]> git.sesse.net Git - nageru/blob - mixer.cpp
Separate muxing entirely out of the HTTPD class.
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30
31 #include "bmusb/bmusb.h"
32 #include "context.h"
33 #include "decklink_capture.h"
34 #include "defs.h"
35 #include "flags.h"
36 #include "h264encode.h"
37 #include "pbo_frame_allocator.h"
38 #include "ref_counted_gl_sync.h"
39 #include "timebase.h"
40
41 class QOpenGLContext;
42
43 using namespace movit;
44 using namespace std;
45 using namespace std::placeholders;
46
47 Mixer *global_mixer = nullptr;
48
49 namespace {
50
51 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
52 {
53         assert(in_channels >= out_channels);
54         for (size_t i = 0; i < num_samples; ++i) {
55                 for (size_t j = 0; j < out_channels; ++j) {
56                         uint32_t s1 = *src++;
57                         uint32_t s2 = *src++;
58                         uint32_t s3 = *src++;
59                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
60                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
61                 }
62                 src += 3 * (in_channels - out_channels);
63         }
64 }
65
66 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
67 {
68         assert(in_channels >= out_channels);
69         for (size_t i = 0; i < num_samples; ++i) {
70                 for (size_t j = 0; j < out_channels; ++j) {
71                         // Note: Assumes little-endian.
72                         int32_t s = *(int32_t *)src;
73                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
74                         src += 4;
75                 }
76                 src += 4 * (in_channels - out_channels);
77         }
78 }
79
80 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
81 {
82         if (interlaced) {
83                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
84                         input_state->buffered_frames[card_index][frame_num] =
85                                 input_state->buffered_frames[card_index][frame_num - 1];
86                 }
87                 input_state->buffered_frames[card_index][0] = { frame, field_num };
88         } else {
89                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
90                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
91                 }
92         }
93 }
94
95 string generate_local_dump_filename(int frame)
96 {
97         time_t now = time(NULL);
98         tm now_tm;
99         localtime_r(&now, &now_tm);
100
101         char timestamp[256];
102         strftime(timestamp, sizeof(timestamp), "%F-%T%z", &now_tm);
103
104         // Use the frame number to disambiguate between two cuts starting
105         // on the same second.
106         char filename[256];
107         snprintf(filename, sizeof(filename), "%s%s-f%02d%s",
108                 LOCAL_DUMP_PREFIX, timestamp, frame % 100, LOCAL_DUMP_SUFFIX);
109         return filename;
110 }
111
112 }  // namespace
113
114 void QueueLengthPolicy::update_policy(int queue_length)
115 {
116         if (queue_length < 0) {  // Starvation.
117                 if (been_at_safe_point_since_last_starvation && safe_queue_length < 5) {
118                         ++safe_queue_length;
119                         fprintf(stderr, "Card %u: Starvation, increasing safe limit to %u frames\n",
120                                 card_index, safe_queue_length);
121                 }
122                 frames_with_at_least_one = 0;
123                 been_at_safe_point_since_last_starvation = false;
124                 return;
125         }
126         if (queue_length > 0) {
127                 if (queue_length >= int(safe_queue_length)) {
128                         been_at_safe_point_since_last_starvation = true;
129                 }
130                 if (++frames_with_at_least_one >= 50 && safe_queue_length > 0) {
131                         --safe_queue_length;
132                         fprintf(stderr, "Card %u: Spare frames for more than 50 frames, reducing safe limit to %u frames\n",
133                                 card_index, safe_queue_length);
134                         frames_with_at_least_one = 0;
135                 }
136         } else {
137                 frames_with_at_least_one = 0;
138         }
139 }
140
141 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
142         : httpd(),
143           num_cards(num_cards),
144           mixer_surface(create_surface(format)),
145           h264_encoder_surface(create_surface(format)),
146           correlation(OUTPUT_FREQUENCY),
147           level_compressor(OUTPUT_FREQUENCY),
148           limiter(OUTPUT_FREQUENCY),
149           compressor(OUTPUT_FREQUENCY)
150 {
151         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
152         check_error();
153
154         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
155         // will be halved when sampling them, and we need to compensate here.
156         movit_texel_subpixel_precision /= 2.0;
157
158         resource_pool.reset(new ResourcePool);
159         theme.reset(new Theme(global_flags.theme_filename.c_str(), resource_pool.get(), num_cards));
160         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
161                 output_channel[i].parent = this;
162         }
163
164         ImageFormat inout_format;
165         inout_format.color_space = COLORSPACE_sRGB;
166         inout_format.gamma_curve = GAMMA_sRGB;
167
168         // Display chain; shows the live output produced by the main chain (its RGBA version).
169         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
170         check_error();
171         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
172         display_chain->add_input(display_input);
173         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
174         display_chain->set_dither_bits(0);  // Don't bother.
175         display_chain->finalize();
176
177         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
178         h264_encoder->open_output_file(generate_local_dump_filename(/*frame=*/0).c_str());
179
180         // Start listening for clients only once H264Encoder has written its header, if any.
181         httpd.start(9095);
182
183         // First try initializing the PCI devices, then USB, until we have the desired number of cards.
184         unsigned num_pci_devices = 0, num_usb_devices = 0;
185         unsigned card_index = 0;
186
187         IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
188         if (decklink_iterator != nullptr) {
189                 for ( ; card_index < num_cards; ++card_index) {
190                         IDeckLink *decklink;
191                         if (decklink_iterator->Next(&decklink) != S_OK) {
192                                 break;
193                         }
194
195                         configure_card(card_index, format, new DeckLinkCapture(decklink, card_index));
196                         ++num_pci_devices;
197                 }
198                 decklink_iterator->Release();
199                 fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
200         } else {
201                 fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
202         }
203         for ( ; card_index < num_cards; ++card_index) {
204                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices));
205                 ++num_usb_devices;
206         }
207
208         if (num_usb_devices > 0) {
209                 BMUSBCapture::start_bm_thread();
210         }
211
212         for (card_index = 0; card_index < num_cards; ++card_index) {
213                 cards[card_index].queue_length_policy.reset(card_index);
214                 cards[card_index].capture->start_bm_capture();
215         }
216
217         // Set up stuff for NV12 conversion.
218
219         // Cb/Cr shader.
220         string cbcr_vert_shader =
221                 "#version 130 \n"
222                 " \n"
223                 "in vec2 position; \n"
224                 "in vec2 texcoord; \n"
225                 "out vec2 tc0; \n"
226                 "uniform vec2 foo_chroma_offset_0; \n"
227                 " \n"
228                 "void main() \n"
229                 "{ \n"
230                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
231                 "    // \n"
232                 "    //   2.000  0.000  0.000 -1.000 \n"
233                 "    //   0.000  2.000  0.000 -1.000 \n"
234                 "    //   0.000  0.000 -2.000 -1.000 \n"
235                 "    //   0.000  0.000  0.000  1.000 \n"
236                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
237                 "    vec2 flipped_tc = texcoord; \n"
238                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
239                 "} \n";
240         string cbcr_frag_shader =
241                 "#version 130 \n"
242                 "in vec2 tc0; \n"
243                 "uniform sampler2D cbcr_tex; \n"
244                 "out vec4 FragColor; \n"
245                 "void main() { \n"
246                 "    FragColor = texture(cbcr_tex, tc0); \n"
247                 "} \n";
248         vector<string> frag_shader_outputs;
249         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
250
251         float vertices[] = {
252                 0.0f, 2.0f,
253                 0.0f, 0.0f,
254                 2.0f, 0.0f
255         };
256         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
257         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
258         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
259
260         r128.init(2, OUTPUT_FREQUENCY);
261         r128.integr_start();
262
263         locut.init(FILTER_HPF, 2);
264
265         // If --flat-audio is given, turn off everything that messes with the sound,
266         // except the final makeup gain.
267         if (global_flags.flat_audio) {
268                 set_locut_enabled(false);
269                 set_limiter_enabled(false);
270                 set_compressor_enabled(false);
271         }
272
273         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
274         // and there's a limit to how important the peak meter is.
275         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
276
277         alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
278 }
279
280 Mixer::~Mixer()
281 {
282         resource_pool->release_glsl_program(cbcr_program_num);
283         glDeleteBuffers(1, &cbcr_vbo);
284         BMUSBCapture::stop_bm_thread();
285
286         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
287                 {
288                         unique_lock<mutex> lock(bmusb_mutex);
289                         cards[card_index].should_quit = true;  // Unblock thread.
290                         cards[card_index].new_frames_changed.notify_all();
291                 }
292                 cards[card_index].capture->stop_dequeue_thread();
293         }
294
295         h264_encoder.reset(nullptr);
296 }
297
298 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
299 {
300         printf("Configuring card %d...\n", card_index);
301
302         CaptureCard *card = &cards[card_index];
303         card->capture = capture;
304         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
305         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
306         card->capture->set_video_frame_allocator(card->frame_allocator.get());
307         card->surface = create_surface(format);
308         card->capture->set_dequeue_thread_callbacks(
309                 [card]{
310                         eglBindAPI(EGL_OPENGL_API);
311                         card->context = create_context(card->surface);
312                         if (!make_current(card->context, card->surface)) {
313                                 printf("failed to create bmusb context\n");
314                                 exit(1);
315                         }
316                 },
317                 [this]{
318                         resource_pool->clean_context();
319                 });
320         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
321         card->capture->configure_card();
322 }
323
324
325 namespace {
326
327 int unwrap_timecode(uint16_t current_wrapped, int last)
328 {
329         uint16_t last_wrapped = last & 0xffff;
330         if (current_wrapped > last_wrapped) {
331                 return (last & ~0xffff) | current_wrapped;
332         } else {
333                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
334         }
335 }
336
337 float find_peak(const float *samples, size_t num_samples)
338 {
339         float m = fabs(samples[0]);
340         for (size_t i = 1; i < num_samples; ++i) {
341                 m = max(m, fabs(samples[i]));
342         }
343         return m;
344 }
345
346 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
347 {
348         size_t num_samples = in.size() / 2;
349         out_l->resize(num_samples);
350         out_r->resize(num_samples);
351
352         const float *inptr = in.data();
353         float *lptr = &(*out_l)[0];
354         float *rptr = &(*out_r)[0];
355         for (size_t i = 0; i < num_samples; ++i) {
356                 *lptr++ = *inptr++;
357                 *rptr++ = *inptr++;
358         }
359 }
360
361 }  // namespace
362
363 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
364                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
365                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
366 {
367         CaptureCard *card = &cards[card_index];
368
369         if (is_mode_scanning[card_index]) {
370                 if (video_format.has_signal) {
371                         // Found a stable signal, so stop scanning.
372                         is_mode_scanning[card_index] = false;
373                 } else {
374                         static constexpr double switch_time_s = 0.5;  // Should be enough time for the signal to stabilize.
375                         timespec now;
376                         clock_gettime(CLOCK_MONOTONIC, &now);
377                         double sec_since_last_switch = (now.tv_sec - last_mode_scan_change[card_index].tv_sec) +
378                                 1e-9 * (now.tv_nsec - last_mode_scan_change[card_index].tv_nsec);
379                         if (sec_since_last_switch > switch_time_s) {
380                                 // It isn't this mode; try the next one.
381                                 mode_scanlist_index[card_index]++;
382                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
383                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
384                                 last_mode_scan_change[card_index] = now;
385                         }
386                 }
387         }
388
389         int64_t frame_length = int64_t(TIMEBASE * video_format.frame_rate_den) / video_format.frame_rate_nom;
390
391         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
392         if (num_samples > OUTPUT_FREQUENCY / 10) {
393                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
394                         card_index, int(audio_frame.len), int(audio_offset),
395                         timecode, int(video_frame.len), int(video_offset), video_format.id);
396                 if (video_frame.owner) {
397                         video_frame.owner->release_frame(video_frame);
398                 }
399                 if (audio_frame.owner) {
400                         audio_frame.owner->release_frame(audio_frame);
401                 }
402                 return;
403         }
404
405         int64_t local_pts = card->next_local_pts;
406         int dropped_frames = 0;
407         if (card->last_timecode != -1) {
408                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
409         }
410
411         // Convert the audio to stereo fp32 and add it.
412         vector<float> audio;
413         audio.resize(num_samples * 2);
414         switch (audio_format.bits_per_sample) {
415         case 0:
416                 assert(num_samples == 0);
417                 break;
418         case 24:
419                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
420                 break;
421         case 32:
422                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
423                 break;
424         default:
425                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
426                 assert(false);
427         }
428
429         // Add the audio.
430         {
431                 unique_lock<mutex> lock(card->audio_mutex);
432
433                 // Number of samples per frame if we need to insert silence.
434                 // (Could be nonintegral, but resampling will save us then.)
435                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
436
437                 if (dropped_frames > MAX_FPS * 2) {
438                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
439                                 card_index, card->last_timecode, timecode);
440                         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
441                         dropped_frames = 0;
442                 } else if (dropped_frames > 0) {
443                         // Insert silence as needed.
444                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
445                                 card_index, dropped_frames, timecode);
446                         vector<float> silence(silence_samples * 2, 0.0f);
447                         for (int i = 0; i < dropped_frames; ++i) {
448                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
449                                 // Note that if the format changed in the meantime, we have
450                                 // no way of detecting that; we just have to assume the frame length
451                                 // is always the same.
452                                 local_pts += frame_length;
453                         }
454                 }
455                 if (num_samples == 0) {
456                         audio.resize(silence_samples * 2);
457                         num_samples = silence_samples;
458                 }
459                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
460                 card->next_local_pts = local_pts + frame_length;
461         }
462
463         card->last_timecode = timecode;
464
465         // Done with the audio, so release it.
466         if (audio_frame.owner) {
467                 audio_frame.owner->release_frame(audio_frame);
468         }
469
470         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
471         if (video_frame.len - video_offset == 0 ||
472             video_frame.len - video_offset != expected_length) {
473                 if (video_frame.len != 0) {
474                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
475                                 card_index, video_frame.len - video_offset, expected_length);
476                 }
477                 if (video_frame.owner) {
478                         video_frame.owner->release_frame(video_frame);
479                 }
480
481                 // Still send on the information that we _had_ a frame, even though it's corrupted,
482                 // so that pts can go up accordingly.
483                 {
484                         unique_lock<mutex> lock(bmusb_mutex);
485                         CaptureCard::NewFrame new_frame;
486                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
487                         new_frame.length = frame_length;
488                         new_frame.interlaced = false;
489                         new_frame.dropped_frames = dropped_frames;
490                         card->new_frames.push(move(new_frame));
491                         card->new_frames_changed.notify_all();
492                 }
493                 return;
494         }
495
496         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
497
498         unsigned num_fields = video_format.interlaced ? 2 : 1;
499         timespec frame_upload_start;
500         if (video_format.interlaced) {
501                 // Send the two fields along as separate frames; the other side will need to add
502                 // a deinterlacer to actually get this right.
503                 assert(video_format.height % 2 == 0);
504                 video_format.height /= 2;
505                 assert(frame_length % 2 == 0);
506                 frame_length /= 2;
507                 num_fields = 2;
508                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
509         }
510         userdata->last_interlaced = video_format.interlaced;
511         userdata->last_has_signal = video_format.has_signal;
512         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
513         userdata->last_frame_rate_den = video_format.frame_rate_den;
514         RefCountedFrame frame(video_frame);
515
516         // Upload the textures.
517         size_t cbcr_width = video_format.width / 2;
518         size_t cbcr_offset = video_offset / 2;
519         size_t y_offset = video_frame.size / 2 + video_offset / 2;
520
521         for (unsigned field = 0; field < num_fields; ++field) {
522                 unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
523
524                 if (userdata->tex_y[field] == 0 ||
525                     userdata->tex_cbcr[field] == 0 ||
526                     video_format.width != userdata->last_width[field] ||
527                     video_format.height != userdata->last_height[field]) {
528                         // We changed resolution since last use of this texture, so we need to create
529                         // a new object. Note that this each card has its own PBOFrameAllocator,
530                         // we don't need to worry about these flip-flopping between resolutions.
531                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
532                         check_error();
533                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
534                         check_error();
535                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
536                         check_error();
537                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
538                         check_error();
539                         userdata->last_width[field] = video_format.width;
540                         userdata->last_height[field] = video_format.height;
541                 }
542
543                 GLuint pbo = userdata->pbo;
544                 check_error();
545                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
546                 check_error();
547
548                 size_t field_y_start = y_offset + video_format.width * field_start_line;
549                 size_t field_cbcr_start = cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t);
550
551                 if (global_flags.flush_pbos) {
552                         glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_y_start, video_format.width * video_format.height);
553                         check_error();
554                         glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_cbcr_start, cbcr_width * video_format.height * sizeof(uint16_t));
555                         check_error();
556                 }
557
558                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
559                 check_error();
560                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_cbcr_start));
561                 check_error();
562                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
563                 check_error();
564                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_y_start));
565                 check_error();
566                 glBindTexture(GL_TEXTURE_2D, 0);
567                 check_error();
568                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
569                 check_error();
570                 RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
571                 check_error();
572                 assert(fence.get() != nullptr);
573                 glFlush();  // Make sure the main thread doesn't have to wait until we push out enough frames to make a new command buffer.
574                 check_error();
575
576                 if (field == 1) {
577                         // Don't upload the second field as fast as we can; wait until
578                         // the field time has approximately passed. (Otherwise, we could
579                         // get timing jitter against the other sources, and possibly also
580                         // against the video display, although the latter is not as critical.)
581                         // This requires our system clock to be reasonably close to the
582                         // video clock, but that's not an unreasonable assumption.
583                         timespec second_field_start;
584                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
585                                 frame_length * 1000000000 / TIMEBASE;
586                         second_field_start.tv_sec = frame_upload_start.tv_sec +
587                                 second_field_start.tv_nsec / 1000000000;
588                         second_field_start.tv_nsec %= 1000000000;
589
590                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
591                                                &second_field_start, nullptr) == -1 &&
592                                errno == EINTR) ;
593                 }
594
595                 {
596                         unique_lock<mutex> lock(bmusb_mutex);
597                         CaptureCard::NewFrame new_frame;
598                         new_frame.frame = frame;
599                         new_frame.length = frame_length;
600                         new_frame.field = field;
601                         new_frame.interlaced = video_format.interlaced;
602                         new_frame.ready_fence = fence;
603                         new_frame.dropped_frames = dropped_frames;
604                         card->new_frames.push(move(new_frame));
605                         card->new_frames_changed.notify_all();
606                 }
607         }
608 }
609
610 void Mixer::thread_func()
611 {
612         eglBindAPI(EGL_OPENGL_API);
613         QOpenGLContext *context = create_context(mixer_surface);
614         if (!make_current(context, mixer_surface)) {
615                 printf("oops\n");
616                 exit(1);
617         }
618
619         struct timespec start, now;
620         clock_gettime(CLOCK_MONOTONIC, &start);
621
622         int frame = 0;
623         int stats_dropped_frames = 0;
624
625         while (!should_quit) {
626                 CaptureCard::NewFrame new_frames[MAX_CARDS];
627                 bool has_new_frame[MAX_CARDS] = { false };
628                 int num_samples[MAX_CARDS] = { 0 };
629
630                 // TODO: Add a timeout.
631                 unsigned master_card_index = theme->map_signal(master_clock_channel);
632                 assert(master_card_index < num_cards);
633
634                 get_one_frame_from_each_card(master_card_index, new_frames, has_new_frame, num_samples);
635                 schedule_audio_resampling_tasks(new_frames[master_card_index].dropped_frames, num_samples[master_card_index], new_frames[master_card_index].length);
636                 stats_dropped_frames += new_frames[master_card_index].dropped_frames;
637                 send_audio_level_callback();
638
639                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
640                         if (card_index == master_card_index || !has_new_frame[card_index]) {
641                                 continue;
642                         }
643                         if (new_frames[card_index].frame->len == 0) {
644                                 ++new_frames[card_index].dropped_frames;
645                         }
646                         if (new_frames[card_index].dropped_frames > 0) {
647                                 printf("Card %u dropped %d frames before this\n",
648                                         card_index, int(new_frames[card_index].dropped_frames));
649                         }
650                 }
651
652                 // If the first card is reporting a corrupted or otherwise dropped frame,
653                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
654                 if (new_frames[master_card_index].frame->len == 0) {
655                         ++stats_dropped_frames;
656                         pts_int += new_frames[master_card_index].length;
657                         continue;
658                 }
659
660                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
661                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
662                                 continue;
663
664                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
665                         assert(new_frame->frame != nullptr);
666                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
667                         check_error();
668
669                         // The new texture might still be uploaded,
670                         // tell the GPU to wait until it's there.
671                         if (new_frame->ready_fence) {
672                                 glWaitSync(new_frame->ready_fence.get(), /*flags=*/0, GL_TIMEOUT_IGNORED);
673                                 check_error();
674                                 new_frame->ready_fence.reset();
675                                 check_error();
676                         }
677                 }
678
679                 render_one_frame();
680                 ++frame;
681                 pts_int += new_frames[master_card_index].length;
682
683                 clock_gettime(CLOCK_MONOTONIC, &now);
684                 double elapsed = now.tv_sec - start.tv_sec +
685                         1e-9 * (now.tv_nsec - start.tv_nsec);
686                 if (frame % 100 == 0) {
687                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
688                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
689                                 1e3 * elapsed / frame);
690                 //      chain->print_phase_timing();
691                 }
692
693                 if (should_cut.exchange(false)) {  // Test and clear.
694                         string filename = generate_local_dump_filename(frame);
695                         printf("Starting new recording: %s\n", filename.c_str());
696                         h264_encoder->close_output_file();
697                         h264_encoder->shutdown();
698                         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
699                         h264_encoder->open_output_file(filename.c_str());
700                 }
701
702 #if 0
703                 // Reset every 100 frames, so that local variations in frame times
704                 // (especially for the first few frames, when the shaders are
705                 // compiled etc.) don't make it hard to measure for the entire
706                 // remaining duration of the program.
707                 if (frame == 10000) {
708                         frame = 0;
709                         start = now;
710                 }
711 #endif
712                 check_error();
713         }
714
715         resource_pool->clean_context();
716 }
717
718 void Mixer::get_one_frame_from_each_card(unsigned master_card_index, CaptureCard::NewFrame new_frames[MAX_CARDS], bool has_new_frame[MAX_CARDS], int num_samples[MAX_CARDS])
719 {
720         // The first card is the master timer, so wait for it to have a new frame.
721         unique_lock<mutex> lock(bmusb_mutex);
722         cards[master_card_index].new_frames_changed.wait(lock, [this, master_card_index]{ return !cards[master_card_index].new_frames.empty(); });
723
724         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
725                 CaptureCard *card = &cards[card_index];
726                 if (card->new_frames.empty()) {
727                         assert(card_index != master_card_index);
728                         card->queue_length_policy.update_policy(-1);
729                         continue;
730                 }
731                 new_frames[card_index] = move(card->new_frames.front());
732                 has_new_frame[card_index] = true;
733                 card->new_frames.pop();
734                 card->new_frames_changed.notify_all();
735
736                 int num_samples_times_timebase = OUTPUT_FREQUENCY * new_frames[card_index].length + card->fractional_samples;
737                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
738                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
739                 assert(num_samples[card_index] >= 0);
740
741                 if (card_index == master_card_index) {
742                         // We don't use the queue length policy for the master card,
743                         // but we will if it stops being the master. Thus, clear out
744                         // the policy in case we switch in the future.
745                         card->queue_length_policy.reset(card_index);
746                 } else {
747                         // If we have excess frames compared to the policy for this card,
748                         // drop frames from the head.
749                         card->queue_length_policy.update_policy(card->new_frames.size());
750                         while (card->new_frames.size() > card->queue_length_policy.get_safe_queue_length()) {
751                                 card->new_frames.pop();
752                         }
753                 }
754         }
755 }
756
757 void Mixer::schedule_audio_resampling_tasks(unsigned dropped_frames, int num_samples_per_frame, int length_per_frame)
758 {
759         // Resample the audio as needed, including from previously dropped frames.
760         assert(num_cards > 0);
761         for (unsigned frame_num = 0; frame_num < dropped_frames + 1; ++frame_num) {
762                 {
763                         // Signal to the audio thread to process this frame.
764                         unique_lock<mutex> lock(audio_mutex);
765                         audio_task_queue.push(AudioTask{pts_int, num_samples_per_frame});
766                         audio_task_queue_changed.notify_one();
767                 }
768                 if (frame_num != dropped_frames) {
769                         // For dropped frames, increase the pts. Note that if the format changed
770                         // in the meantime, we have no way of detecting that; we just have to
771                         // assume the frame length is always the same.
772                         pts_int += length_per_frame;
773                 }
774         }
775 }
776
777 void Mixer::render_one_frame()
778 {
779         // Get the main chain from the theme, and set its state immediately.
780         Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
781         EffectChain *chain = theme_main_chain.chain;
782         theme_main_chain.setup_chain();
783         //theme_main_chain.chain->enable_phase_timing(true);
784
785         GLuint y_tex, cbcr_tex;
786         bool got_frame = h264_encoder->begin_frame(&y_tex, &cbcr_tex);
787         assert(got_frame);
788
789         // Render main chain.
790         GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
791         GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
792         GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
793         check_error();
794         chain->render_to_fbo(fbo, WIDTH, HEIGHT);
795         resource_pool->release_fbo(fbo);
796
797         subsample_chroma(cbcr_full_tex, cbcr_tex);
798         resource_pool->release_2d_texture(cbcr_full_tex);
799
800         // Set the right state for rgba_tex.
801         glBindFramebuffer(GL_FRAMEBUFFER, 0);
802         glBindTexture(GL_TEXTURE_2D, rgba_tex);
803         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
804         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
805         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
806
807         const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
808         RefCountedGLsync fence = h264_encoder->end_frame(pts_int + av_delay, theme_main_chain.input_frames);
809
810         // The live frame just shows the RGBA texture we just rendered.
811         // It owns rgba_tex now.
812         DisplayFrame live_frame;
813         live_frame.chain = display_chain.get();
814         live_frame.setup_chain = [this, rgba_tex]{
815                 display_input->set_texture_num(rgba_tex);
816         };
817         live_frame.ready_fence = fence;
818         live_frame.input_frames = {};
819         live_frame.temp_textures = { rgba_tex };
820         output_channel[OUTPUT_LIVE].output_frame(live_frame);
821
822         // Set up preview and any additional channels.
823         for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
824                 DisplayFrame display_frame;
825                 Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
826                 display_frame.chain = chain.chain;
827                 display_frame.setup_chain = chain.setup_chain;
828                 display_frame.ready_fence = fence;
829                 display_frame.input_frames = chain.input_frames;
830                 display_frame.temp_textures = {};
831                 output_channel[i].output_frame(display_frame);
832         }
833 }
834
835 void Mixer::send_audio_level_callback()
836 {
837         if (audio_level_callback == nullptr) {
838                 return;
839         }
840
841         unique_lock<mutex> lock(compressor_mutex);
842         double loudness_s = r128.loudness_S();
843         double loudness_i = r128.integrated();
844         double loudness_range_low = r128.range_min();
845         double loudness_range_high = r128.range_max();
846
847         audio_level_callback(loudness_s, 20.0 * log10(peak),
848                 loudness_i, loudness_range_low, loudness_range_high,
849                 gain_staging_db, 20.0 * log10(final_makeup_gain),
850                 correlation.get_correlation());
851 }
852
853 void Mixer::audio_thread_func()
854 {
855         while (!should_quit) {
856                 AudioTask task;
857
858                 {
859                         unique_lock<mutex> lock(audio_mutex);
860                         audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
861                         task = audio_task_queue.front();
862                         audio_task_queue.pop();
863                 }
864
865                 process_audio_one_frame(task.pts_int, task.num_samples);
866         }
867 }
868
869 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
870 {
871         vector<float> samples_card;
872         vector<float> samples_out;
873
874         // TODO: Allow mixing audio from several sources.
875         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
876         assert(selected_audio_card < num_cards);
877
878         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
879                 samples_card.resize(num_samples * 2);
880                 {
881                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
882                         if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
883                                 printf("Card %d reported previous underrun.\n", card_index);
884                         }
885                 }
886                 if (card_index == selected_audio_card) {
887                         samples_out = move(samples_card);
888                 }
889         }
890
891         // Cut away everything under 120 Hz (or whatever the cutoff is);
892         // we don't need it for voice, and it will reduce headroom
893         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
894         // should be dampened.)
895         if (locut_enabled) {
896                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
897         }
898
899         // Apply a level compressor to get the general level right.
900         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
901         // (or more precisely, near it, since we don't use infinite ratio),
902         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
903         // entirely arbitrary, but from practical tests with speech, it seems to
904         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
905         {
906                 unique_lock<mutex> lock(compressor_mutex);
907                 if (level_compressor_enabled) {
908                         float threshold = 0.01f;   // -40 dBFS.
909                         float ratio = 20.0f;
910                         float attack_time = 0.5f;
911                         float release_time = 20.0f;
912                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
913                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
914                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
915                 } else {
916                         // Just apply the gain we already had.
917                         float g = pow(10.0f, gain_staging_db / 20.0f);
918                         for (size_t i = 0; i < samples_out.size(); ++i) {
919                                 samples_out[i] *= g;
920                         }
921                 }
922         }
923
924 #if 0
925         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
926                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
927                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
928                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
929 #endif
930
931 //      float limiter_att, compressor_att;
932
933         // The real compressor.
934         if (compressor_enabled) {
935                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
936                 float ratio = 20.0f;
937                 float attack_time = 0.005f;
938                 float release_time = 0.040f;
939                 float makeup_gain = 2.0f;  // +6 dB.
940                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
941 //              compressor_att = compressor.get_attenuation();
942         }
943
944         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
945         // Note that since ratio is not infinite, we could go slightly higher than this.
946         if (limiter_enabled) {
947                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
948                 float ratio = 30.0f;
949                 float attack_time = 0.0f;  // Instant.
950                 float release_time = 0.020f;
951                 float makeup_gain = 1.0f;  // 0 dB.
952                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
953 //              limiter_att = limiter.get_attenuation();
954         }
955
956 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
957
958         // Upsample 4x to find interpolated peak.
959         peak_resampler.inp_data = samples_out.data();
960         peak_resampler.inp_count = samples_out.size() / 2;
961
962         vector<float> interpolated_samples_out;
963         interpolated_samples_out.resize(samples_out.size());
964         while (peak_resampler.inp_count > 0) {  // About four iterations.
965                 peak_resampler.out_data = &interpolated_samples_out[0];
966                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
967                 peak_resampler.process();
968                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
969                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
970                 peak_resampler.out_data = nullptr;
971         }
972
973         // At this point, we are most likely close to +0 LU, but all of our
974         // measurements have been on raw sample values, not R128 values.
975         // So we have a final makeup gain to get us to +0 LU; the gain
976         // adjustments required should be relatively small, and also, the
977         // offset shouldn't change much (only if the type of audio changes
978         // significantly). Thus, we shoot for updating this value basically
979         // “whenever we process buffers”, since the R128 calculation isn't exactly
980         // something we get out per-sample.
981         //
982         // Note that there's a feedback loop here, so we choose a very slow filter
983         // (half-time of 100 seconds).
984         double target_loudness_factor, alpha;
985         {
986                 unique_lock<mutex> lock(compressor_mutex);
987                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
988                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
989                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
990
991                 // If we're outside +/- 5 LU uncorrected, we don't count it as
992                 // a normal signal (probably silence) and don't change the
993                 // correction factor; just apply what we already have.
994                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
995                         alpha = 0.0;
996                 } else {
997                         // Formula adapted from
998                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
999                         const double half_time_s = 100.0;
1000                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
1001                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
1002                 }
1003
1004                 double m = final_makeup_gain;
1005                 for (size_t i = 0; i < samples_out.size(); i += 2) {
1006                         samples_out[i + 0] *= m;
1007                         samples_out[i + 1] *= m;
1008                         m += (target_loudness_factor - m) * alpha;
1009                 }
1010                 final_makeup_gain = m;
1011         }
1012
1013         // Find R128 levels and L/R correlation.
1014         vector<float> left, right;
1015         deinterleave_samples(samples_out, &left, &right);
1016         float *ptrs[] = { left.data(), right.data() };
1017         {
1018                 unique_lock<mutex> lock(compressor_mutex);
1019                 r128.process(left.size(), ptrs);
1020                 correlation.process_samples(samples_out);
1021         }
1022
1023         // Send the samples to the sound card.
1024         if (alsa) {
1025                 alsa->write(samples_out);
1026         }
1027
1028         // And finally add them to the output.
1029         h264_encoder->add_audio(frame_pts_int, move(samples_out));
1030 }
1031
1032 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
1033 {
1034         GLuint vao;
1035         glGenVertexArrays(1, &vao);
1036         check_error();
1037
1038         glBindVertexArray(vao);
1039         check_error();
1040
1041         // Extract Cb/Cr.
1042         GLuint fbo = resource_pool->create_fbo(dst_tex);
1043         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1044         glViewport(0, 0, WIDTH/2, HEIGHT/2);
1045         check_error();
1046
1047         glUseProgram(cbcr_program_num);
1048         check_error();
1049
1050         glActiveTexture(GL_TEXTURE0);
1051         check_error();
1052         glBindTexture(GL_TEXTURE_2D, src_tex);
1053         check_error();
1054         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1055         check_error();
1056         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1057         check_error();
1058         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1059         check_error();
1060
1061         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
1062         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
1063
1064         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
1065         check_error();
1066
1067         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1068                 glEnableVertexAttribArray(attr_index);
1069                 check_error();
1070                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1071                 check_error();
1072         }
1073
1074         glDrawArrays(GL_TRIANGLES, 0, 3);
1075         check_error();
1076
1077         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1078                 glDisableVertexAttribArray(attr_index);
1079                 check_error();
1080         }
1081
1082         glUseProgram(0);
1083         check_error();
1084         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1085         check_error();
1086
1087         resource_pool->release_fbo(fbo);
1088         glDeleteVertexArrays(1, &vao);
1089 }
1090
1091 void Mixer::release_display_frame(DisplayFrame *frame)
1092 {
1093         for (GLuint texnum : frame->temp_textures) {
1094                 resource_pool->release_2d_texture(texnum);
1095         }
1096         frame->temp_textures.clear();
1097         frame->ready_fence.reset();
1098         frame->input_frames.clear();
1099 }
1100
1101 void Mixer::start()
1102 {
1103         mixer_thread = thread(&Mixer::thread_func, this);
1104         audio_thread = thread(&Mixer::audio_thread_func, this);
1105 }
1106
1107 void Mixer::quit()
1108 {
1109         should_quit = true;
1110         mixer_thread.join();
1111         audio_thread.join();
1112 }
1113
1114 void Mixer::transition_clicked(int transition_num)
1115 {
1116         theme->transition_clicked(transition_num, pts());
1117 }
1118
1119 void Mixer::channel_clicked(int preview_num)
1120 {
1121         theme->channel_clicked(preview_num);
1122 }
1123
1124 void Mixer::reset_meters()
1125 {
1126         peak_resampler.reset();
1127         peak = 0.0f;
1128         r128.reset();
1129         r128.integr_start();
1130         correlation.reset();
1131 }
1132
1133 void Mixer::start_mode_scanning(unsigned card_index)
1134 {
1135         assert(card_index < num_cards);
1136         if (is_mode_scanning[card_index]) {
1137                 return;
1138         }
1139         is_mode_scanning[card_index] = true;
1140         mode_scanlist[card_index].clear();
1141         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
1142                 mode_scanlist[card_index].push_back(mode.first);
1143         }
1144         assert(!mode_scanlist[card_index].empty());
1145         mode_scanlist_index[card_index] = 0;
1146         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
1147         clock_gettime(CLOCK_MONOTONIC, &last_mode_scan_change[card_index]);
1148 }
1149
1150 Mixer::OutputChannel::~OutputChannel()
1151 {
1152         if (has_current_frame) {
1153                 parent->release_display_frame(&current_frame);
1154         }
1155         if (has_ready_frame) {
1156                 parent->release_display_frame(&ready_frame);
1157         }
1158 }
1159
1160 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1161 {
1162         // Store this frame for display. Remove the ready frame if any
1163         // (it was seemingly never used).
1164         {
1165                 unique_lock<mutex> lock(frame_mutex);
1166                 if (has_ready_frame) {
1167                         parent->release_display_frame(&ready_frame);
1168                 }
1169                 ready_frame = frame;
1170                 has_ready_frame = true;
1171         }
1172
1173         if (has_new_frame_ready_callback) {
1174                 new_frame_ready_callback();
1175         }
1176 }
1177
1178 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1179 {
1180         unique_lock<mutex> lock(frame_mutex);
1181         if (!has_current_frame && !has_ready_frame) {
1182                 return false;
1183         }
1184
1185         if (has_current_frame && has_ready_frame) {
1186                 // We have a new ready frame. Toss the current one.
1187                 parent->release_display_frame(&current_frame);
1188                 has_current_frame = false;
1189         }
1190         if (has_ready_frame) {
1191                 assert(!has_current_frame);
1192                 current_frame = ready_frame;
1193                 ready_frame.ready_fence.reset();  // Drop the refcount.
1194                 ready_frame.input_frames.clear();  // Drop the refcounts.
1195                 has_current_frame = true;
1196                 has_ready_frame = false;
1197         }
1198
1199         *frame = current_frame;
1200         return true;
1201 }
1202
1203 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1204 {
1205         new_frame_ready_callback = callback;
1206         has_new_frame_ready_callback = true;
1207 }