]> git.sesse.net Git - nageru/blob - mixer.cpp
Pull the file muxing out of the HTTPD. (It was pretty ugly all along.)
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30
31 #include "bmusb/bmusb.h"
32 #include "context.h"
33 #include "decklink_capture.h"
34 #include "defs.h"
35 #include "flags.h"
36 #include "h264encode.h"
37 #include "pbo_frame_allocator.h"
38 #include "ref_counted_gl_sync.h"
39 #include "timebase.h"
40
41 class QOpenGLContext;
42
43 using namespace movit;
44 using namespace std;
45 using namespace std::placeholders;
46
47 Mixer *global_mixer = nullptr;
48
49 namespace {
50
51 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
52 {
53         assert(in_channels >= out_channels);
54         for (size_t i = 0; i < num_samples; ++i) {
55                 for (size_t j = 0; j < out_channels; ++j) {
56                         uint32_t s1 = *src++;
57                         uint32_t s2 = *src++;
58                         uint32_t s3 = *src++;
59                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
60                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
61                 }
62                 src += 3 * (in_channels - out_channels);
63         }
64 }
65
66 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
67 {
68         assert(in_channels >= out_channels);
69         for (size_t i = 0; i < num_samples; ++i) {
70                 for (size_t j = 0; j < out_channels; ++j) {
71                         // Note: Assumes little-endian.
72                         int32_t s = *(int32_t *)src;
73                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
74                         src += 4;
75                 }
76                 src += 4 * (in_channels - out_channels);
77         }
78 }
79
80 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
81 {
82         if (interlaced) {
83                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
84                         input_state->buffered_frames[card_index][frame_num] =
85                                 input_state->buffered_frames[card_index][frame_num - 1];
86                 }
87                 input_state->buffered_frames[card_index][0] = { frame, field_num };
88         } else {
89                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
90                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
91                 }
92         }
93 }
94
95 string generate_local_dump_filename(int frame)
96 {
97         time_t now = time(NULL);
98         tm now_tm;
99         localtime_r(&now, &now_tm);
100
101         char timestamp[256];
102         strftime(timestamp, sizeof(timestamp), "%F-%T%z", &now_tm);
103
104         // Use the frame number to disambiguate between two cuts starting
105         // on the same second.
106         char filename[256];
107         snprintf(filename, sizeof(filename), "%s%s-f%02d%s",
108                 LOCAL_DUMP_PREFIX, timestamp, frame % 100, LOCAL_DUMP_SUFFIX);
109         return filename;
110 }
111
112 }  // namespace
113
114 void QueueLengthPolicy::update_policy(int queue_length)
115 {
116         if (queue_length < 0) {  // Starvation.
117                 if (been_at_safe_point_since_last_starvation && safe_queue_length < 5) {
118                         ++safe_queue_length;
119                         fprintf(stderr, "Card %u: Starvation, increasing safe limit to %u frames\n",
120                                 card_index, safe_queue_length);
121                 }
122                 frames_with_at_least_one = 0;
123                 been_at_safe_point_since_last_starvation = false;
124                 return;
125         }
126         if (queue_length > 0) {
127                 if (queue_length >= int(safe_queue_length)) {
128                         been_at_safe_point_since_last_starvation = true;
129                 }
130                 if (++frames_with_at_least_one >= 50 && safe_queue_length > 0) {
131                         --safe_queue_length;
132                         fprintf(stderr, "Card %u: Spare frames for more than 50 frames, reducing safe limit to %u frames\n",
133                                 card_index, safe_queue_length);
134                         frames_with_at_least_one = 0;
135                 }
136         } else {
137                 frames_with_at_least_one = 0;
138         }
139 }
140
141 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
142         : httpd(WIDTH, HEIGHT),
143           num_cards(num_cards),
144           mixer_surface(create_surface(format)),
145           h264_encoder_surface(create_surface(format)),
146           correlation(OUTPUT_FREQUENCY),
147           level_compressor(OUTPUT_FREQUENCY),
148           limiter(OUTPUT_FREQUENCY),
149           compressor(OUTPUT_FREQUENCY)
150 {
151         httpd.start(9095);
152
153         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
154         check_error();
155
156         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
157         // will be halved when sampling them, and we need to compensate here.
158         movit_texel_subpixel_precision /= 2.0;
159
160         resource_pool.reset(new ResourcePool);
161         theme.reset(new Theme(global_flags.theme_filename.c_str(), resource_pool.get(), num_cards));
162         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
163                 output_channel[i].parent = this;
164         }
165
166         ImageFormat inout_format;
167         inout_format.color_space = COLORSPACE_sRGB;
168         inout_format.gamma_curve = GAMMA_sRGB;
169
170         // Display chain; shows the live output produced by the main chain (its RGBA version).
171         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
172         check_error();
173         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
174         display_chain->add_input(display_input);
175         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
176         display_chain->set_dither_bits(0);  // Don't bother.
177         display_chain->finalize();
178
179         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
180         h264_encoder->open_output_file(generate_local_dump_filename(/*frame=*/0).c_str());
181
182         // First try initializing the PCI devices, then USB, until we have the desired number of cards.
183         unsigned num_pci_devices = 0, num_usb_devices = 0;
184         unsigned card_index = 0;
185
186         IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
187         if (decklink_iterator != nullptr) {
188                 for ( ; card_index < num_cards; ++card_index) {
189                         IDeckLink *decklink;
190                         if (decklink_iterator->Next(&decklink) != S_OK) {
191                                 break;
192                         }
193
194                         configure_card(card_index, format, new DeckLinkCapture(decklink, card_index));
195                         ++num_pci_devices;
196                 }
197                 decklink_iterator->Release();
198                 fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
199         } else {
200                 fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
201         }
202         for ( ; card_index < num_cards; ++card_index) {
203                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices));
204                 ++num_usb_devices;
205         }
206
207         if (num_usb_devices > 0) {
208                 BMUSBCapture::start_bm_thread();
209         }
210
211         for (card_index = 0; card_index < num_cards; ++card_index) {
212                 cards[card_index].queue_length_policy.reset(card_index);
213                 cards[card_index].capture->start_bm_capture();
214         }
215
216         // Set up stuff for NV12 conversion.
217
218         // Cb/Cr shader.
219         string cbcr_vert_shader =
220                 "#version 130 \n"
221                 " \n"
222                 "in vec2 position; \n"
223                 "in vec2 texcoord; \n"
224                 "out vec2 tc0; \n"
225                 "uniform vec2 foo_chroma_offset_0; \n"
226                 " \n"
227                 "void main() \n"
228                 "{ \n"
229                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
230                 "    // \n"
231                 "    //   2.000  0.000  0.000 -1.000 \n"
232                 "    //   0.000  2.000  0.000 -1.000 \n"
233                 "    //   0.000  0.000 -2.000 -1.000 \n"
234                 "    //   0.000  0.000  0.000  1.000 \n"
235                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
236                 "    vec2 flipped_tc = texcoord; \n"
237                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
238                 "} \n";
239         string cbcr_frag_shader =
240                 "#version 130 \n"
241                 "in vec2 tc0; \n"
242                 "uniform sampler2D cbcr_tex; \n"
243                 "out vec4 FragColor; \n"
244                 "void main() { \n"
245                 "    FragColor = texture(cbcr_tex, tc0); \n"
246                 "} \n";
247         vector<string> frag_shader_outputs;
248         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
249
250         float vertices[] = {
251                 0.0f, 2.0f,
252                 0.0f, 0.0f,
253                 2.0f, 0.0f
254         };
255         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
256         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
257         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
258
259         r128.init(2, OUTPUT_FREQUENCY);
260         r128.integr_start();
261
262         locut.init(FILTER_HPF, 2);
263
264         // If --flat-audio is given, turn off everything that messes with the sound,
265         // except the final makeup gain.
266         if (global_flags.flat_audio) {
267                 set_locut_enabled(false);
268                 set_limiter_enabled(false);
269                 set_compressor_enabled(false);
270         }
271
272         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
273         // and there's a limit to how important the peak meter is.
274         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
275
276         alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
277 }
278
279 Mixer::~Mixer()
280 {
281         resource_pool->release_glsl_program(cbcr_program_num);
282         glDeleteBuffers(1, &cbcr_vbo);
283         BMUSBCapture::stop_bm_thread();
284
285         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
286                 {
287                         unique_lock<mutex> lock(bmusb_mutex);
288                         cards[card_index].should_quit = true;  // Unblock thread.
289                         cards[card_index].new_frames_changed.notify_all();
290                 }
291                 cards[card_index].capture->stop_dequeue_thread();
292         }
293
294         h264_encoder.reset(nullptr);
295 }
296
297 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
298 {
299         printf("Configuring card %d...\n", card_index);
300
301         CaptureCard *card = &cards[card_index];
302         card->capture = capture;
303         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
304         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
305         card->capture->set_video_frame_allocator(card->frame_allocator.get());
306         card->surface = create_surface(format);
307         card->capture->set_dequeue_thread_callbacks(
308                 [card]{
309                         eglBindAPI(EGL_OPENGL_API);
310                         card->context = create_context(card->surface);
311                         if (!make_current(card->context, card->surface)) {
312                                 printf("failed to create bmusb context\n");
313                                 exit(1);
314                         }
315                 },
316                 [this]{
317                         resource_pool->clean_context();
318                 });
319         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
320         card->capture->configure_card();
321 }
322
323
324 namespace {
325
326 int unwrap_timecode(uint16_t current_wrapped, int last)
327 {
328         uint16_t last_wrapped = last & 0xffff;
329         if (current_wrapped > last_wrapped) {
330                 return (last & ~0xffff) | current_wrapped;
331         } else {
332                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
333         }
334 }
335
336 float find_peak(const float *samples, size_t num_samples)
337 {
338         float m = fabs(samples[0]);
339         for (size_t i = 1; i < num_samples; ++i) {
340                 m = max(m, fabs(samples[i]));
341         }
342         return m;
343 }
344
345 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
346 {
347         size_t num_samples = in.size() / 2;
348         out_l->resize(num_samples);
349         out_r->resize(num_samples);
350
351         const float *inptr = in.data();
352         float *lptr = &(*out_l)[0];
353         float *rptr = &(*out_r)[0];
354         for (size_t i = 0; i < num_samples; ++i) {
355                 *lptr++ = *inptr++;
356                 *rptr++ = *inptr++;
357         }
358 }
359
360 }  // namespace
361
362 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
363                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
364                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
365 {
366         CaptureCard *card = &cards[card_index];
367
368         if (is_mode_scanning[card_index]) {
369                 if (video_format.has_signal) {
370                         // Found a stable signal, so stop scanning.
371                         is_mode_scanning[card_index] = false;
372                 } else {
373                         static constexpr double switch_time_s = 0.5;  // Should be enough time for the signal to stabilize.
374                         timespec now;
375                         clock_gettime(CLOCK_MONOTONIC, &now);
376                         double sec_since_last_switch = (now.tv_sec - last_mode_scan_change[card_index].tv_sec) +
377                                 1e-9 * (now.tv_nsec - last_mode_scan_change[card_index].tv_nsec);
378                         if (sec_since_last_switch > switch_time_s) {
379                                 // It isn't this mode; try the next one.
380                                 mode_scanlist_index[card_index]++;
381                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
382                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
383                                 last_mode_scan_change[card_index] = now;
384                         }
385                 }
386         }
387
388         int64_t frame_length = int64_t(TIMEBASE * video_format.frame_rate_den) / video_format.frame_rate_nom;
389
390         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
391         if (num_samples > OUTPUT_FREQUENCY / 10) {
392                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
393                         card_index, int(audio_frame.len), int(audio_offset),
394                         timecode, int(video_frame.len), int(video_offset), video_format.id);
395                 if (video_frame.owner) {
396                         video_frame.owner->release_frame(video_frame);
397                 }
398                 if (audio_frame.owner) {
399                         audio_frame.owner->release_frame(audio_frame);
400                 }
401                 return;
402         }
403
404         int64_t local_pts = card->next_local_pts;
405         int dropped_frames = 0;
406         if (card->last_timecode != -1) {
407                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
408         }
409
410         // Convert the audio to stereo fp32 and add it.
411         vector<float> audio;
412         audio.resize(num_samples * 2);
413         switch (audio_format.bits_per_sample) {
414         case 0:
415                 assert(num_samples == 0);
416                 break;
417         case 24:
418                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
419                 break;
420         case 32:
421                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
422                 break;
423         default:
424                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
425                 assert(false);
426         }
427
428         // Add the audio.
429         {
430                 unique_lock<mutex> lock(card->audio_mutex);
431
432                 // Number of samples per frame if we need to insert silence.
433                 // (Could be nonintegral, but resampling will save us then.)
434                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
435
436                 if (dropped_frames > MAX_FPS * 2) {
437                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
438                                 card_index, card->last_timecode, timecode);
439                         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
440                         dropped_frames = 0;
441                 } else if (dropped_frames > 0) {
442                         // Insert silence as needed.
443                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
444                                 card_index, dropped_frames, timecode);
445                         vector<float> silence(silence_samples * 2, 0.0f);
446                         for (int i = 0; i < dropped_frames; ++i) {
447                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
448                                 // Note that if the format changed in the meantime, we have
449                                 // no way of detecting that; we just have to assume the frame length
450                                 // is always the same.
451                                 local_pts += frame_length;
452                         }
453                 }
454                 if (num_samples == 0) {
455                         audio.resize(silence_samples * 2);
456                         num_samples = silence_samples;
457                 }
458                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
459                 card->next_local_pts = local_pts + frame_length;
460         }
461
462         card->last_timecode = timecode;
463
464         // Done with the audio, so release it.
465         if (audio_frame.owner) {
466                 audio_frame.owner->release_frame(audio_frame);
467         }
468
469         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
470         if (video_frame.len - video_offset == 0 ||
471             video_frame.len - video_offset != expected_length) {
472                 if (video_frame.len != 0) {
473                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
474                                 card_index, video_frame.len - video_offset, expected_length);
475                 }
476                 if (video_frame.owner) {
477                         video_frame.owner->release_frame(video_frame);
478                 }
479
480                 // Still send on the information that we _had_ a frame, even though it's corrupted,
481                 // so that pts can go up accordingly.
482                 {
483                         unique_lock<mutex> lock(bmusb_mutex);
484                         CaptureCard::NewFrame new_frame;
485                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
486                         new_frame.length = frame_length;
487                         new_frame.interlaced = false;
488                         new_frame.dropped_frames = dropped_frames;
489                         card->new_frames.push(move(new_frame));
490                         card->new_frames_changed.notify_all();
491                 }
492                 return;
493         }
494
495         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
496
497         unsigned num_fields = video_format.interlaced ? 2 : 1;
498         timespec frame_upload_start;
499         if (video_format.interlaced) {
500                 // Send the two fields along as separate frames; the other side will need to add
501                 // a deinterlacer to actually get this right.
502                 assert(video_format.height % 2 == 0);
503                 video_format.height /= 2;
504                 assert(frame_length % 2 == 0);
505                 frame_length /= 2;
506                 num_fields = 2;
507                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
508         }
509         userdata->last_interlaced = video_format.interlaced;
510         userdata->last_has_signal = video_format.has_signal;
511         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
512         userdata->last_frame_rate_den = video_format.frame_rate_den;
513         RefCountedFrame frame(video_frame);
514
515         // Upload the textures.
516         size_t cbcr_width = video_format.width / 2;
517         size_t cbcr_offset = video_offset / 2;
518         size_t y_offset = video_frame.size / 2 + video_offset / 2;
519
520         for (unsigned field = 0; field < num_fields; ++field) {
521                 unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
522
523                 if (userdata->tex_y[field] == 0 ||
524                     userdata->tex_cbcr[field] == 0 ||
525                     video_format.width != userdata->last_width[field] ||
526                     video_format.height != userdata->last_height[field]) {
527                         // We changed resolution since last use of this texture, so we need to create
528                         // a new object. Note that this each card has its own PBOFrameAllocator,
529                         // we don't need to worry about these flip-flopping between resolutions.
530                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
531                         check_error();
532                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
533                         check_error();
534                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
535                         check_error();
536                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
537                         check_error();
538                         userdata->last_width[field] = video_format.width;
539                         userdata->last_height[field] = video_format.height;
540                 }
541
542                 GLuint pbo = userdata->pbo;
543                 check_error();
544                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
545                 check_error();
546
547                 size_t field_y_start = y_offset + video_format.width * field_start_line;
548                 size_t field_cbcr_start = cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t);
549
550                 if (global_flags.flush_pbos) {
551                         glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_y_start, video_format.width * video_format.height);
552                         check_error();
553                         glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_cbcr_start, cbcr_width * video_format.height * sizeof(uint16_t));
554                         check_error();
555                 }
556
557                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
558                 check_error();
559                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_cbcr_start));
560                 check_error();
561                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
562                 check_error();
563                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_y_start));
564                 check_error();
565                 glBindTexture(GL_TEXTURE_2D, 0);
566                 check_error();
567                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
568                 check_error();
569                 RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
570                 check_error();
571                 assert(fence.get() != nullptr);
572                 glFlush();  // Make sure the main thread doesn't have to wait until we push out enough frames to make a new command buffer.
573                 check_error();
574
575                 if (field == 1) {
576                         // Don't upload the second field as fast as we can; wait until
577                         // the field time has approximately passed. (Otherwise, we could
578                         // get timing jitter against the other sources, and possibly also
579                         // against the video display, although the latter is not as critical.)
580                         // This requires our system clock to be reasonably close to the
581                         // video clock, but that's not an unreasonable assumption.
582                         timespec second_field_start;
583                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
584                                 frame_length * 1000000000 / TIMEBASE;
585                         second_field_start.tv_sec = frame_upload_start.tv_sec +
586                                 second_field_start.tv_nsec / 1000000000;
587                         second_field_start.tv_nsec %= 1000000000;
588
589                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
590                                                &second_field_start, nullptr) == -1 &&
591                                errno == EINTR) ;
592                 }
593
594                 {
595                         unique_lock<mutex> lock(bmusb_mutex);
596                         CaptureCard::NewFrame new_frame;
597                         new_frame.frame = frame;
598                         new_frame.length = frame_length;
599                         new_frame.field = field;
600                         new_frame.interlaced = video_format.interlaced;
601                         new_frame.ready_fence = fence;
602                         new_frame.dropped_frames = dropped_frames;
603                         card->new_frames.push(move(new_frame));
604                         card->new_frames_changed.notify_all();
605                 }
606         }
607 }
608
609 void Mixer::thread_func()
610 {
611         eglBindAPI(EGL_OPENGL_API);
612         QOpenGLContext *context = create_context(mixer_surface);
613         if (!make_current(context, mixer_surface)) {
614                 printf("oops\n");
615                 exit(1);
616         }
617
618         struct timespec start, now;
619         clock_gettime(CLOCK_MONOTONIC, &start);
620
621         int frame = 0;
622         int stats_dropped_frames = 0;
623
624         while (!should_quit) {
625                 CaptureCard::NewFrame new_frames[MAX_CARDS];
626                 bool has_new_frame[MAX_CARDS] = { false };
627                 int num_samples[MAX_CARDS] = { 0 };
628
629                 // TODO: Add a timeout.
630                 unsigned master_card_index = theme->map_signal(master_clock_channel);
631                 assert(master_card_index < num_cards);
632
633                 get_one_frame_from_each_card(master_card_index, new_frames, has_new_frame, num_samples);
634                 schedule_audio_resampling_tasks(new_frames[master_card_index].dropped_frames, num_samples[master_card_index], new_frames[master_card_index].length);
635                 stats_dropped_frames += new_frames[master_card_index].dropped_frames;
636                 send_audio_level_callback();
637
638                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
639                         if (card_index == master_card_index || !has_new_frame[card_index]) {
640                                 continue;
641                         }
642                         if (new_frames[card_index].frame->len == 0) {
643                                 ++new_frames[card_index].dropped_frames;
644                         }
645                         if (new_frames[card_index].dropped_frames > 0) {
646                                 printf("Card %u dropped %d frames before this\n",
647                                         card_index, int(new_frames[card_index].dropped_frames));
648                         }
649                 }
650
651                 // If the first card is reporting a corrupted or otherwise dropped frame,
652                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
653                 if (new_frames[master_card_index].frame->len == 0) {
654                         ++stats_dropped_frames;
655                         pts_int += new_frames[master_card_index].length;
656                         continue;
657                 }
658
659                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
660                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
661                                 continue;
662
663                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
664                         assert(new_frame->frame != nullptr);
665                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
666                         check_error();
667
668                         // The new texture might still be uploaded,
669                         // tell the GPU to wait until it's there.
670                         if (new_frame->ready_fence) {
671                                 glWaitSync(new_frame->ready_fence.get(), /*flags=*/0, GL_TIMEOUT_IGNORED);
672                                 check_error();
673                                 new_frame->ready_fence.reset();
674                                 check_error();
675                         }
676                 }
677
678                 render_one_frame();
679                 ++frame;
680                 pts_int += new_frames[master_card_index].length;
681
682                 clock_gettime(CLOCK_MONOTONIC, &now);
683                 double elapsed = now.tv_sec - start.tv_sec +
684                         1e-9 * (now.tv_nsec - start.tv_nsec);
685                 if (frame % 100 == 0) {
686                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
687                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
688                                 1e3 * elapsed / frame);
689                 //      chain->print_phase_timing();
690                 }
691
692                 if (should_cut.exchange(false)) {  // Test and clear.
693                         string filename = generate_local_dump_filename(frame);
694                         printf("Starting new recording: %s\n", filename.c_str());
695                         h264_encoder->close_output_file();
696                         h264_encoder->shutdown();
697                         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
698                         h264_encoder->open_output_file(filename.c_str());
699                 }
700
701 #if 0
702                 // Reset every 100 frames, so that local variations in frame times
703                 // (especially for the first few frames, when the shaders are
704                 // compiled etc.) don't make it hard to measure for the entire
705                 // remaining duration of the program.
706                 if (frame == 10000) {
707                         frame = 0;
708                         start = now;
709                 }
710 #endif
711                 check_error();
712         }
713
714         resource_pool->clean_context();
715 }
716
717 void Mixer::get_one_frame_from_each_card(unsigned master_card_index, CaptureCard::NewFrame new_frames[MAX_CARDS], bool has_new_frame[MAX_CARDS], int num_samples[MAX_CARDS])
718 {
719         // The first card is the master timer, so wait for it to have a new frame.
720         unique_lock<mutex> lock(bmusb_mutex);
721         cards[master_card_index].new_frames_changed.wait(lock, [this, master_card_index]{ return !cards[master_card_index].new_frames.empty(); });
722
723         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
724                 CaptureCard *card = &cards[card_index];
725                 if (card->new_frames.empty()) {
726                         assert(card_index != master_card_index);
727                         card->queue_length_policy.update_policy(-1);
728                         continue;
729                 }
730                 new_frames[card_index] = move(card->new_frames.front());
731                 has_new_frame[card_index] = true;
732                 card->new_frames.pop();
733                 card->new_frames_changed.notify_all();
734
735                 int num_samples_times_timebase = OUTPUT_FREQUENCY * new_frames[card_index].length + card->fractional_samples;
736                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
737                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
738                 assert(num_samples[card_index] >= 0);
739
740                 if (card_index == master_card_index) {
741                         // We don't use the queue length policy for the master card,
742                         // but we will if it stops being the master. Thus, clear out
743                         // the policy in case we switch in the future.
744                         card->queue_length_policy.reset(card_index);
745                 } else {
746                         // If we have excess frames compared to the policy for this card,
747                         // drop frames from the head.
748                         card->queue_length_policy.update_policy(card->new_frames.size());
749                         while (card->new_frames.size() > card->queue_length_policy.get_safe_queue_length()) {
750                                 card->new_frames.pop();
751                         }
752                 }
753         }
754 }
755
756 void Mixer::schedule_audio_resampling_tasks(unsigned dropped_frames, int num_samples_per_frame, int length_per_frame)
757 {
758         // Resample the audio as needed, including from previously dropped frames.
759         assert(num_cards > 0);
760         for (unsigned frame_num = 0; frame_num < dropped_frames + 1; ++frame_num) {
761                 {
762                         // Signal to the audio thread to process this frame.
763                         unique_lock<mutex> lock(audio_mutex);
764                         audio_task_queue.push(AudioTask{pts_int, num_samples_per_frame});
765                         audio_task_queue_changed.notify_one();
766                 }
767                 if (frame_num != dropped_frames) {
768                         // For dropped frames, increase the pts. Note that if the format changed
769                         // in the meantime, we have no way of detecting that; we just have to
770                         // assume the frame length is always the same.
771                         pts_int += length_per_frame;
772                 }
773         }
774 }
775
776 void Mixer::render_one_frame()
777 {
778         // Get the main chain from the theme, and set its state immediately.
779         Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
780         EffectChain *chain = theme_main_chain.chain;
781         theme_main_chain.setup_chain();
782         //theme_main_chain.chain->enable_phase_timing(true);
783
784         GLuint y_tex, cbcr_tex;
785         bool got_frame = h264_encoder->begin_frame(&y_tex, &cbcr_tex);
786         assert(got_frame);
787
788         // Render main chain.
789         GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
790         GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
791         GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
792         check_error();
793         chain->render_to_fbo(fbo, WIDTH, HEIGHT);
794         resource_pool->release_fbo(fbo);
795
796         subsample_chroma(cbcr_full_tex, cbcr_tex);
797         resource_pool->release_2d_texture(cbcr_full_tex);
798
799         // Set the right state for rgba_tex.
800         glBindFramebuffer(GL_FRAMEBUFFER, 0);
801         glBindTexture(GL_TEXTURE_2D, rgba_tex);
802         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
803         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
804         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
805
806         const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
807         RefCountedGLsync fence = h264_encoder->end_frame(pts_int + av_delay, theme_main_chain.input_frames);
808
809         // The live frame just shows the RGBA texture we just rendered.
810         // It owns rgba_tex now.
811         DisplayFrame live_frame;
812         live_frame.chain = display_chain.get();
813         live_frame.setup_chain = [this, rgba_tex]{
814                 display_input->set_texture_num(rgba_tex);
815         };
816         live_frame.ready_fence = fence;
817         live_frame.input_frames = {};
818         live_frame.temp_textures = { rgba_tex };
819         output_channel[OUTPUT_LIVE].output_frame(live_frame);
820
821         // Set up preview and any additional channels.
822         for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
823                 DisplayFrame display_frame;
824                 Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
825                 display_frame.chain = chain.chain;
826                 display_frame.setup_chain = chain.setup_chain;
827                 display_frame.ready_fence = fence;
828                 display_frame.input_frames = chain.input_frames;
829                 display_frame.temp_textures = {};
830                 output_channel[i].output_frame(display_frame);
831         }
832 }
833
834 void Mixer::send_audio_level_callback()
835 {
836         if (audio_level_callback == nullptr) {
837                 return;
838         }
839
840         unique_lock<mutex> lock(compressor_mutex);
841         double loudness_s = r128.loudness_S();
842         double loudness_i = r128.integrated();
843         double loudness_range_low = r128.range_min();
844         double loudness_range_high = r128.range_max();
845
846         audio_level_callback(loudness_s, 20.0 * log10(peak),
847                 loudness_i, loudness_range_low, loudness_range_high,
848                 gain_staging_db, 20.0 * log10(final_makeup_gain),
849                 correlation.get_correlation());
850 }
851
852 void Mixer::audio_thread_func()
853 {
854         while (!should_quit) {
855                 AudioTask task;
856
857                 {
858                         unique_lock<mutex> lock(audio_mutex);
859                         audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
860                         task = audio_task_queue.front();
861                         audio_task_queue.pop();
862                 }
863
864                 process_audio_one_frame(task.pts_int, task.num_samples);
865         }
866 }
867
868 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
869 {
870         vector<float> samples_card;
871         vector<float> samples_out;
872
873         // TODO: Allow mixing audio from several sources.
874         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
875         assert(selected_audio_card < num_cards);
876
877         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
878                 samples_card.resize(num_samples * 2);
879                 {
880                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
881                         if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
882                                 printf("Card %d reported previous underrun.\n", card_index);
883                         }
884                 }
885                 if (card_index == selected_audio_card) {
886                         samples_out = move(samples_card);
887                 }
888         }
889
890         // Cut away everything under 120 Hz (or whatever the cutoff is);
891         // we don't need it for voice, and it will reduce headroom
892         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
893         // should be dampened.)
894         if (locut_enabled) {
895                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
896         }
897
898         // Apply a level compressor to get the general level right.
899         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
900         // (or more precisely, near it, since we don't use infinite ratio),
901         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
902         // entirely arbitrary, but from practical tests with speech, it seems to
903         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
904         {
905                 unique_lock<mutex> lock(compressor_mutex);
906                 if (level_compressor_enabled) {
907                         float threshold = 0.01f;   // -40 dBFS.
908                         float ratio = 20.0f;
909                         float attack_time = 0.5f;
910                         float release_time = 20.0f;
911                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
912                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
913                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
914                 } else {
915                         // Just apply the gain we already had.
916                         float g = pow(10.0f, gain_staging_db / 20.0f);
917                         for (size_t i = 0; i < samples_out.size(); ++i) {
918                                 samples_out[i] *= g;
919                         }
920                 }
921         }
922
923 #if 0
924         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
925                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
926                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
927                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
928 #endif
929
930 //      float limiter_att, compressor_att;
931
932         // The real compressor.
933         if (compressor_enabled) {
934                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
935                 float ratio = 20.0f;
936                 float attack_time = 0.005f;
937                 float release_time = 0.040f;
938                 float makeup_gain = 2.0f;  // +6 dB.
939                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
940 //              compressor_att = compressor.get_attenuation();
941         }
942
943         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
944         // Note that since ratio is not infinite, we could go slightly higher than this.
945         if (limiter_enabled) {
946                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
947                 float ratio = 30.0f;
948                 float attack_time = 0.0f;  // Instant.
949                 float release_time = 0.020f;
950                 float makeup_gain = 1.0f;  // 0 dB.
951                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
952 //              limiter_att = limiter.get_attenuation();
953         }
954
955 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
956
957         // Upsample 4x to find interpolated peak.
958         peak_resampler.inp_data = samples_out.data();
959         peak_resampler.inp_count = samples_out.size() / 2;
960
961         vector<float> interpolated_samples_out;
962         interpolated_samples_out.resize(samples_out.size());
963         while (peak_resampler.inp_count > 0) {  // About four iterations.
964                 peak_resampler.out_data = &interpolated_samples_out[0];
965                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
966                 peak_resampler.process();
967                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
968                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
969                 peak_resampler.out_data = nullptr;
970         }
971
972         // At this point, we are most likely close to +0 LU, but all of our
973         // measurements have been on raw sample values, not R128 values.
974         // So we have a final makeup gain to get us to +0 LU; the gain
975         // adjustments required should be relatively small, and also, the
976         // offset shouldn't change much (only if the type of audio changes
977         // significantly). Thus, we shoot for updating this value basically
978         // “whenever we process buffers”, since the R128 calculation isn't exactly
979         // something we get out per-sample.
980         //
981         // Note that there's a feedback loop here, so we choose a very slow filter
982         // (half-time of 100 seconds).
983         double target_loudness_factor, alpha;
984         {
985                 unique_lock<mutex> lock(compressor_mutex);
986                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
987                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
988                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
989
990                 // If we're outside +/- 5 LU uncorrected, we don't count it as
991                 // a normal signal (probably silence) and don't change the
992                 // correction factor; just apply what we already have.
993                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
994                         alpha = 0.0;
995                 } else {
996                         // Formula adapted from
997                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
998                         const double half_time_s = 100.0;
999                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
1000                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
1001                 }
1002
1003                 double m = final_makeup_gain;
1004                 for (size_t i = 0; i < samples_out.size(); i += 2) {
1005                         samples_out[i + 0] *= m;
1006                         samples_out[i + 1] *= m;
1007                         m += (target_loudness_factor - m) * alpha;
1008                 }
1009                 final_makeup_gain = m;
1010         }
1011
1012         // Find R128 levels and L/R correlation.
1013         vector<float> left, right;
1014         deinterleave_samples(samples_out, &left, &right);
1015         float *ptrs[] = { left.data(), right.data() };
1016         {
1017                 unique_lock<mutex> lock(compressor_mutex);
1018                 r128.process(left.size(), ptrs);
1019                 correlation.process_samples(samples_out);
1020         }
1021
1022         // Send the samples to the sound card.
1023         if (alsa) {
1024                 alsa->write(samples_out);
1025         }
1026
1027         // And finally add them to the output.
1028         h264_encoder->add_audio(frame_pts_int, move(samples_out));
1029 }
1030
1031 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
1032 {
1033         GLuint vao;
1034         glGenVertexArrays(1, &vao);
1035         check_error();
1036
1037         glBindVertexArray(vao);
1038         check_error();
1039
1040         // Extract Cb/Cr.
1041         GLuint fbo = resource_pool->create_fbo(dst_tex);
1042         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1043         glViewport(0, 0, WIDTH/2, HEIGHT/2);
1044         check_error();
1045
1046         glUseProgram(cbcr_program_num);
1047         check_error();
1048
1049         glActiveTexture(GL_TEXTURE0);
1050         check_error();
1051         glBindTexture(GL_TEXTURE_2D, src_tex);
1052         check_error();
1053         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1054         check_error();
1055         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1056         check_error();
1057         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1058         check_error();
1059
1060         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
1061         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
1062
1063         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
1064         check_error();
1065
1066         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1067                 glEnableVertexAttribArray(attr_index);
1068                 check_error();
1069                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1070                 check_error();
1071         }
1072
1073         glDrawArrays(GL_TRIANGLES, 0, 3);
1074         check_error();
1075
1076         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1077                 glDisableVertexAttribArray(attr_index);
1078                 check_error();
1079         }
1080
1081         glUseProgram(0);
1082         check_error();
1083         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1084         check_error();
1085
1086         resource_pool->release_fbo(fbo);
1087         glDeleteVertexArrays(1, &vao);
1088 }
1089
1090 void Mixer::release_display_frame(DisplayFrame *frame)
1091 {
1092         for (GLuint texnum : frame->temp_textures) {
1093                 resource_pool->release_2d_texture(texnum);
1094         }
1095         frame->temp_textures.clear();
1096         frame->ready_fence.reset();
1097         frame->input_frames.clear();
1098 }
1099
1100 void Mixer::start()
1101 {
1102         mixer_thread = thread(&Mixer::thread_func, this);
1103         audio_thread = thread(&Mixer::audio_thread_func, this);
1104 }
1105
1106 void Mixer::quit()
1107 {
1108         should_quit = true;
1109         mixer_thread.join();
1110         audio_thread.join();
1111 }
1112
1113 void Mixer::transition_clicked(int transition_num)
1114 {
1115         theme->transition_clicked(transition_num, pts());
1116 }
1117
1118 void Mixer::channel_clicked(int preview_num)
1119 {
1120         theme->channel_clicked(preview_num);
1121 }
1122
1123 void Mixer::reset_meters()
1124 {
1125         peak_resampler.reset();
1126         peak = 0.0f;
1127         r128.reset();
1128         r128.integr_start();
1129         correlation.reset();
1130 }
1131
1132 void Mixer::start_mode_scanning(unsigned card_index)
1133 {
1134         assert(card_index < num_cards);
1135         if (is_mode_scanning[card_index]) {
1136                 return;
1137         }
1138         is_mode_scanning[card_index] = true;
1139         mode_scanlist[card_index].clear();
1140         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
1141                 mode_scanlist[card_index].push_back(mode.first);
1142         }
1143         assert(!mode_scanlist[card_index].empty());
1144         mode_scanlist_index[card_index] = 0;
1145         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
1146         clock_gettime(CLOCK_MONOTONIC, &last_mode_scan_change[card_index]);
1147 }
1148
1149 Mixer::OutputChannel::~OutputChannel()
1150 {
1151         if (has_current_frame) {
1152                 parent->release_display_frame(&current_frame);
1153         }
1154         if (has_ready_frame) {
1155                 parent->release_display_frame(&ready_frame);
1156         }
1157 }
1158
1159 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1160 {
1161         // Store this frame for display. Remove the ready frame if any
1162         // (it was seemingly never used).
1163         {
1164                 unique_lock<mutex> lock(frame_mutex);
1165                 if (has_ready_frame) {
1166                         parent->release_display_frame(&ready_frame);
1167                 }
1168                 ready_frame = frame;
1169                 has_ready_frame = true;
1170         }
1171
1172         if (has_new_frame_ready_callback) {
1173                 new_frame_ready_callback();
1174         }
1175 }
1176
1177 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1178 {
1179         unique_lock<mutex> lock(frame_mutex);
1180         if (!has_current_frame && !has_ready_frame) {
1181                 return false;
1182         }
1183
1184         if (has_current_frame && has_ready_frame) {
1185                 // We have a new ready frame. Toss the current one.
1186                 parent->release_display_frame(&current_frame);
1187                 has_current_frame = false;
1188         }
1189         if (has_ready_frame) {
1190                 assert(!has_current_frame);
1191                 current_frame = ready_frame;
1192                 ready_frame.ready_fence.reset();  // Drop the refcount.
1193                 ready_frame.input_frames.clear();  // Drop the refcounts.
1194                 has_current_frame = true;
1195                 has_ready_frame = false;
1196         }
1197
1198         *frame = current_frame;
1199         return true;
1200 }
1201
1202 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1203 {
1204         new_frame_ready_callback = callback;
1205         has_new_frame_ready_callback = true;
1206 }