]> git.sesse.net Git - nageru/blob - mixer.cpp
21c3f696100eec8407bd8b19ff22becdd7be4882
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29
30 #include "bmusb/bmusb.h"
31 #include "context.h"
32 #include "defs.h"
33 #include "flags.h"
34 #include "h264encode.h"
35 #include "pbo_frame_allocator.h"
36 #include "ref_counted_gl_sync.h"
37 #include "timebase.h"
38
39 class QOpenGLContext;
40
41 using namespace movit;
42 using namespace std;
43 using namespace std::placeholders;
44
45 Mixer *global_mixer = nullptr;
46
47 namespace {
48
49 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
50 {
51         for (size_t i = 0; i < num_samples; ++i) {
52                 for (size_t j = 0; j < out_channels; ++j) {
53                         uint32_t s1 = *src++;
54                         uint32_t s2 = *src++;
55                         uint32_t s3 = *src++;
56                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
57                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
58                 }
59                 src += 3 * (in_channels - out_channels);
60         }
61 }
62
63 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
64 {
65         if (interlaced) {
66                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
67                         input_state->buffered_frames[card_index][frame_num] =
68                                 input_state->buffered_frames[card_index][frame_num - 1];
69                 }
70                 input_state->buffered_frames[card_index][0] = { frame, field_num };
71         } else {
72                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
73                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
74                 }
75         }
76 }
77
78 string generate_local_dump_filename(int frame)
79 {
80         time_t now = time(NULL);
81         tm now_tm;
82         localtime_r(&now, &now_tm);
83
84         char timestamp[256];
85         strftime(timestamp, sizeof(timestamp), "%F-%T%z", &now_tm);
86
87         // Use the frame number to disambiguate between two cuts starting
88         // on the same second.
89         char filename[256];
90         snprintf(filename, sizeof(filename), "%s%s-f%02d%s",
91                 LOCAL_DUMP_PREFIX, timestamp, frame % 100, LOCAL_DUMP_SUFFIX);
92         return filename;
93 }
94
95 }  // namespace
96
97 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
98         : httpd(WIDTH, HEIGHT),
99           num_cards(num_cards),
100           mixer_surface(create_surface(format)),
101           h264_encoder_surface(create_surface(format)),
102           correlation(OUTPUT_FREQUENCY),
103           level_compressor(OUTPUT_FREQUENCY),
104           limiter(OUTPUT_FREQUENCY),
105           compressor(OUTPUT_FREQUENCY)
106 {
107         httpd.open_output_file(generate_local_dump_filename(/*frame=*/0).c_str());
108         httpd.start(9095);
109
110         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
111         check_error();
112
113         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
114         // will be halved when sampling them, and we need to compensate here.
115         movit_texel_subpixel_precision /= 2.0;
116
117         resource_pool.reset(new ResourcePool);
118         theme.reset(new Theme("theme.lua", resource_pool.get(), num_cards));
119         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
120                 output_channel[i].parent = this;
121         }
122
123         ImageFormat inout_format;
124         inout_format.color_space = COLORSPACE_sRGB;
125         inout_format.gamma_curve = GAMMA_sRGB;
126
127         // Display chain; shows the live output produced by the main chain (its RGBA version).
128         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
129         check_error();
130         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
131         display_chain->add_input(display_input);
132         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
133         display_chain->set_dither_bits(0);  // Don't bother.
134         display_chain->finalize();
135
136         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
137
138         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
139                 printf("Configuring card %d...\n", card_index);
140                 CaptureCard *card = &cards[card_index];
141                 card->usb = new BMUSBCapture(card_index);
142                 card->usb->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
143                 card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
144                 card->usb->set_video_frame_allocator(card->frame_allocator.get());
145                 card->surface = create_surface(format);
146                 card->usb->set_dequeue_thread_callbacks(
147                         [card]{
148                                 eglBindAPI(EGL_OPENGL_API);
149                                 card->context = create_context(card->surface);
150                                 if (!make_current(card->context, card->surface)) {
151                                         printf("failed to create bmusb context\n");
152                                         exit(1);
153                                 }
154                         },
155                         [this]{
156                                 resource_pool->clean_context();
157                         });
158                 card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
159                 card->usb->configure_card();
160         }
161
162         BMUSBCapture::start_bm_thread();
163
164         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
165                 cards[card_index].usb->start_bm_capture();
166         }
167
168         // Set up stuff for NV12 conversion.
169
170         // Cb/Cr shader.
171         string cbcr_vert_shader =
172                 "#version 130 \n"
173                 " \n"
174                 "in vec2 position; \n"
175                 "in vec2 texcoord; \n"
176                 "out vec2 tc0; \n"
177                 "uniform vec2 foo_chroma_offset_0; \n"
178                 " \n"
179                 "void main() \n"
180                 "{ \n"
181                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
182                 "    // \n"
183                 "    //   2.000  0.000  0.000 -1.000 \n"
184                 "    //   0.000  2.000  0.000 -1.000 \n"
185                 "    //   0.000  0.000 -2.000 -1.000 \n"
186                 "    //   0.000  0.000  0.000  1.000 \n"
187                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
188                 "    vec2 flipped_tc = texcoord; \n"
189                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
190                 "} \n";
191         string cbcr_frag_shader =
192                 "#version 130 \n"
193                 "in vec2 tc0; \n"
194                 "uniform sampler2D cbcr_tex; \n"
195                 "out vec4 FragColor; \n"
196                 "void main() { \n"
197                 "    FragColor = texture(cbcr_tex, tc0); \n"
198                 "} \n";
199         vector<string> frag_shader_outputs;
200         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
201
202         float vertices[] = {
203                 0.0f, 2.0f,
204                 0.0f, 0.0f,
205                 2.0f, 0.0f
206         };
207         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
208         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
209         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
210
211         r128.init(2, OUTPUT_FREQUENCY);
212         r128.integr_start();
213
214         locut.init(FILTER_HPF, 2);
215
216         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
217         // and there's a limit to how important the peak meter is.
218         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
219
220         alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
221 }
222
223 Mixer::~Mixer()
224 {
225         resource_pool->release_glsl_program(cbcr_program_num);
226         glDeleteBuffers(1, &cbcr_vbo);
227         BMUSBCapture::stop_bm_thread();
228
229         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
230                 {
231                         unique_lock<mutex> lock(bmusb_mutex);
232                         cards[card_index].should_quit = true;  // Unblock thread.
233                         cards[card_index].new_data_ready_changed.notify_all();
234                 }
235                 cards[card_index].usb->stop_dequeue_thread();
236         }
237
238         h264_encoder.reset(nullptr);
239 }
240
241 namespace {
242
243 int unwrap_timecode(uint16_t current_wrapped, int last)
244 {
245         uint16_t last_wrapped = last & 0xffff;
246         if (current_wrapped > last_wrapped) {
247                 return (last & ~0xffff) | current_wrapped;
248         } else {
249                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
250         }
251 }
252
253 float find_peak(const float *samples, size_t num_samples)
254 {
255         float m = fabs(samples[0]);
256         for (size_t i = 1; i < num_samples; ++i) {
257                 m = max(m, fabs(samples[i]));
258         }
259         return m;
260 }
261
262 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
263 {
264         size_t num_samples = in.size() / 2;
265         out_l->resize(num_samples);
266         out_r->resize(num_samples);
267
268         const float *inptr = in.data();
269         float *lptr = &(*out_l)[0];
270         float *rptr = &(*out_r)[0];
271         for (size_t i = 0; i < num_samples; ++i) {
272                 *lptr++ = *inptr++;
273                 *rptr++ = *inptr++;
274         }
275 }
276
277 }  // namespace
278
279 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
280                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
281                      FrameAllocator::Frame audio_frame, size_t audio_offset, uint16_t audio_format)
282 {
283         CaptureCard *card = &cards[card_index];
284
285         int64_t frame_length = int64_t(TIMEBASE * video_format.frame_rate_den) / video_format.frame_rate_nom;
286
287         size_t num_samples = (audio_frame.len >= audio_offset) ? (audio_frame.len - audio_offset) / 8 / 3 : 0;
288         if (num_samples > OUTPUT_FREQUENCY / 10) {
289                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
290                         card_index, int(audio_frame.len), int(audio_offset),
291                         timecode, int(video_frame.len), int(video_offset), video_format.id);
292                 if (video_frame.owner) {
293                         video_frame.owner->release_frame(video_frame);
294                 }
295                 if (audio_frame.owner) {
296                         audio_frame.owner->release_frame(audio_frame);
297                 }
298                 return;
299         }
300
301         int64_t local_pts = card->next_local_pts;
302         int dropped_frames = 0;
303         if (card->last_timecode != -1) {
304                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
305         }
306
307         // Convert the audio to stereo fp32 and add it.
308         vector<float> audio;
309         audio.resize(num_samples * 2);
310         convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, 8, num_samples);
311
312         // Add the audio.
313         {
314                 unique_lock<mutex> lock(card->audio_mutex);
315
316                 // Number of samples per frame if we need to insert silence.
317                 // (Could be nonintegral, but resampling will save us then.)
318                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
319
320                 if (dropped_frames > MAX_FPS * 2) {
321                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
322                                 card_index, card->last_timecode, timecode);
323                         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
324                         dropped_frames = 0;
325                 } else if (dropped_frames > 0) {
326                         // Insert silence as needed.
327                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
328                                 card_index, dropped_frames, timecode);
329                         vector<float> silence(silence_samples * 2, 0.0f);
330                         for (int i = 0; i < dropped_frames; ++i) {
331                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
332                                 // Note that if the format changed in the meantime, we have
333                                 // no way of detecting that; we just have to assume the frame length
334                                 // is always the same.
335                                 local_pts += frame_length;
336                         }
337                 }
338                 if (num_samples == 0) {
339                         audio.resize(silence_samples * 2);
340                         num_samples = silence_samples;
341                 }
342                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
343                 card->next_local_pts = local_pts + frame_length;
344         }
345
346         card->last_timecode = timecode;
347
348         // Done with the audio, so release it.
349         if (audio_frame.owner) {
350                 audio_frame.owner->release_frame(audio_frame);
351         }
352
353         {
354                 // Wait until the previous frame was consumed.
355                 unique_lock<mutex> lock(bmusb_mutex);
356                 card->new_data_ready_changed.wait(lock, [card]{ return !card->new_data_ready || card->should_quit; });
357                 if (card->should_quit) return;
358         }
359
360         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
361         if (video_frame.len - video_offset == 0 ||
362             video_frame.len - video_offset != expected_length) {
363                 if (video_frame.len != 0) {
364                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
365                                 card_index, video_frame.len - video_offset, expected_length);
366                 }
367                 if (video_frame.owner) {
368                         video_frame.owner->release_frame(video_frame);
369                 }
370
371                 // Still send on the information that we _had_ a frame, even though it's corrupted,
372                 // so that pts can go up accordingly.
373                 {
374                         unique_lock<mutex> lock(bmusb_mutex);
375                         card->new_data_ready = true;
376                         card->new_frame = RefCountedFrame(FrameAllocator::Frame());
377                         card->new_frame_length = frame_length;
378                         card->new_frame_interlaced = false;
379                         card->new_data_ready_fence = nullptr;
380                         card->dropped_frames = dropped_frames;
381                         card->new_data_ready_changed.notify_all();
382                 }
383                 return;
384         }
385
386         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
387
388         unsigned num_fields = video_format.interlaced ? 2 : 1;
389         timespec frame_upload_start;
390         if (video_format.interlaced) {
391                 // Send the two fields along as separate frames; the other side will need to add
392                 // a deinterlacer to actually get this right.
393                 assert(video_format.height % 2 == 0);
394                 video_format.height /= 2;
395                 assert(frame_length % 2 == 0);
396                 frame_length /= 2;
397                 num_fields = 2;
398                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
399         }
400         userdata->last_interlaced = video_format.interlaced;
401         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
402         userdata->last_frame_rate_den = video_format.frame_rate_den;
403         RefCountedFrame new_frame(video_frame);
404
405         // Upload the textures.
406         size_t cbcr_width = video_format.width / 2;
407         size_t cbcr_offset = video_offset / 2;
408         size_t y_offset = video_frame.size / 2 + video_offset / 2;
409
410         for (unsigned field = 0; field < num_fields; ++field) {
411                 unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
412
413                 if (userdata->tex_y[field] == 0 ||
414                     userdata->tex_cbcr[field] == 0 ||
415                     video_format.width != userdata->last_width[field] ||
416                     video_format.height != userdata->last_height[field]) {
417                         // We changed resolution since last use of this texture, so we need to create
418                         // a new object. Note that this each card has its own PBOFrameAllocator,
419                         // we don't need to worry about these flip-flopping between resolutions.
420                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
421                         check_error();
422                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
423                         check_error();
424                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
425                         check_error();
426                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
427                         check_error();
428                         userdata->last_width[field] = video_format.width;
429                         userdata->last_height[field] = video_format.height;
430                 }
431
432                 GLuint pbo = userdata->pbo;
433                 check_error();
434                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
435                 check_error();
436                 glMemoryBarrier(GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT);
437                 check_error();
438
439                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
440                 check_error();
441                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t)));
442                 check_error();
443                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
444                 check_error();
445                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(y_offset + video_format.width * field_start_line));
446                 check_error();
447                 glBindTexture(GL_TEXTURE_2D, 0);
448                 check_error();
449                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
450                 check_error();
451                 GLsync fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
452                 check_error();
453                 assert(fence != nullptr);
454
455                 if (field == 1) {
456                         // Don't upload the second field as fast as we can; wait until
457                         // the field time has approximately passed. (Otherwise, we could
458                         // get timing jitter against the other sources, and possibly also
459                         // against the video display, although the latter is not as critical.)
460                         // This requires our system clock to be reasonably close to the
461                         // video clock, but that's not an unreasonable assumption.
462                         timespec second_field_start;
463                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
464                                 frame_length * 1000000000 / TIMEBASE;
465                         second_field_start.tv_sec = frame_upload_start.tv_sec +
466                                 second_field_start.tv_nsec / 1000000000;
467                         second_field_start.tv_nsec %= 1000000000;
468
469                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
470                                                &second_field_start, nullptr) == -1 &&
471                                errno == EINTR) ;
472                 }
473
474                 {
475                         unique_lock<mutex> lock(bmusb_mutex);
476                         card->new_data_ready = true;
477                         card->new_frame = new_frame;
478                         card->new_frame_length = frame_length;
479                         card->new_frame_field = field;
480                         card->new_frame_interlaced = video_format.interlaced;
481                         card->new_data_ready_fence = fence;
482                         card->dropped_frames = dropped_frames;
483                         card->new_data_ready_changed.notify_all();
484
485                         if (field != num_fields - 1) {
486                                 // Wait until the previous frame was consumed.
487                                 card->new_data_ready_changed.wait(lock, [card]{ return !card->new_data_ready || card->should_quit; });
488                                 if (card->should_quit) return;
489                         }
490                 }
491         }
492 }
493
494 void Mixer::thread_func()
495 {
496         eglBindAPI(EGL_OPENGL_API);
497         QOpenGLContext *context = create_context(mixer_surface);
498         if (!make_current(context, mixer_surface)) {
499                 printf("oops\n");
500                 exit(1);
501         }
502
503         struct timespec start, now;
504         clock_gettime(CLOCK_MONOTONIC, &start);
505
506         int frame = 0;
507         int stats_dropped_frames = 0;
508
509         while (!should_quit) {
510                 CaptureCard card_copy[MAX_CARDS];
511                 int num_samples[MAX_CARDS];
512
513                 {
514                         unique_lock<mutex> lock(bmusb_mutex);
515
516                         // The first card is the master timer, so wait for it to have a new frame.
517                         // TODO: Make configurable, and with a timeout.
518                         cards[0].new_data_ready_changed.wait(lock, [this]{ return cards[0].new_data_ready; });
519
520                         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
521                                 CaptureCard *card = &cards[card_index];
522                                 card_copy[card_index].new_data_ready = card->new_data_ready;
523                                 card_copy[card_index].new_frame = card->new_frame;
524                                 card_copy[card_index].new_frame_length = card->new_frame_length;
525                                 card_copy[card_index].new_frame_field = card->new_frame_field;
526                                 card_copy[card_index].new_frame_interlaced = card->new_frame_interlaced;
527                                 card_copy[card_index].new_data_ready_fence = card->new_data_ready_fence;
528                                 card_copy[card_index].dropped_frames = card->dropped_frames;
529                                 card->new_data_ready = false;
530                                 card->new_data_ready_changed.notify_all();
531
532                                 int num_samples_times_timebase = OUTPUT_FREQUENCY * card->new_frame_length + card->fractional_samples;
533                                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
534                                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
535                                 assert(num_samples[card_index] >= 0);
536                         }
537                 }
538
539                 // Resample the audio as needed, including from previously dropped frames.
540                 assert(num_cards > 0);
541                 for (unsigned frame_num = 0; frame_num < card_copy[0].dropped_frames + 1; ++frame_num) {
542                         {
543                                 // Signal to the audio thread to process this frame.
544                                 unique_lock<mutex> lock(audio_mutex);
545                                 audio_task_queue.push(AudioTask{pts_int, num_samples[0]});
546                                 audio_task_queue_changed.notify_one();
547                         }
548                         if (frame_num != card_copy[0].dropped_frames) {
549                                 // For dropped frames, increase the pts. Note that if the format changed
550                                 // in the meantime, we have no way of detecting that; we just have to
551                                 // assume the frame length is always the same.
552                                 ++stats_dropped_frames;
553                                 pts_int += card_copy[0].new_frame_length;
554                         }
555                 }
556
557                 if (audio_level_callback != nullptr) {
558                         unique_lock<mutex> lock(compressor_mutex);
559                         double loudness_s = r128.loudness_S();
560                         double loudness_i = r128.integrated();
561                         double loudness_range_low = r128.range_min();
562                         double loudness_range_high = r128.range_max();
563
564                         audio_level_callback(loudness_s, 20.0 * log10(peak),
565                                              loudness_i, loudness_range_low, loudness_range_high,
566                                              gain_staging_db, 20.0 * log10(final_makeup_gain),
567                                              correlation.get_correlation());
568                 }
569
570                 for (unsigned card_index = 1; card_index < num_cards; ++card_index) {
571                         if (card_copy[card_index].new_data_ready && card_copy[card_index].new_frame->len == 0) {
572                                 ++card_copy[card_index].dropped_frames;
573                         }
574                         if (card_copy[card_index].dropped_frames > 0) {
575                                 printf("Card %u dropped %d frames before this\n",
576                                         card_index, int(card_copy[card_index].dropped_frames));
577                         }
578                 }
579
580                 // If the first card is reporting a corrupted or otherwise dropped frame,
581                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
582                 if (card_copy[0].new_frame->len == 0) {
583                         ++stats_dropped_frames;
584                         pts_int += card_copy[0].new_frame_length;
585                         continue;
586                 }
587
588                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
589                         CaptureCard *card = &card_copy[card_index];
590                         if (!card->new_data_ready || card->new_frame->len == 0)
591                                 continue;
592
593                         assert(card->new_frame != nullptr);
594                         insert_new_frame(card->new_frame, card->new_frame_field, card->new_frame_interlaced, card_index, &input_state);
595                         check_error();
596
597                         // The new texture might still be uploaded,
598                         // tell the GPU to wait until it's there.
599                         if (card->new_data_ready_fence) {
600                                 glWaitSync(card->new_data_ready_fence, /*flags=*/0, GL_TIMEOUT_IGNORED);
601                                 check_error();
602                                 glDeleteSync(card->new_data_ready_fence);
603                                 check_error();
604                         }
605                 }
606
607                 // Get the main chain from the theme, and set its state immediately.
608                 Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
609                 EffectChain *chain = theme_main_chain.chain;
610                 theme_main_chain.setup_chain();
611                 //theme_main_chain.chain->enable_phase_timing(true);
612
613                 GLuint y_tex, cbcr_tex;
614                 bool got_frame = h264_encoder->begin_frame(&y_tex, &cbcr_tex);
615                 assert(got_frame);
616
617                 // Render main chain.
618                 GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
619                 GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
620                 GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
621                 check_error();
622                 chain->render_to_fbo(fbo, WIDTH, HEIGHT);
623                 resource_pool->release_fbo(fbo);
624
625                 subsample_chroma(cbcr_full_tex, cbcr_tex);
626                 resource_pool->release_2d_texture(cbcr_full_tex);
627
628                 // Set the right state for rgba_tex.
629                 glBindFramebuffer(GL_FRAMEBUFFER, 0);
630                 glBindTexture(GL_TEXTURE_2D, rgba_tex);
631                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
632                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
633                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
634
635                 RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
636                 check_error();
637
638                 const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
639                 h264_encoder->end_frame(fence, pts_int + av_delay, theme_main_chain.input_frames);
640                 ++frame;
641                 pts_int += card_copy[0].new_frame_length;
642
643                 // The live frame just shows the RGBA texture we just rendered.
644                 // It owns rgba_tex now.
645                 DisplayFrame live_frame;
646                 live_frame.chain = display_chain.get();
647                 live_frame.setup_chain = [this, rgba_tex]{
648                         display_input->set_texture_num(rgba_tex);
649                 };
650                 live_frame.ready_fence = fence;
651                 live_frame.input_frames = {};
652                 live_frame.temp_textures = { rgba_tex };
653                 output_channel[OUTPUT_LIVE].output_frame(live_frame);
654
655                 // Set up preview and any additional channels.
656                 for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
657                         DisplayFrame display_frame;
658                         Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
659                         display_frame.chain = chain.chain;
660                         display_frame.setup_chain = chain.setup_chain;
661                         display_frame.ready_fence = fence;
662                         display_frame.input_frames = chain.input_frames;
663                         display_frame.temp_textures = {};
664                         output_channel[i].output_frame(display_frame);
665                 }
666
667                 clock_gettime(CLOCK_MONOTONIC, &now);
668                 double elapsed = now.tv_sec - start.tv_sec +
669                         1e-9 * (now.tv_nsec - start.tv_nsec);
670                 if (frame % 100 == 0) {
671                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
672                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
673                                 1e3 * elapsed / frame);
674                 //      chain->print_phase_timing();
675                 }
676
677                 if (should_cut.exchange(false)) {  // Test and clear.
678                         string filename = generate_local_dump_filename(frame);
679                         printf("Starting new recording: %s\n", filename.c_str());
680                         h264_encoder->shutdown();
681                         httpd.close_output_file();
682                         httpd.open_output_file(filename.c_str());
683                         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
684                 }
685
686 #if 0
687                 // Reset every 100 frames, so that local variations in frame times
688                 // (especially for the first few frames, when the shaders are
689                 // compiled etc.) don't make it hard to measure for the entire
690                 // remaining duration of the program.
691                 if (frame == 10000) {
692                         frame = 0;
693                         start = now;
694                 }
695 #endif
696                 check_error();
697         }
698
699         resource_pool->clean_context();
700 }
701
702 void Mixer::audio_thread_func()
703 {
704         while (!should_quit) {
705                 AudioTask task;
706
707                 {
708                         unique_lock<mutex> lock(audio_mutex);
709                         audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
710                         task = audio_task_queue.front();
711                         audio_task_queue.pop();
712                 }
713
714                 process_audio_one_frame(task.pts_int, task.num_samples);
715         }
716 }
717
718 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
719 {
720         vector<float> samples_card;
721         vector<float> samples_out;
722
723         // TODO: Allow mixing audio from several sources.
724         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
725         assert(selected_audio_card < num_cards);
726
727         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
728                 samples_card.resize(num_samples * 2);
729                 {
730                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
731                         if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
732                                 printf("Card %d reported previous underrun.\n", card_index);
733                         }
734                 }
735                 if (card_index == selected_audio_card) {
736                         samples_out = move(samples_card);
737                 }
738         }
739
740         // Cut away everything under 120 Hz (or whatever the cutoff is);
741         // we don't need it for voice, and it will reduce headroom
742         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
743         // should be dampened.)
744         if (locut_enabled) {
745                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
746         }
747
748         // Apply a level compressor to get the general level right.
749         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
750         // (or more precisely, near it, since we don't use infinite ratio),
751         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
752         // entirely arbitrary, but from practical tests with speech, it seems to
753         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
754         {
755                 unique_lock<mutex> lock(compressor_mutex);
756                 if (level_compressor_enabled) {
757                         float threshold = 0.01f;   // -40 dBFS.
758                         float ratio = 20.0f;
759                         float attack_time = 0.5f;
760                         float release_time = 20.0f;
761                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
762                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
763                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
764                 } else {
765                         // Just apply the gain we already had.
766                         float g = pow(10.0f, gain_staging_db / 20.0f);
767                         for (size_t i = 0; i < samples_out.size(); ++i) {
768                                 samples_out[i] *= g;
769                         }
770                 }
771         }
772
773 #if 0
774         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
775                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
776                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
777                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
778 #endif
779
780 //      float limiter_att, compressor_att;
781
782         // The real compressor.
783         if (compressor_enabled) {
784                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
785                 float ratio = 20.0f;
786                 float attack_time = 0.005f;
787                 float release_time = 0.040f;
788                 float makeup_gain = 2.0f;  // +6 dB.
789                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
790 //              compressor_att = compressor.get_attenuation();
791         }
792
793         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
794         // Note that since ratio is not infinite, we could go slightly higher than this.
795         if (limiter_enabled) {
796                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
797                 float ratio = 30.0f;
798                 float attack_time = 0.0f;  // Instant.
799                 float release_time = 0.020f;
800                 float makeup_gain = 1.0f;  // 0 dB.
801                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
802 //              limiter_att = limiter.get_attenuation();
803         }
804
805 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
806
807         // Upsample 4x to find interpolated peak.
808         peak_resampler.inp_data = samples_out.data();
809         peak_resampler.inp_count = samples_out.size() / 2;
810
811         vector<float> interpolated_samples_out;
812         interpolated_samples_out.resize(samples_out.size());
813         while (peak_resampler.inp_count > 0) {  // About four iterations.
814                 peak_resampler.out_data = &interpolated_samples_out[0];
815                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
816                 peak_resampler.process();
817                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
818                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
819                 peak_resampler.out_data = nullptr;
820         }
821
822         // At this point, we are most likely close to +0 LU, but all of our
823         // measurements have been on raw sample values, not R128 values.
824         // So we have a final makeup gain to get us to +0 LU; the gain
825         // adjustments required should be relatively small, and also, the
826         // offset shouldn't change much (only if the type of audio changes
827         // significantly). Thus, we shoot for updating this value basically
828         // “whenever we process buffers”, since the R128 calculation isn't exactly
829         // something we get out per-sample.
830         //
831         // Note that there's a feedback loop here, so we choose a very slow filter
832         // (half-time of 100 seconds).
833         double target_loudness_factor, alpha;
834         {
835                 unique_lock<mutex> lock(compressor_mutex);
836                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
837                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
838                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
839
840                 // If we're outside +/- 5 LU uncorrected, we don't count it as
841                 // a normal signal (probably silence) and don't change the
842                 // correction factor; just apply what we already have.
843                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
844                         alpha = 0.0;
845                 } else {
846                         // Formula adapted from
847                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
848                         const double half_time_s = 100.0;
849                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
850                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
851                 }
852
853                 double m = final_makeup_gain;
854                 for (size_t i = 0; i < samples_out.size(); i += 2) {
855                         samples_out[i + 0] *= m;
856                         samples_out[i + 1] *= m;
857                         m += (target_loudness_factor - m) * alpha;
858                 }
859                 final_makeup_gain = m;
860         }
861
862         // Find R128 levels and L/R correlation.
863         vector<float> left, right;
864         deinterleave_samples(samples_out, &left, &right);
865         float *ptrs[] = { left.data(), right.data() };
866         {
867                 unique_lock<mutex> lock(compressor_mutex);
868                 r128.process(left.size(), ptrs);
869                 correlation.process_samples(samples_out);
870         }
871
872         // Send the samples to the sound card.
873         if (alsa) {
874                 alsa->write(samples_out);
875         }
876
877         // And finally add them to the output.
878         h264_encoder->add_audio(frame_pts_int, move(samples_out));
879 }
880
881 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
882 {
883         GLuint vao;
884         glGenVertexArrays(1, &vao);
885         check_error();
886
887         glBindVertexArray(vao);
888         check_error();
889
890         // Extract Cb/Cr.
891         GLuint fbo = resource_pool->create_fbo(dst_tex);
892         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
893         glViewport(0, 0, WIDTH/2, HEIGHT/2);
894         check_error();
895
896         glUseProgram(cbcr_program_num);
897         check_error();
898
899         glActiveTexture(GL_TEXTURE0);
900         check_error();
901         glBindTexture(GL_TEXTURE_2D, src_tex);
902         check_error();
903         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
904         check_error();
905         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
906         check_error();
907         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
908         check_error();
909
910         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
911         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
912
913         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
914         check_error();
915
916         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
917                 glEnableVertexAttribArray(attr_index);
918                 check_error();
919                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
920                 check_error();
921         }
922
923         glDrawArrays(GL_TRIANGLES, 0, 3);
924         check_error();
925
926         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
927                 glDisableVertexAttribArray(attr_index);
928                 check_error();
929         }
930
931         glUseProgram(0);
932         check_error();
933         glBindFramebuffer(GL_FRAMEBUFFER, 0);
934         check_error();
935
936         resource_pool->release_fbo(fbo);
937         glDeleteVertexArrays(1, &vao);
938 }
939
940 void Mixer::release_display_frame(DisplayFrame *frame)
941 {
942         for (GLuint texnum : frame->temp_textures) {
943                 resource_pool->release_2d_texture(texnum);
944         }
945         frame->temp_textures.clear();
946         frame->ready_fence.reset();
947         frame->input_frames.clear();
948 }
949
950 void Mixer::start()
951 {
952         mixer_thread = thread(&Mixer::thread_func, this);
953         audio_thread = thread(&Mixer::audio_thread_func, this);
954 }
955
956 void Mixer::quit()
957 {
958         should_quit = true;
959         mixer_thread.join();
960         audio_thread.join();
961 }
962
963 void Mixer::transition_clicked(int transition_num)
964 {
965         theme->transition_clicked(transition_num, pts());
966 }
967
968 void Mixer::channel_clicked(int preview_num)
969 {
970         theme->channel_clicked(preview_num);
971 }
972
973 void Mixer::reset_meters()
974 {
975         peak_resampler.reset();
976         peak = 0.0f;
977         r128.reset();
978         r128.integr_start();
979         correlation.reset();
980 }
981
982 Mixer::OutputChannel::~OutputChannel()
983 {
984         if (has_current_frame) {
985                 parent->release_display_frame(&current_frame);
986         }
987         if (has_ready_frame) {
988                 parent->release_display_frame(&ready_frame);
989         }
990 }
991
992 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
993 {
994         // Store this frame for display. Remove the ready frame if any
995         // (it was seemingly never used).
996         {
997                 unique_lock<mutex> lock(frame_mutex);
998                 if (has_ready_frame) {
999                         parent->release_display_frame(&ready_frame);
1000                 }
1001                 ready_frame = frame;
1002                 has_ready_frame = true;
1003         }
1004
1005         if (has_new_frame_ready_callback) {
1006                 new_frame_ready_callback();
1007         }
1008 }
1009
1010 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1011 {
1012         unique_lock<mutex> lock(frame_mutex);
1013         if (!has_current_frame && !has_ready_frame) {
1014                 return false;
1015         }
1016
1017         if (has_current_frame && has_ready_frame) {
1018                 // We have a new ready frame. Toss the current one.
1019                 parent->release_display_frame(&current_frame);
1020                 has_current_frame = false;
1021         }
1022         if (has_ready_frame) {
1023                 assert(!has_current_frame);
1024                 current_frame = ready_frame;
1025                 ready_frame.ready_fence.reset();  // Drop the refcount.
1026                 ready_frame.input_frames.clear();  // Drop the refcounts.
1027                 has_current_frame = true;
1028                 has_ready_frame = false;
1029         }
1030
1031         *frame = current_frame;
1032         return true;
1033 }
1034
1035 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1036 {
1037         new_frame_ready_callback = callback;
1038         has_new_frame_ready_callback = true;
1039 }