         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
552 };
553
554 Prewarp::Prewarp()
555 {
556         prewarp_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
557         prewarp_fs_obj = compile_shader(read_file("prewarp.frag"), GL_FRAGMENT_SHADER);
558         prewarp_program = link_program(prewarp_vs_obj, prewarp_fs_obj);
559
560         uniform_image0_tex = glGetUniformLocation(prewarp_program, "image0_tex");
561         uniform_image1_tex = glGetUniformLocation(prewarp_program, "image1_tex");
562         uniform_flow_tex = glGetUniformLocation(prewarp_program, "flow_tex");
563 }
564
565 void Prewarp::exec(GLuint tex0_view, GLuint tex1_view, GLuint flow_tex, GLuint I_tex, GLuint I_t_tex, GLuint normalized_flow_tex, int level_width, int level_height)
566 {
567         glUseProgram(prewarp_program);
568
569         bind_sampler(prewarp_program, uniform_image0_tex, 0, tex0_view, nearest_sampler);
570         bind_sampler(prewarp_program, uniform_image1_tex, 1, tex1_view, linear_sampler);
571         bind_sampler(prewarp_program, uniform_flow_tex, 2, flow_tex, nearest_sampler);
572
573         glViewport(0, 0, level_width, level_height);
574         glDisable(GL_BLEND);
575         fbos.render_to(I_tex, I_t_tex, normalized_flow_tex);
576         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
577 }
578
579 // From I, calculate the partial derivatives I_x and I_y. We use a four-tap
580 // central difference filter, since apparently, that's tradition (I haven't
581 // measured quality versus a more normal 0.5 (I[x+1] - I[x-1]).)
582 // The coefficients come from
583 //
584 //   https://en.wikipedia.org/wiki/Finite_difference_coefficient
585 //
586 // Also computes β_0, since it depends only on I_x and I_y.
587 class Derivatives {
588 public:
589         Derivatives();
590         void exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height);
591
592 private:
593         PersistentFBOSet<2> fbos;
594
595         GLuint derivatives_vs_obj;
596         GLuint derivatives_fs_obj;
597         GLuint derivatives_program;
598
599         GLuint uniform_tex;
600 };
601
602 Derivatives::Derivatives()
603 {
604         derivatives_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
605         derivatives_fs_obj = compile_shader(read_file("derivatives.frag"), GL_FRAGMENT_SHADER);
606         derivatives_program = link_program(derivatives_vs_obj, derivatives_fs_obj);
607
608         uniform_tex = glGetUniformLocation(derivatives_program, "tex");
609 }
610
611 void Derivatives::exec(GLuint input_tex, GLuint I_x_y_tex, GLuint beta_0_tex, int level_width, int level_height)
612 {
613         glUseProgram(derivatives_program);
614
615         bind_sampler(derivatives_program, uniform_tex, 0, input_tex, nearest_sampler);
616
617         glViewport(0, 0, level_width, level_height);
618         glDisable(GL_BLEND);
619         fbos.render_to(I_x_y_tex, beta_0_tex);
620         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
621 }
622
623 // Calculate the diffusivity for each pixels, g(x,y). Smoothness (s) will
624 // be calculated in the shaders on-the-fly by sampling in-between two
625 // neighboring g(x,y) pixels, plus a border tweak to make sure we get
626 // zero smoothness at the border.
627 //
628 // See variational_refinement.txt for more information.
629 class ComputeDiffusivity {
630 public:
631         ComputeDiffusivity();
632         void exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow);
633
634 private:
635         PersistentFBOSet<1> fbos;
636
637         GLuint diffusivity_vs_obj;
638         GLuint diffusivity_fs_obj;
639         GLuint diffusivity_program;
640
641         GLuint uniform_flow_tex, uniform_diff_flow_tex;
642         GLuint uniform_alpha, uniform_zero_diff_flow;
643 };
644
645 ComputeDiffusivity::ComputeDiffusivity()
646 {
647         diffusivity_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
648         diffusivity_fs_obj = compile_shader(read_file("diffusivity.frag"), GL_FRAGMENT_SHADER);
649         diffusivity_program = link_program(diffusivity_vs_obj, diffusivity_fs_obj);
650
651         uniform_flow_tex = glGetUniformLocation(diffusivity_program, "flow_tex");
652         uniform_diff_flow_tex = glGetUniformLocation(diffusivity_program, "diff_flow_tex");
653         uniform_alpha = glGetUniformLocation(diffusivity_program, "alpha");
654         uniform_zero_diff_flow = glGetUniformLocation(diffusivity_program, "zero_diff_flow");
655 }
656
657 void ComputeDiffusivity::exec(GLuint flow_tex, GLuint diff_flow_tex, GLuint diffusivity_tex, int level_width, int level_height, bool zero_diff_flow)
658 {
659         glUseProgram(diffusivity_program);
660
661         bind_sampler(diffusivity_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
662         bind_sampler(diffusivity_program, uniform_diff_flow_tex, 1, diff_flow_tex, nearest_sampler);
663         glProgramUniform1f(diffusivity_program, uniform_alpha, vr_alpha);
664         glProgramUniform1i(diffusivity_program, uniform_zero_diff_flow, zero_diff_flow);
665
666         glViewport(0, 0, level_width, level_height);
667
668         glDisable(GL_BLEND);
669         fbos.render_to(diffusivity_tex);
670         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
671 }
672
673 // Set up the equations set (two equations in two unknowns, per pixel).
674 // We store five floats; the three non-redundant elements of the 2x2 matrix (A)
675 // as 32-bit floats, and the two elements on the right-hand side (b) as 16-bit
676 // floats. (Actually, we store the inverse of the diagonal elements, because
677 // we only ever need to divide by them.) This fits into four u32 values;
678 // R, G, B for the matrix (the last element is symmetric) and A for the two b values.
679 // All the values of the energy term (E_I, E_G, E_S), except the smoothness
680 // terms that depend on other pixels, are calculated in one pass.
681 //
682 // See variational_refinement.txt for more information.
683 class SetupEquations {
684 public:
685         SetupEquations();
686         void exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_tex, int level_width, int level_height, bool zero_diff_flow);
687
688 private:
689         PersistentFBOSet<1> fbos;
690
691         GLuint equations_vs_obj;
692         GLuint equations_fs_obj;
693         GLuint equations_program;
694
695         GLuint uniform_I_x_y_tex, uniform_I_t_tex;
696         GLuint uniform_diff_flow_tex, uniform_base_flow_tex;
697         GLuint uniform_beta_0_tex;
698         GLuint uniform_diffusivity_tex;
699         GLuint uniform_gamma, uniform_delta, uniform_zero_diff_flow;
700 };
701
702 SetupEquations::SetupEquations()
703 {
704         equations_vs_obj = compile_shader(read_file("equations.vert"), GL_VERTEX_SHADER);
705         equations_fs_obj = compile_shader(read_file("equations.frag"), GL_FRAGMENT_SHADER);
706         equations_program = link_program(equations_vs_obj, equations_fs_obj);
707
708         uniform_I_x_y_tex = glGetUniformLocation(equations_program, "I_x_y_tex");
709         uniform_I_t_tex = glGetUniformLocation(equations_program, "I_t_tex");
710         uniform_diff_flow_tex = glGetUniformLocation(equations_program, "diff_flow_tex");
711         uniform_base_flow_tex = glGetUniformLocation(equations_program, "base_flow_tex");
712         uniform_beta_0_tex = glGetUniformLocation(equations_program, "beta_0_tex");
713         uniform_diffusivity_tex = glGetUniformLocation(equations_program, "diffusivity_tex");
714         uniform_gamma = glGetUniformLocation(equations_program, "gamma");
715         uniform_delta = glGetUniformLocation(equations_program, "delta");
716         uniform_zero_diff_flow = glGetUniformLocation(equations_program, "zero_diff_flow");
717 }
718
719 void SetupEquations::exec(GLuint I_x_y_tex, GLuint I_t_tex, GLuint diff_flow_tex, GLuint base_flow_tex, GLuint beta_0_tex, GLuint diffusivity_tex, GLuint equation_tex, int level_width, int level_height, bool zero_diff_flow)
720 {
721         glUseProgram(equations_program);
722
723         bind_sampler(equations_program, uniform_I_x_y_tex, 0, I_x_y_tex, nearest_sampler);
724         bind_sampler(equations_program, uniform_I_t_tex, 1, I_t_tex, nearest_sampler);
725         bind_sampler(equations_program, uniform_diff_flow_tex, 2, diff_flow_tex, nearest_sampler);
726         bind_sampler(equations_program, uniform_base_flow_tex, 3, base_flow_tex, nearest_sampler);
727         bind_sampler(equations_program, uniform_beta_0_tex, 4, beta_0_tex, nearest_sampler);
728         bind_sampler(equations_program, uniform_diffusivity_tex, 5, diffusivity_tex, zero_border_sampler);
729         glProgramUniform1f(equations_program, uniform_delta, vr_delta);
730         glProgramUniform1f(equations_program, uniform_gamma, vr_gamma);
731         glProgramUniform1i(equations_program, uniform_zero_diff_flow, zero_diff_flow);
732
733         glViewport(0, 0, level_width, level_height);
734         glDisable(GL_BLEND);
735         fbos.render_to(equation_tex);
736         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
737 }
738
739 // Actually solve the equation sets made by SetupEquations, by means of
740 // successive over-relaxation (SOR).
741 //
742 // See variational_refinement.txt for more information.
743 class SOR {
744 public:
745         SOR();
746         void exec(GLuint diff_flow_tex, GLuint equation_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, ScopedTimer *sor_timer);
747
748 private:
749         PersistentFBOSet<1> fbos;
750
751         GLuint sor_vs_obj;
752         GLuint sor_fs_obj;
753         GLuint sor_program;
754
755         GLuint uniform_diff_flow_tex;
756         GLuint uniform_equation_tex;
757         GLuint uniform_diffusivity_tex;
758         GLuint uniform_phase, uniform_zero_diff_flow;
759 };
760
761 SOR::SOR()
762 {
763         sor_vs_obj = compile_shader(read_file("sor.vert"), GL_VERTEX_SHADER);
764         sor_fs_obj = compile_shader(read_file("sor.frag"), GL_FRAGMENT_SHADER);
765         sor_program = link_program(sor_vs_obj, sor_fs_obj);
766
767         uniform_diff_flow_tex = glGetUniformLocation(sor_program, "diff_flow_tex");
768         uniform_equation_tex = glGetUniformLocation(sor_program, "equation_tex");
769         uniform_diffusivity_tex = glGetUniformLocation(sor_program, "diffusivity_tex");
770         uniform_phase = glGetUniformLocation(sor_program, "phase");
771         uniform_zero_diff_flow = glGetUniformLocation(sor_program, "zero_diff_flow");
772 }
773
774 void SOR::exec(GLuint diff_flow_tex, GLuint equation_tex, GLuint diffusivity_tex, int level_width, int level_height, int num_iterations, bool zero_diff_flow, ScopedTimer *sor_timer)
775 {
776         glUseProgram(sor_program);
777
778         bind_sampler(sor_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
779         bind_sampler(sor_program, uniform_diffusivity_tex, 1, diffusivity_tex, zero_border_sampler);
780         bind_sampler(sor_program, uniform_equation_tex, 2, equation_tex, nearest_sampler);
781
782         glProgramUniform1i(sor_program, uniform_zero_diff_flow, zero_diff_flow);
783
784         // NOTE: We bind to the texture we are rendering from, but we never write any value
785         // that we read in the same shader pass (we call discard for red values when we compute
786         // black, and vice versa), and we have barriers between the passes, so we're fine
787         // as per the spec.
788         glViewport(0, 0, level_width, level_height);
789         glDisable(GL_BLEND);
790         fbos.render_to(diff_flow_tex);
791
792         for (int i = 0; i < num_iterations; ++i) {
793                 {
794                         ScopedTimer timer("Red pass", sor_timer);
795                         glProgramUniform1i(sor_program, uniform_phase, 0);
796                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
797                         glTextureBarrier();
798                 }
799                 {
800                         ScopedTimer timer("Black pass", sor_timer);
801                         if (zero_diff_flow && i == 0) {
802                                 // Not zero anymore.
803                                 glProgramUniform1i(sor_program, uniform_zero_diff_flow, 0);
804                         }
805                         glProgramUniform1i(sor_program, uniform_phase, 1);
806                         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
807                         if (i != num_iterations - 1) {
808                                 glTextureBarrier();
809                         }
810                 }
811         }
812 }
813
814 // Simply add the differential flow found by the variational refinement to the base flow.
815 // The output is in base_flow_tex; we don't need to make a new texture.
816 class AddBaseFlow {
817 public:
818         AddBaseFlow();
819         void exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height);
820
821 private:
822         PersistentFBOSet<1> fbos;
823
824         GLuint add_flow_vs_obj;
825         GLuint add_flow_fs_obj;
826         GLuint add_flow_program;
827
828         GLuint uniform_diff_flow_tex;
829 };
830
831 AddBaseFlow::AddBaseFlow()
832 {
833         add_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
834         add_flow_fs_obj = compile_shader(read_file("add_base_flow.frag"), GL_FRAGMENT_SHADER);
835         add_flow_program = link_program(add_flow_vs_obj, add_flow_fs_obj);
836
837         uniform_diff_flow_tex = glGetUniformLocation(add_flow_program, "diff_flow_tex");
838 }
839
840 void AddBaseFlow::exec(GLuint base_flow_tex, GLuint diff_flow_tex, int level_width, int level_height)
841 {
842         glUseProgram(add_flow_program);
843
844         bind_sampler(add_flow_program, uniform_diff_flow_tex, 0, diff_flow_tex, nearest_sampler);
845
846         glViewport(0, 0, level_width, level_height);
847         glEnable(GL_BLEND);
848         glBlendFunc(GL_ONE, GL_ONE);
849         fbos.render_to(base_flow_tex);
850
851         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
852 }
853
854 // Take a copy of the flow, bilinearly interpolated and scaled up.
855 class ResizeFlow {
856 public:
857         ResizeFlow();
858         void exec(GLuint in_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height);
859
860 private:
861         PersistentFBOSet<1> fbos;
862
863         GLuint resize_flow_vs_obj;
864         GLuint resize_flow_fs_obj;
865         GLuint resize_flow_program;
866
867         GLuint uniform_flow_tex;
868         GLuint uniform_scale_factor;
869 };
870
871 ResizeFlow::ResizeFlow()
872 {
873         resize_flow_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
874         resize_flow_fs_obj = compile_shader(read_file("resize_flow.frag"), GL_FRAGMENT_SHADER);
875         resize_flow_program = link_program(resize_flow_vs_obj, resize_flow_fs_obj);
876
877         uniform_flow_tex = glGetUniformLocation(resize_flow_program, "flow_tex");
878         uniform_scale_factor = glGetUniformLocation(resize_flow_program, "scale_factor");
879 }
880
881 void ResizeFlow::exec(GLuint flow_tex, GLuint out_tex, int input_width, int input_height, int output_width, int output_height)
882 {
883         glUseProgram(resize_flow_program);
884
885         bind_sampler(resize_flow_program, uniform_flow_tex, 0, flow_tex, nearest_sampler);
886
887         glProgramUniform2f(resize_flow_program, uniform_scale_factor, float(output_width) / input_width, float(output_height) / input_height);
888
889         glViewport(0, 0, output_width, output_height);
890         glDisable(GL_BLEND);
891         fbos.render_to(out_tex);
892
893         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
894 }
895
896 class TexturePool {
897 public:
898         GLuint get_texture(GLenum format, GLuint width, GLuint height);
899         void release_texture(GLuint tex_num);
900
901 private:
902         struct Texture {
903                 GLuint tex_num;
904                 GLenum format;
905                 GLuint width, height;
906                 bool in_use = false;
907         };
908         vector<Texture> textures;
909 };
910
911 class DISComputeFlow {
912 public:
913         DISComputeFlow(int width, int height);
914
915         enum ResizeStrategy {
916                 DO_NOT_RESIZE_FLOW,
917                 RESIZE_FLOW_TO_FULL_SIZE
918         };
919
920         // Returns a texture that must be released with release_texture()
921         // after use.
922         GLuint exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy);
923
924         void release_texture(GLuint tex) {
925                 pool.release_texture(tex);
926         }
927
928 private:
929         int width, height;
930         GLuint initial_flow_tex;
931         GLuint vertex_vbo, vao;
932         TexturePool pool;
933
934         // The various passes.
935         Sobel sobel;
936         MotionSearch motion_search;
937         Densify densify;
938         Prewarp prewarp;
939         Derivatives derivatives;
940         ComputeDiffusivity compute_diffusivity;
941         SetupEquations setup_equations;
942         SOR sor;
943         AddBaseFlow add_base_flow;
944         ResizeFlow resize_flow;
945 };
946
947 DISComputeFlow::DISComputeFlow(int width, int height)
948         : width(width), height(height)
949 {
950         // Make some samplers.
951         glCreateSamplers(1, &nearest_sampler);
952         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
953         glSamplerParameteri(nearest_sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
954         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
955         glSamplerParameteri(nearest_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
956
957         glCreateSamplers(1, &linear_sampler);
958         glSamplerParameteri(linear_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
959         glSamplerParameteri(linear_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
960         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
961         glSamplerParameteri(linear_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
962
963         // The smoothness is sampled so that once we get to a smoothness involving
964         // a value outside the border, the diffusivity between the two becomes zero.
965         // Similarly, gradients are zero outside the border, since the edge is taken
966         // to be constant.
967         glCreateSamplers(1, &zero_border_sampler);
968         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
969         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
970         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
971         glSamplerParameteri(zero_border_sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
972         float zero[] = { 0.0f, 0.0f, 0.0f, 0.0f };  // Note that zero alpha means we can also see whether we sampled outside the border or not.
973         glSamplerParameterfv(zero_border_sampler, GL_TEXTURE_BORDER_COLOR, zero);
974
975         // Initial flow is zero, 1x1.
976         glCreateTextures(GL_TEXTURE_2D, 1, &initial_flow_tex);
977         glTextureStorage2D(initial_flow_tex, 1, GL_RG16F, 1, 1);
978         glClearTexImage(initial_flow_tex, 0, GL_RG, GL_FLOAT, nullptr);
979
980         // Set up the vertex data that will be shared between all passes.
981         float vertices[] = {
982                 0.0f, 1.0f,
983                 0.0f, 0.0f,
984                 1.0f, 1.0f,
985                 1.0f, 0.0f,
986         };
987         glCreateBuffers(1, &vertex_vbo);
988         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
989
990         glCreateVertexArrays(1, &vao);
991         glBindVertexArray(vao);
992         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
993
994         GLint position_attrib = 0;  // Hard-coded in every vertex shader.
995         glEnableVertexArrayAttrib(vao, position_attrib);
996         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
997 }
998
999 GLuint DISComputeFlow::exec(GLuint tex0, GLuint tex1, ResizeStrategy resize_strategy)
1000 {
1001         int prev_level_width = 1, prev_level_height = 1;
1002         GLuint prev_level_flow_tex = initial_flow_tex;
1003
1004         GPUTimers timers;
1005
1006         glBindVertexArray(vao);
1007
1008         ScopedTimer total_timer("Total", &timers);
1009         for (int level = coarsest_level; level >= int(finest_level); --level) {
1010                 char timer_name[256];
1011                 snprintf(timer_name, sizeof(timer_name), "Level %d (%d x %d)", level, width >> level, height >> level);
1012                 ScopedTimer level_timer(timer_name, &total_timer);
1013
1014                 int level_width = width >> level;
1015                 int level_height = height >> level;
1016                 float patch_spacing_pixels = patch_size_pixels * (1.0f - patch_overlap_ratio);
1017
1018                 // Make sure we have patches at least every Nth pixel, e.g. for width=9
1019                 // and patch_spacing=3 (the default), we put out patch centers in
1020                 // x=0, x=3, x=6, x=9, which is four patches. The fragment shader will
1021                 // lock all the centers to integer coordinates if needed.
1022                 int width_patches = 1 + ceil(level_width / patch_spacing_pixels);
1023                 int height_patches = 1 + ceil(level_height / patch_spacing_pixels);
1024
1025                 // Make sure we always read from the correct level; the chosen
1026                 // mipmapping could otherwise be rather unpredictable, especially
1027                 // during motion search.
1028                 GLuint tex0_view, tex1_view;
1029                 glGenTextures(1, &tex0_view);
1030                 glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_R8, level, 1, 0, 1);
1031                 glGenTextures(1, &tex1_view);
1032                 glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_R8, level, 1, 0, 1);
1033
1034                 // Create a new texture; we could be fancy and render use a multi-level
1035                 // texture, but meh.
1036                 GLuint grad0_tex = pool.get_texture(GL_R32UI, level_width, level_height);
1037
1038                 // Find the derivative.
1039                 {
1040                         ScopedTimer timer("Sobel", &level_timer);
1041                         sobel.exec(tex0_view, grad0_tex, level_width, level_height);
1042                 }
1043
1044                 // Motion search to find the initial flow. We use the flow from the previous
1045                 // level (sampled bilinearly; no fancy tricks) as a guide, then search from there.
1046
1047                 // Create an output flow texture.
1048                 GLuint flow_out_tex = pool.get_texture(GL_RGB16F, width_patches, height_patches);
1049
1050                 // And draw.
1051                 {
1052                         ScopedTimer timer("Motion search", &level_timer);
1053                         motion_search.exec(tex0_view, tex1_view, grad0_tex, prev_level_flow_tex, flow_out_tex, level_width, level_height, prev_level_width, prev_level_height, width_patches, height_patches);
1054                 }
1055                 pool.release_texture(grad0_tex);
1056
1057                 // Densification.
1058
1059                 // Set up an output texture (cleared in Densify).
1060                 GLuint dense_flow_tex = pool.get_texture(GL_RGB16F, level_width, level_height);
1061
1062                 // And draw.
1063                 {
1064                         ScopedTimer timer("Densification", &level_timer);
1065                         densify.exec(tex0_view, tex1_view, flow_out_tex, dense_flow_tex, level_width, level_height, width_patches, height_patches);
1066                 }
1067                 pool.release_texture(flow_out_tex);
1068
1069                 // Everything below here in the loop belongs to variational refinement.
1070                 ScopedTimer varref_timer("Variational refinement", &level_timer);
1071
1072                 // Prewarping; create I and I_t, and a normalized base flow (so we don't
1073                 // have to normalize it over and over again, and also save some bandwidth).
1074                 //
1075                 // During the entire rest of the variational refinement, flow will be measured
1076                 // in pixels, not 0..1 normalized OpenGL texture coordinates.
1077                 // This is because variational refinement depends so heavily on derivatives,
1078                 // which are measured in intensity levels per pixel.
1079                 GLuint I_tex = pool.get_texture(GL_R16F, level_width, level_height);
1080                 GLuint I_t_tex = pool.get_texture(GL_R16F, level_width, level_height);
1081                 GLuint base_flow_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1082                 {
1083                         ScopedTimer timer("Prewarping", &varref_timer);
1084                         prewarp.exec(tex0_view, tex1_view, dense_flow_tex, I_tex, I_t_tex, base_flow_tex, level_width, level_height);
1085                 }
1086                 pool.release_texture(dense_flow_tex);
1087                 glDeleteTextures(1, &tex0_view);
1088                 glDeleteTextures(1, &tex1_view);
1089
1090                 // Calculate I_x and I_y. We're only calculating first derivatives;
1091                 // the others will be taken on-the-fly in order to sample from fewer
1092                 // textures overall, since sampling from the L1 cache is cheap.
1093                 // (TODO: Verify that this is indeed faster than making separate
1094                 // double-derivative textures.)
1095                 GLuint I_x_y_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1096                 GLuint beta_0_tex = pool.get_texture(GL_R16F, level_width, level_height);
1097                 {
1098                         ScopedTimer timer("First derivatives", &varref_timer);
1099                         derivatives.exec(I_tex, I_x_y_tex, beta_0_tex, level_width, level_height);
1100                 }
1101                 pool.release_texture(I_tex);
1102
1103                 // We need somewhere to store du and dv (the flow increment, relative
1104                 // to the non-refined base flow u0 and v0). It's initially garbage,
1105                 // but not read until we've written something sane to it.
1106                 GLuint du_dv_tex = pool.get_texture(GL_RG16F, level_width, level_height);
1107
1108                 // And for diffusivity.
1109                 GLuint diffusivity_tex = pool.get_texture(GL_R16F, level_width, level_height);
1110
1111                 // And finally for the equation set. See SetupEquations for
1112                 // the storage format.
1113                 GLuint equation_tex = pool.get_texture(GL_RGBA32UI, level_width, level_height);
1114
1115                 for (int outer_idx = 0; outer_idx < level + 1; ++outer_idx) {
1116                         // Calculate the diffusivity term for each pixel.
1117                         {
1118                                 ScopedTimer timer("Compute diffusivity", &varref_timer);
1119                                 compute_diffusivity.exec(base_flow_tex, du_dv_tex, diffusivity_tex, level_width, level_height, outer_idx == 0);
1120                         }
1121
1122                         // Set up the 2x2 equation system for each pixel.
1123                         {
1124                                 ScopedTimer timer("Set up equations", &varref_timer);
1125                                 setup_equations.exec(I_x_y_tex, I_t_tex, du_dv_tex, base_flow_tex, beta_0_tex, diffusivity_tex, equation_tex, level_width, level_height, outer_idx == 0);
1126                         }
1127
1128                         // Run a few SOR (or quasi-SOR, since we're not really Jacobi) iterations.
1129                         // Note that these are to/from the same texture.
1130                         {
1131                                 ScopedTimer timer("SOR", &varref_timer);
1132                                 sor.exec(du_dv_tex, equation_tex, diffusivity_tex, level_width, level_height, 5, outer_idx == 0, &timer);
1133                         }
1134                 }
1135
1136                 pool.release_texture(I_t_tex);
1137                 pool.release_texture(I_x_y_tex);
1138                 pool.release_texture(beta_0_tex);
1139                 pool.release_texture(diffusivity_tex);
1140                 pool.release_texture(equation_tex);
1141
1142                 // Add the differential flow found by the variational refinement to the base flow,
1143                 // giving the final flow estimate for this level.
1144                 // The output is in diff_flow_tex; we don't need to make a new texture.
1145                 //
1146                 // Disabling this doesn't save any time (although we could easily make it so that
1147                 // it is more efficient), but it helps debug the motion search.
1148                 if (enable_variational_refinement) {
1149                         ScopedTimer timer("Add differential flow", &varref_timer);
1150                         add_base_flow.exec(base_flow_tex, du_dv_tex, level_width, level_height);
1151                 }
1152                 pool.release_texture(du_dv_tex);
1153
1154                 if (prev_level_flow_tex != initial_flow_tex) {
1155                         pool.release_texture(prev_level_flow_tex);
1156                 }
1157                 prev_level_flow_tex = base_flow_tex;
1158                 prev_level_width = level_width;
1159                 prev_level_height = level_height;
1160         }
1161         total_timer.end();
1162
1163         timers.print();
1164
1165         // Scale up the flow to the final size (if needed).
1166         if (finest_level == 0 || resize_strategy == DO_NOT_RESIZE_FLOW) {
1167                 return prev_level_flow_tex;
1168         } else {
1169                 GLuint final_tex = pool.get_texture(GL_RG16F, width, height);
1170                 resize_flow.exec(prev_level_flow_tex, final_tex, prev_level_width, prev_level_height, width, height);
1171                 pool.release_texture(prev_level_flow_tex);
1172                 return final_tex;
1173         }
1174 }
1175
1176 // Forward-warp the flow half-way (or rather, by alpha). A non-zero “splatting”
1177 // radius fills most of the holes.
1178 class Splat {
1179 public:
1180         Splat();
1181
1182         // alpha is the time of the interpolated frame (0..1).
1183         void exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_tex, int width, int height, float alpha);
1184
1185 private:
1186         PersistentFBOSetWithDepth<1> fbos;
1187
1188         GLuint splat_vs_obj;
1189         GLuint splat_fs_obj;
1190         GLuint splat_program;
1191
1192         GLuint uniform_invert_flow, uniform_splat_size, uniform_alpha;
1193         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1194         GLuint uniform_inv_flow_size;
1195 };
1196
1197 Splat::Splat()
1198 {
1199         splat_vs_obj = compile_shader(read_file("splat.vert"), GL_VERTEX_SHADER);
1200         splat_fs_obj = compile_shader(read_file("splat.frag"), GL_FRAGMENT_SHADER);
1201         splat_program = link_program(splat_vs_obj, splat_fs_obj);
1202
1203         uniform_invert_flow = glGetUniformLocation(splat_program, "invert_flow");
1204         uniform_splat_size = glGetUniformLocation(splat_program, "splat_size");
1205         uniform_alpha = glGetUniformLocation(splat_program, "alpha");
1206         uniform_image0_tex = glGetUniformLocation(splat_program, "image0_tex");
1207         uniform_image1_tex = glGetUniformLocation(splat_program, "image1_tex");
1208         uniform_flow_tex = glGetUniformLocation(splat_program, "flow_tex");
1209         uniform_inv_flow_size = glGetUniformLocation(splat_program, "inv_flow_size");
1210 }
1211
1212 void Splat::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint flow_tex, GLuint depth_tex, int width, int height, float alpha)
1213 {
1214         glUseProgram(splat_program);
1215
1216         bind_sampler(splat_program, uniform_image0_tex, 0, tex0, linear_sampler);
1217         bind_sampler(splat_program, uniform_image1_tex, 1, tex1, linear_sampler);
1218
1219         // FIXME: This is set to 1.0 right now so not to trigger Haswell's “PMA stall”.
1220         // Move to 2.0 later, or even 4.0.
1221         // (Since we have hole filling, it's not critical, but larger values seem to do
1222         // better than hole filling for large motion, blurs etc.)
1223         float splat_size = 1.0f;  // 4x4 splat means 16x overdraw, 2x2 splat means 4x overdraw.
1224         glProgramUniform2f(splat_program, uniform_splat_size, splat_size / width, splat_size / height);
1225         glProgramUniform1f(splat_program, uniform_alpha, alpha);
1226         glProgramUniform2f(splat_program, uniform_inv_flow_size, 1.0f / width, 1.0f / height);
1227
1228         glViewport(0, 0, width, height);
1229         glDisable(GL_BLEND);
1230         glEnable(GL_DEPTH_TEST);
1231         glDepthFunc(GL_LESS);  // We store the difference between I_0 and I_1, where less difference is good. (Default 1.0 is effectively +inf, which always loses.)
1232
1233         fbos.render_to(depth_tex, flow_tex);
1234
1235         // Evidently NVIDIA doesn't use fast clears for glClearTexImage, so clear now that
1236         // we've got it bound.
1237         glClearColor(1000.0f, 1000.0f, 0.0f, 1.0f);  // Invalid flow.
1238         glClearDepth(1.0f);  // Effectively infinity.
1239         glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
1240
1241         // Do forward splatting.
1242         bind_sampler(splat_program, uniform_flow_tex, 2, forward_flow_tex, nearest_sampler);
1243         glProgramUniform1i(splat_program, uniform_invert_flow, 0);
1244         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1245
1246         // Do backward splatting.
1247         bind_sampler(splat_program, uniform_flow_tex, 2, backward_flow_tex, nearest_sampler);
1248         glProgramUniform1i(splat_program, uniform_invert_flow, 1);
1249         glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, width * height);
1250
1251         glDisable(GL_DEPTH_TEST);
1252 }
1253
1254 // Doing good and fast hole-filling on a GPU is nontrivial. We choose an option
1255 // that's fairly simple (given that most holes are really small) and also hopefully
1256 // cheap should the holes not be so small. Conceptually, we look for the first
1257 // non-hole to the left of us (ie., shoot a ray until we hit something), then
1258 // the first non-hole to the right of us, then up and down, and then average them
1259 // all together. It's going to create “stars” if the holes are big, but OK, that's
1260 // a tradeoff.
1261 //
1262 // Our implementation here is efficient assuming that the hierarchical Z-buffer is
1263 // on even for shaders that do discard (this typically kills early Z, but hopefully
1264 // not hierarchical Z); we set up Z so that only holes are written to, which means
1265 // that as soon as a hole is filled, the rasterizer should just skip it. Most of the
1266 // fullscreen quads should just be discarded outright, really.
1267 class HoleFill {
1268 public:
1269         HoleFill();
1270
1271         // Output will be in flow_tex, temp_tex[0, 1, 2], representing the filling
1272         // from the down, left, right and up, respectively. Use HoleBlend to merge
1273         // them into one.
1274         void exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height);
1275
1276 private:
1277         PersistentFBOSetWithDepth<1> fbos;
1278
1279         GLuint fill_vs_obj;
1280         GLuint fill_fs_obj;
1281         GLuint fill_program;
1282
1283         GLuint uniform_tex;
1284         GLuint uniform_z, uniform_sample_offset;
1285 };
1286
1287 HoleFill::HoleFill()
1288 {
1289         fill_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);
1290         fill_fs_obj = compile_shader(read_file("hole_fill.frag"), GL_FRAGMENT_SHADER);
1291         fill_program = link_program(fill_vs_obj, fill_fs_obj);
1292
1293         uniform_tex = glGetUniformLocation(fill_program, "tex");
1294         uniform_z = glGetUniformLocation(fill_program, "z");
1295         uniform_sample_offset = glGetUniformLocation(fill_program, "sample_offset");
1296 }
1297
1298 void HoleFill::exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height)
1299 {
1300         glUseProgram(fill_program);
1301
1302         bind_sampler(fill_program, uniform_tex, 0, flow_tex, nearest_sampler);
1303
1304         glProgramUniform1f(fill_program, uniform_z, 1.0f - 1.0f / 1024.0f);
1305
1306         glViewport(0, 0, width, height);
1307         glDisable(GL_BLEND);
1308         glEnable(GL_DEPTH_TEST);
1309         glDepthFunc(GL_LESS);  // Only update the values > 0.999f (ie., only invalid pixels).
1310
1311         fbos.render_to(depth_tex, flow_tex);  // NOTE: Reading and writing to the same texture.
1312
1313         // Fill holes from the left, by shifting 1, 2, 4, 8, etc. pixels to the right.
1314         for (int offs = 1; offs < width; offs *= 2) {
1315                 glProgramUniform2f(fill_program, uniform_sample_offset, -offs / float(width), 0.0f);
1316                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1317                 glTextureBarrier();
1318         }
1319         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[0], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1320
1321         // Similar to the right; adjust Z a bit down, so that we re-fill the pixels that
1322         // were overwritten in the last algorithm.
1323         glProgramUniform1f(fill_program, uniform_z, 1.0f - 2.0f / 1024.0f);
1324         for (int offs = 1; offs < width; offs *= 2) {
1325                 glProgramUniform2f(fill_program, uniform_sample_offset, offs / float(width), 0.0f);
1326                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1327                 glTextureBarrier();
1328         }
1329         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[1], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1330
1331         // Up.
1332         glProgramUniform1f(fill_program, uniform_z, 1.0f - 3.0f / 1024.0f);
1333         for (int offs = 1; offs < height; offs *= 2) {
1334                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, -offs / float(height));
1335                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1336                 glTextureBarrier();
1337         }
1338         glCopyImageSubData(flow_tex, GL_TEXTURE_2D, 0, 0, 0, 0, temp_tex[2], GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
1339
1340         // Down.
1341         glProgramUniform1f(fill_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1342         for (int offs = 1; offs < height; offs *= 2) {
1343                 glProgramUniform2f(fill_program, uniform_sample_offset, 0.0f, offs / float(height));
1344                 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1345                 glTextureBarrier();
1346         }
1347
1348         glDisable(GL_DEPTH_TEST);
1349 }
1350
1351 // Blend the four directions from HoleFill into one pixel, so that single-pixel
1352 // holes become the average of their four neighbors.
1353 class HoleBlend {
1354 public:
1355         HoleBlend();
1356
1357         void exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height);
1358
1359 private:
1360         PersistentFBOSetWithDepth<1> fbos;
1361
1362         GLuint blend_vs_obj;
1363         GLuint blend_fs_obj;
1364         GLuint blend_program;
1365
1366         GLuint uniform_left_tex, uniform_right_tex, uniform_up_tex, uniform_down_tex;
1367         GLuint uniform_z, uniform_sample_offset;
1368 };
1369
1370 HoleBlend::HoleBlend()
1371 {
1372         blend_vs_obj = compile_shader(read_file("hole_fill.vert"), GL_VERTEX_SHADER);  // Reuse the vertex shader from the fill.
1373         blend_fs_obj = compile_shader(read_file("hole_blend.frag"), GL_FRAGMENT_SHADER);
1374         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1375
1376         uniform_left_tex = glGetUniformLocation(blend_program, "left_tex");
1377         uniform_right_tex = glGetUniformLocation(blend_program, "right_tex");
1378         uniform_up_tex = glGetUniformLocation(blend_program, "up_tex");
1379         uniform_down_tex = glGetUniformLocation(blend_program, "down_tex");
1380         uniform_z = glGetUniformLocation(blend_program, "z");
1381         uniform_sample_offset = glGetUniformLocation(blend_program, "sample_offset");
1382 }
1383
1384 void HoleBlend::exec(GLuint flow_tex, GLuint depth_tex, GLuint temp_tex[3], int width, int height)
1385 {
1386         glUseProgram(blend_program);
1387
1388         bind_sampler(blend_program, uniform_left_tex, 0, temp_tex[0], nearest_sampler);
1389         bind_sampler(blend_program, uniform_right_tex, 1, temp_tex[1], nearest_sampler);
1390         bind_sampler(blend_program, uniform_up_tex, 2, temp_tex[2], nearest_sampler);
1391         bind_sampler(blend_program, uniform_down_tex, 3, flow_tex, nearest_sampler);
1392
1393         glProgramUniform1f(blend_program, uniform_z, 1.0f - 4.0f / 1024.0f);
1394         glProgramUniform2f(blend_program, uniform_sample_offset, 0.0f, 0.0f);
1395
1396         glViewport(0, 0, width, height);
1397         glDisable(GL_BLEND);
1398         glEnable(GL_DEPTH_TEST);
1399         glDepthFunc(GL_LEQUAL);  // Skip over all of the pixels that were never holes to begin with.
1400
1401         fbos.render_to(depth_tex, flow_tex);  // NOTE: Reading and writing to the same texture.
1402
1403         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1404
1405         glDisable(GL_DEPTH_TEST);
1406 }
1407
1408 class Blend {
1409 public:
1410         Blend();
1411         void exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int width, int height, float alpha);
1412
1413 private:
1414         PersistentFBOSet<1> fbos;
1415         GLuint blend_vs_obj;
1416         GLuint blend_fs_obj;
1417         GLuint blend_program;
1418
1419         GLuint uniform_image0_tex, uniform_image1_tex, uniform_flow_tex;
1420         GLuint uniform_alpha, uniform_flow_consistency_tolerance;
1421 };
1422
1423 Blend::Blend()
1424 {
1425         blend_vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
1426         blend_fs_obj = compile_shader(read_file("blend.frag"), GL_FRAGMENT_SHADER);
1427         blend_program = link_program(blend_vs_obj, blend_fs_obj);
1428
1429         uniform_image0_tex = glGetUniformLocation(blend_program, "image0_tex");
1430         uniform_image1_tex = glGetUniformLocation(blend_program, "image1_tex");
1431         uniform_flow_tex = glGetUniformLocation(blend_program, "flow_tex");
1432         uniform_alpha = glGetUniformLocation(blend_program, "alpha");
1433         uniform_flow_consistency_tolerance = glGetUniformLocation(blend_program, "flow_consistency_tolerance");
1434 }
1435
1436 void Blend::exec(GLuint tex0, GLuint tex1, GLuint flow_tex, GLuint output_tex, int level_width, int level_height, float alpha)
1437 {
1438         glUseProgram(blend_program);
1439         bind_sampler(blend_program, uniform_image0_tex, 0, tex0, linear_sampler);
1440         bind_sampler(blend_program, uniform_image1_tex, 1, tex1, linear_sampler);
1441         bind_sampler(blend_program, uniform_flow_tex, 2, flow_tex, linear_sampler);  // May be upsampled.
1442         glProgramUniform1f(blend_program, uniform_alpha, alpha);
1443
1444         glViewport(0, 0, level_width, level_height);
1445         fbos.render_to(output_tex);
1446         glDisable(GL_BLEND);  // A bit ironic, perhaps.
1447         glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
1448 }
1449
1450 class Interpolate {
1451 public:
1452         Interpolate(int width, int height, int flow_level);
1453
1454         // Returns a texture that must be released with release_texture()
1455         // after use. tex0 and tex1 must be RGBA8 textures with mipmaps
1456         // (unless flow_level == 0).
1457         GLuint exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha);
1458
1459         void release_texture(GLuint tex) {
1460                 pool.release_texture(tex);
1461         }
1462
1463 private:
1464         int width, height, flow_level;
1465         GLuint vertex_vbo, vao;
1466         TexturePool pool;
1467
1468         Splat splat;
1469         HoleFill hole_fill;
1470         HoleBlend hole_blend;
1471         Blend blend;
1472 };
1473
1474 Interpolate::Interpolate(int width, int height, int flow_level)
1475         : width(width), height(height), flow_level(flow_level) {
1476         // Set up the vertex data that will be shared between all passes.
1477         float vertices[] = {
1478                 0.0f, 1.0f,
1479                 0.0f, 0.0f,
1480                 1.0f, 1.0f,
1481                 1.0f, 0.0f,
1482         };
1483         glCreateBuffers(1, &vertex_vbo);
1484         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
1485
1486         glCreateVertexArrays(1, &vao);
1487         glBindVertexArray(vao);
1488         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1489
1490         GLint position_attrib = 0;  // Hard-coded in every vertex shader.
1491         glEnableVertexArrayAttrib(vao, position_attrib);
1492         glVertexAttribPointer(position_attrib, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1493 }
1494
1495 GLuint Interpolate::exec(GLuint tex0, GLuint tex1, GLuint forward_flow_tex, GLuint backward_flow_tex, GLuint width, GLuint height, float alpha)
1496 {
1497         GPUTimers timers;
1498
1499         ScopedTimer total_timer("Total", &timers);
1500
1501         glBindVertexArray(vao);
1502
1503         // Pick out the right level to test splatting results on.
1504         GLuint tex0_view, tex1_view;
1505         glGenTextures(1, &tex0_view);
1506         glTextureView(tex0_view, GL_TEXTURE_2D, tex0, GL_RGBA8, flow_level, 1, 0, 1);
1507         glGenTextures(1, &tex1_view);
1508         glTextureView(tex1_view, GL_TEXTURE_2D, tex1, GL_RGBA8, flow_level, 1, 0, 1);
1509
1510         int flow_width = width >> flow_level;
1511         int flow_height = height >> flow_level;
1512
1513         GLuint flow_tex = pool.get_texture(GL_RG16F, flow_width, flow_height);
1514         GLuint depth_tex = pool.get_texture(GL_DEPTH_COMPONENT32F, flow_width, flow_height);  // Used for ranking flows.
1515
1516         {
1517                 ScopedTimer timer("Splat", &total_timer);
1518                 splat.exec(tex0_view, tex1_view, forward_flow_tex, backward_flow_tex, flow_tex, depth_tex, flow_width, flow_height, alpha);
1519         }
1520         glDeleteTextures(1, &tex0_view);
1521         glDeleteTextures(1, &tex1_view);
1522
1523         GLuint temp_tex[3];
1524         temp_tex[0] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1525         temp_tex[1] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1526         temp_tex[2] = pool.get_texture(GL_RG16F, flow_width, flow_height);
1527
1528         {
1529                 ScopedTimer timer("Fill holes", &total_timer);
1530                 hole_fill.exec(flow_tex, depth_tex, temp_tex, flow_width, flow_height);
1531                 hole_blend.exec(flow_tex, depth_tex, temp_tex, flow_width, flow_height);
1532         }
1533
1534         pool.release_texture(temp_tex[0]);
1535         pool.release_texture(temp_tex[1]);
1536         pool.release_texture(temp_tex[2]);
1537         pool.release_texture(depth_tex);
1538
1539         GLuint output_tex = pool.get_texture(GL_RGBA8, width, height);
1540         {
1541                 ScopedTimer timer("Blend", &total_timer);
1542                 blend.exec(tex0, tex1, flow_tex, output_tex, width, height, alpha);
1543         }
1544         pool.release_texture(flow_tex);
1545         total_timer.end();
1546         timers.print();
1547
1548         return output_tex;
1549 }
1550
1551 GLuint TexturePool::get_texture(GLenum format, GLuint width, GLuint height)
1552 {
1553         for (Texture &tex : textures) {
1554                 if (!tex.in_use && tex.format == format &&
1555                     tex.width == width && tex.height == height) {
1556                         tex.in_use = true;
1557                         return tex.tex_num;
1558                 }
1559         }
1560
1561         Texture tex;
1562         glCreateTextures(GL_TEXTURE_2D, 1, &tex.tex_num);
1563         glTextureStorage2D(tex.tex_num, 1, format, width, height);
1564         tex.format = format;
1565         tex.width = width;
1566         tex.height = height;
1567         tex.in_use = true;
1568         textures.push_back(tex);
1569         return tex.tex_num;
1570 }
1571
1572 void TexturePool::release_texture(GLuint tex_num)
1573 {
1574         for (Texture &tex : textures) {
1575                 if (tex.tex_num == tex_num) {
1576                         assert(tex.in_use);
1577                         tex.in_use = false;
1578                         return;
1579                 }
1580         }
1581         assert(false);
1582 }
1583
1584 // OpenGL uses a bottom-left coordinate system, .flo files use a top-left coordinate system.
1585 void flip_coordinate_system(float *dense_flow, unsigned width, unsigned height)
1586 {
1587         for (unsigned i = 0; i < width * height; ++i) {
1588                 dense_flow[i * 2 + 1] = -dense_flow[i * 2 + 1];
1589         }
1590 }
1591
1592 // Not relevant for RGB.
1593 void flip_coordinate_system(uint8_t *dense_flow, unsigned width, unsigned height)
1594 {
1595 }
1596
1597 void write_flow(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1598 {
1599         FILE *flowfp = fopen(filename, "wb");
1600         fprintf(flowfp, "FEIH");
1601         fwrite(&width, 4, 1, flowfp);
1602         fwrite(&height, 4, 1, flowfp);
1603         for (unsigned y = 0; y < height; ++y) {
1604                 int yy = height - y - 1;
1605                 fwrite(&dense_flow[yy * width * 2], width * 2 * sizeof(float), 1, flowfp);
1606         }
1607         fclose(flowfp);
1608 }
1609
1610 // Not relevant for RGB.
1611 void write_flow(const char *filename, const uint8_t *dense_flow, unsigned width, unsigned height)
1612 {
1613         assert(false);
1614 }
1615
1616 void write_ppm(const char *filename, const float *dense_flow, unsigned width, unsigned height)
1617 {
1618         FILE *fp = fopen(filename, "wb");
1619         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1620         for (unsigned y = 0; y < unsigned(height); ++y) {
1621                 int yy = height - y - 1;
1622                 for (unsigned x = 0; x < unsigned(width); ++x) {
1623                         float du = dense_flow[(yy * width + x) * 2 + 0];
1624                         float dv = dense_flow[(yy * width + x) * 2 + 1];
1625
1626                         uint8_t r, g, b;
1627                         flow2rgb(du, dv, &r, &g, &b);
1628                         putc(r, fp);
1629                         putc(g, fp);
1630                         putc(b, fp);
1631                 }
1632         }
1633         fclose(fp);
1634 }
1635
1636 void write_ppm(const char *filename, const uint8_t *rgba, unsigned width, unsigned height)
1637 {
1638         unique_ptr<uint8_t[]> rgb_line(new uint8_t[width * 3 + 1]);
1639
1640         FILE *fp = fopen(filename, "wb");
1641         fprintf(fp, "P6\n%d %d\n255\n", width, height);
1642         for (unsigned y = 0; y < height; ++y) {
1643                 unsigned y2 = height - 1 - y;
1644                 for (size_t x = 0; x < width; ++x) {
1645                         memcpy(&rgb_line[x * 3], &rgba[(y2 * width + x) * 4], 4);
1646                 }
1647                 fwrite(rgb_line.get(), width * 3, 1, fp);
1648         }
1649         fclose(fp);
1650 }
1651
1652 struct FlowType {
1653         using type = float;
1654         static constexpr GLenum gl_format = GL_RG;
1655         static constexpr GLenum gl_type = GL_FLOAT;
1656         static constexpr int num_channels = 2;
1657 };
1658
1659 struct RGBAType {
1660         using type = uint8_t;
1661         static constexpr GLenum gl_format = GL_RGBA;
1662         static constexpr GLenum gl_type = GL_UNSIGNED_BYTE;
1663         static constexpr int num_channels = 4;
1664 };
1665
1666 template <class Type>
1667 void finish_one_read(GLuint width, GLuint height)
1668 {
1669         using T = typename Type::type;
1670         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1671
1672         assert(!reads_in_progress.empty());
1673         ReadInProgress read = reads_in_progress.front();
1674         reads_in_progress.pop_front();
1675
1676         unique_ptr<T[]> flow(new typename Type::type[width * height * Type::num_channels]);
1677         void *buf = glMapNamedBufferRange(read.pbo, 0, width * height * bytes_per_pixel, GL_MAP_READ_BIT);  // Blocks if the read isn't done yet.
1678         memcpy(flow.get(), buf, width * height * bytes_per_pixel);  // TODO: Unneeded for RGBType, since flip_coordinate_system() does nothing.:
1679         glUnmapNamedBuffer(read.pbo);
1680         spare_pbos.push(read.pbo);
1681
1682         flip_coordinate_system(flow.get(), width, height);
1683         if (!read.flow_filename.empty()) {
1684                 write_flow(read.flow_filename.c_str(), flow.get(), width, height);
1685                 fprintf(stderr, "%s %s -> %s\n", read.filename0.c_str(), read.filename1.c_str(), read.flow_filename.c_str());
1686         }
1687         if (!read.ppm_filename.empty()) {
1688                 write_ppm(read.ppm_filename.c_str(), flow.get(), width, height);
1689         }
1690 }
1691
1692 template <class Type>
1693 void schedule_read(GLuint tex, GLuint width, GLuint height, const char *filename0, const char *filename1, const char *flow_filename, const char *ppm_filename)
1694 {
1695         using T = typename Type::type;
1696         constexpr int bytes_per_pixel = Type::num_channels * sizeof(T);
1697
1698         if (spare_pbos.empty()) {
1699                 finish_one_read<Type>(width, height);
1700         }
1701         assert(!spare_pbos.empty());
1702         reads_in_progress.emplace_back(ReadInProgress{ spare_pbos.top(), filename0, filename1, flow_filename, ppm_filename });
1703         glBindBuffer(GL_PIXEL_PACK_BUFFER, spare_pbos.top());
1704         spare_pbos.pop();
1705         glGetTextureImage(tex, 0, Type::gl_format, Type::gl_type, width * height * bytes_per_pixel, nullptr);
1706         glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
1707 }
1708
1709 void compute_flow_only(int argc, char **argv, int optind)
1710 {
1711         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1712         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1713         const char *flow_filename = argc >= (optind + 3) ? argv[optind + 2] : "flow.flo";
1714
1715         // Load pictures.
1716         unsigned width1, height1, width2, height2;
1717         GLuint tex0 = load_texture(filename0, &width1, &height1, WITHOUT_MIPMAPS);
1718         GLuint tex1 = load_texture(filename1, &width2, &height2, WITHOUT_MIPMAPS);
1719
1720         if (width1 != width2 || height1 != height2) {
1721                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1722                         width1, height1, width2, height2);
1723                 exit(1);
1724         }
1725
1726         // Set up some PBOs to do asynchronous readback.
1727         GLuint pbos[5];
1728         glCreateBuffers(5, pbos);
1729         for (int i = 0; i < 5; ++i) {
1730                 glNamedBufferData(pbos[i], width1 * height1 * 2 * sizeof(float), nullptr, GL_STREAM_READ);
1731                 spare_pbos.push(pbos[i]);
1732         }
1733
1734         int levels = find_num_levels(width1, height1);
1735         GLuint tex0_gray, tex1_gray;
1736         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1737         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1738         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1739         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1740
1741         GrayscaleConversion gray;
1742         gray.exec(tex0, tex0_gray, width1, height1);
1743         glDeleteTextures(1, &tex0);
1744         glGenerateTextureMipmap(tex0_gray);
1745
1746         gray.exec(tex1, tex1_gray, width1, height1);
1747         glDeleteTextures(1, &tex1);
1748         glGenerateTextureMipmap(tex1_gray);
1749
1750         DISComputeFlow compute_flow(width1, height1);
1751         GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1752
1753         schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "flow.ppm");
1754         compute_flow.release_texture(final_tex);
1755
1756         // See if there are more flows on the command line (ie., more than three arguments),
1757         // and if so, process them.
1758         int num_flows = (argc - optind) / 3;
1759         for (int i = 1; i < num_flows; ++i) {
1760                 const char *filename0 = argv[optind + i * 3 + 0];
1761                 const char *filename1 = argv[optind + i * 3 + 1];
1762                 const char *flow_filename = argv[optind + i * 3 + 2];
1763                 GLuint width, height;
1764                 GLuint tex0 = load_texture(filename0, &width, &height, WITHOUT_MIPMAPS);
1765                 if (width != width1 || height != height1) {
1766                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1767                                 filename0, width, height, width1, height1);
1768                         exit(1);
1769                 }
1770                 gray.exec(tex0, tex0_gray, width, height);
1771                 glGenerateTextureMipmap(tex0_gray);
1772                 glDeleteTextures(1, &tex0);
1773
1774                 GLuint tex1 = load_texture(filename1, &width, &height, WITHOUT_MIPMAPS);
1775                 if (width != width1 || height != height1) {
1776                         fprintf(stderr, "%s: Image dimensions don't match (%dx%d versus %dx%d)\n",
1777                                 filename1, width, height, width1, height1);
1778                         exit(1);
1779                 }
1780                 gray.exec(tex1, tex1_gray, width, height);
1781                 glGenerateTextureMipmap(tex1_gray);
1782                 glDeleteTextures(1, &tex1);
1783
1784                 GLuint final_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::RESIZE_FLOW_TO_FULL_SIZE);
1785
1786                 schedule_read<FlowType>(final_tex, width1, height1, filename0, filename1, flow_filename, "");
1787                 compute_flow.release_texture(final_tex);
1788         }
1789         glDeleteTextures(1, &tex0_gray);
1790         glDeleteTextures(1, &tex1_gray);
1791
1792         while (!reads_in_progress.empty()) {
1793                 finish_one_read<FlowType>(width1, height1);
1794         }
1795 }
1796
1797 // Interpolate images based on
1798 //
1799 //   Herbst, Seitz, Baker: “Occlusion Reasoning for Temporal Interpolation
1800 //   Using Optical Flow”
1801 //
1802 // or at least a reasonable subset thereof. Unfinished.
1803 void interpolate_image(int argc, char **argv, int optind)
1804 {
1805         const char *filename0 = argc >= (optind + 1) ? argv[optind] : "test1499.png";
1806         const char *filename1 = argc >= (optind + 2) ? argv[optind + 1] : "test1500.png";
1807         //const char *out_filename = argc >= (optind + 3) ? argv[optind + 2] : "interpolated.png";
1808
1809         // Load pictures.
1810         unsigned width1, height1, width2, height2;
1811         GLuint tex0 = load_texture(filename0, &width1, &height1, WITH_MIPMAPS);
1812         GLuint tex1 = load_texture(filename1, &width2, &height2, WITH_MIPMAPS);
1813
1814         if (width1 != width2 || height1 != height2) {
1815                 fprintf(stderr, "Image dimensions don't match (%dx%d versus %dx%d)\n",
1816                         width1, height1, width2, height2);
1817                 exit(1);
1818         }
1819
1820         // Set up some PBOs to do asynchronous readback.
1821         GLuint pbos[5];
1822         glCreateBuffers(5, pbos);
1823         for (int i = 0; i < 5; ++i) {
1824                 glNamedBufferData(pbos[i], width1 * height1 * 4 * sizeof(uint8_t), nullptr, GL_STREAM_READ);
1825                 spare_pbos.push(pbos[i]);
1826         }
1827
1828         DISComputeFlow compute_flow(width1, height1);
1829         GrayscaleConversion gray;
1830         Interpolate interpolate(width1, height1, finest_level);
1831
1832         int levels = find_num_levels(width1, height1);
1833         GLuint tex0_gray, tex1_gray;
1834         glCreateTextures(GL_TEXTURE_2D, 1, &tex0_gray);
1835         glCreateTextures(GL_TEXTURE_2D, 1, &tex1_gray);
1836         glTextureStorage2D(tex0_gray, levels, GL_R8, width1, height1);
1837         glTextureStorage2D(tex1_gray, levels, GL_R8, width1, height1);
1838
1839         gray.exec(tex0, tex0_gray, width1, height1);
1840         glGenerateTextureMipmap(tex0_gray);
1841
1842         gray.exec(tex1, tex1_gray, width1, height1);
1843         glGenerateTextureMipmap(tex1_gray);
1844
1845         GLuint forward_flow_tex = compute_flow.exec(tex0_gray, tex1_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1846         GLuint backward_flow_tex = compute_flow.exec(tex1_gray, tex0_gray, DISComputeFlow::DO_NOT_RESIZE_FLOW);
1847
1848         for (int frameno = 1; frameno < 60; ++frameno) {
1849                 char ppm_filename[256];
1850                 snprintf(ppm_filename, sizeof(ppm_filename), "interp%04d.ppm", frameno);
1851
1852                 float alpha = frameno / 60.0f;
1853                 GLuint interpolated_tex = interpolate.exec(tex0, tex1, forward_flow_tex, backward_flow_tex, width1, height1, alpha);
1854
1855                 schedule_read<RGBAType>(interpolated_tex, width1, height1, filename0, filename1, "", ppm_filename);
1856                 interpolate.release_texture(interpolated_tex);
1857         }
1858
1859         while (!reads_in_progress.empty()) {
1860                 finish_one_read<RGBAType>(width1, height1);
1861         }
1862 }
1863
1864 int main(int argc, char **argv)
1865 {
1866         static const option long_options[] = {
1867                 { "smoothness-relative-weight", required_argument, 0, 's' },  // alpha.
1868                 { "intensity-relative-weight", required_argument, 0, 'i' },  // delta.
1869                 { "gradient-relative-weight", required_argument, 0, 'g' },  // gamma.
1870                 { "disable-timing", no_argument, 0, 1000 },
1871                 { "detailed-timing", no_argument, 0, 1003 },
1872                 { "ignore-variational-refinement", no_argument, 0, 1001 },  // Still calculates it, just doesn't apply it.
1873                 { "interpolate", no_argument, 0, 1002 }
1874         };
1875
1876         for ( ;; ) {
1877                 int option_index = 0;
1878                 int c = getopt_long(argc, argv, "s:i:g:", long_options, &option_index);
1879
1880                 if (c == -1) {
1881                         break;
1882                 }
1883                 switch (c) {
1884                 case 's':
1885                         vr_alpha = atof(optarg);
1886                         break;
1887                 case 'i':
1888                         vr_delta = atof(optarg);
1889                         break;
1890                 case 'g':
1891                         vr_gamma = atof(optarg);
1892                         break;
1893                 case 1000:
1894                         enable_timing = false;
1895                         break;
1896                 case 1001:
1897                         enable_variational_refinement = false;
1898                         break;
1899                 case 1002:
1900                         enable_interpolation = true;
1901                         break;
1902                 case 1003:
1903                         detailed_timing = true;
1904                         break;
1905                 default:
1906                         fprintf(stderr, "Unknown option '%s'\n", argv[option_index]);
1907                         exit(1);
1908                 };
1909         }
1910
1911         if (SDL_Init(SDL_INIT_EVERYTHING) == -1) {
1912                 fprintf(stderr, "SDL_Init failed: %s\n", SDL_GetError());
1913                 exit(1);
1914         }
1915         SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE, 8);
1916         SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 0);
1917         SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 0);
1918         SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);
1919
1920         SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
1921         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 4);
1922         SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 5);
1923         // SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, SDL_GL_CONTEXT_DEBUG_FLAG);
1924         window = SDL_CreateWindow("OpenGL window",
1925                 SDL_WINDOWPOS_UNDEFINED,
1926                 SDL_WINDOWPOS_UNDEFINED,
1927                 64, 64,
1928                 SDL_WINDOW_OPENGL | SDL_WINDOW_HIDDEN);
1929         SDL_GLContext context = SDL_GL_CreateContext(window);
1930         assert(context != nullptr);
1931
1932         glDisable(GL_DITHER);
1933
1934         // FIXME: Should be part of DISComputeFlow (but needs to be initialized
1935         // before all the render passes).
1936         float vertices[] = {
1937                 0.0f, 1.0f,
1938                 0.0f, 0.0f,
1939                 1.0f, 1.0f,
1940                 1.0f, 0.0f,
1941         };
1942         glCreateBuffers(1, &vertex_vbo);
1943         glNamedBufferData(vertex_vbo, sizeof(vertices), vertices, GL_STATIC_DRAW);
1944         glBindBuffer(GL_ARRAY_BUFFER, vertex_vbo);
1945
1946         if (enable_interpolation) {
1947                 interpolate_image(argc, argv, optind);
1948         } else {
1949                 compute_flow_only(argc, argv, optind);
1950         }
1951 }