]> git.sesse.net Git - nageru/blob - mixer.cpp
9565894d420722e802d59aa4692373ff819a02b3
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30
31 #include "bmusb/bmusb.h"
32 #include "context.h"
33 #include "decklink_capture.h"
34 #include "defs.h"
35 #include "flags.h"
36 #include "h264encode.h"
37 #include "pbo_frame_allocator.h"
38 #include "ref_counted_gl_sync.h"
39 #include "timebase.h"
40
41 class QOpenGLContext;
42
43 using namespace movit;
44 using namespace std;
45 using namespace std::placeholders;
46
47 Mixer *global_mixer = nullptr;
48
49 namespace {
50
51 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
52 {
53         assert(in_channels >= out_channels);
54         for (size_t i = 0; i < num_samples; ++i) {
55                 for (size_t j = 0; j < out_channels; ++j) {
56                         uint32_t s1 = *src++;
57                         uint32_t s2 = *src++;
58                         uint32_t s3 = *src++;
59                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
60                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
61                 }
62                 src += 3 * (in_channels - out_channels);
63         }
64 }
65
66 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
67 {
68         assert(in_channels >= out_channels);
69         for (size_t i = 0; i < num_samples; ++i) {
70                 for (size_t j = 0; j < out_channels; ++j) {
71                         // Note: Assumes little-endian.
72                         int32_t s = *(int32_t *)src;
73                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
74                         src += 4;
75                 }
76                 src += 4 * (in_channels - out_channels);
77         }
78 }
79
80 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
81 {
82         if (interlaced) {
83                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
84                         input_state->buffered_frames[card_index][frame_num] =
85                                 input_state->buffered_frames[card_index][frame_num - 1];
86                 }
87                 input_state->buffered_frames[card_index][0] = { frame, field_num };
88         } else {
89                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
90                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
91                 }
92         }
93 }
94
95 string generate_local_dump_filename(int frame)
96 {
97         time_t now = time(NULL);
98         tm now_tm;
99         localtime_r(&now, &now_tm);
100
101         char timestamp[256];
102         strftime(timestamp, sizeof(timestamp), "%F-%T%z", &now_tm);
103
104         // Use the frame number to disambiguate between two cuts starting
105         // on the same second.
106         char filename[256];
107         snprintf(filename, sizeof(filename), "%s%s-f%02d%s",
108                 LOCAL_DUMP_PREFIX, timestamp, frame % 100, LOCAL_DUMP_SUFFIX);
109         return filename;
110 }
111
112 }  // namespace
113
114 void QueueLengthPolicy::update_policy(int queue_length)
115 {
116         if (queue_length < 0) {  // Starvation.
117                 if (been_at_safe_point_since_last_starvation && safe_queue_length < 5) {
118                         ++safe_queue_length;
119                         fprintf(stderr, "Card %u: Starvation, increasing safe limit to %u frames\n",
120                                 card_index, safe_queue_length);
121                 }
122                 frames_with_at_least_one = 0;
123                 been_at_safe_point_since_last_starvation = false;
124                 return;
125         }
126         if (queue_length > 0) {
127                 if (queue_length >= int(safe_queue_length)) {
128                         been_at_safe_point_since_last_starvation = true;
129                 }
130                 if (++frames_with_at_least_one >= 50 && safe_queue_length > 0) {
131                         --safe_queue_length;
132                         fprintf(stderr, "Card %u: Spare frames for more than 50 frames, reducing safe limit to %u frames\n",
133                                 card_index, safe_queue_length);
134                         frames_with_at_least_one = 0;
135                 }
136         } else {
137                 frames_with_at_least_one = 0;
138         }
139 }
140
141 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
142         : httpd(WIDTH, HEIGHT),
143           num_cards(num_cards),
144           mixer_surface(create_surface(format)),
145           h264_encoder_surface(create_surface(format)),
146           correlation(OUTPUT_FREQUENCY),
147           level_compressor(OUTPUT_FREQUENCY),
148           limiter(OUTPUT_FREQUENCY),
149           compressor(OUTPUT_FREQUENCY)
150 {
151         httpd.open_output_file(generate_local_dump_filename(/*frame=*/0).c_str());
152         httpd.start(9095);
153
154         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
155         check_error();
156
157         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
158         // will be halved when sampling them, and we need to compensate here.
159         movit_texel_subpixel_precision /= 2.0;
160
161         resource_pool.reset(new ResourcePool);
162         theme.reset(new Theme(global_flags.theme_filename.c_str(), resource_pool.get(), num_cards));
163         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
164                 output_channel[i].parent = this;
165         }
166
167         ImageFormat inout_format;
168         inout_format.color_space = COLORSPACE_sRGB;
169         inout_format.gamma_curve = GAMMA_sRGB;
170
171         // Display chain; shows the live output produced by the main chain (its RGBA version).
172         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
173         check_error();
174         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
175         display_chain->add_input(display_input);
176         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
177         display_chain->set_dither_bits(0);  // Don't bother.
178         display_chain->finalize();
179
180         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
181
182         // First try initializing the PCI devices, then USB, until we have the desired number of cards.
183         unsigned num_pci_devices = 0, num_usb_devices = 0;
184         unsigned card_index = 0;
185
186         IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
187         if (decklink_iterator != nullptr) {
188                 for ( ; card_index < num_cards; ++card_index) {
189                         IDeckLink *decklink;
190                         if (decklink_iterator->Next(&decklink) != S_OK) {
191                                 break;
192                         }
193
194                         configure_card(card_index, format, new DeckLinkCapture(decklink, card_index));
195                         ++num_pci_devices;
196                 }
197                 decklink_iterator->Release();
198                 fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
199         } else {
200                 fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
201         }
202         for ( ; card_index < num_cards; ++card_index) {
203                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices));
204                 ++num_usb_devices;
205         }
206
207         if (num_usb_devices > 0) {
208                 BMUSBCapture::start_bm_thread();
209         }
210
211         for (card_index = 0; card_index < num_cards; ++card_index) {
212                 cards[card_index].queue_length_policy.reset(card_index);
213                 cards[card_index].capture->start_bm_capture();
214         }
215
216         // Set up stuff for NV12 conversion.
217
218         // Cb/Cr shader.
219         string cbcr_vert_shader =
220                 "#version 130 \n"
221                 " \n"
222                 "in vec2 position; \n"
223                 "in vec2 texcoord; \n"
224                 "out vec2 tc0; \n"
225                 "uniform vec2 foo_chroma_offset_0; \n"
226                 " \n"
227                 "void main() \n"
228                 "{ \n"
229                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
230                 "    // \n"
231                 "    //   2.000  0.000  0.000 -1.000 \n"
232                 "    //   0.000  2.000  0.000 -1.000 \n"
233                 "    //   0.000  0.000 -2.000 -1.000 \n"
234                 "    //   0.000  0.000  0.000  1.000 \n"
235                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
236                 "    vec2 flipped_tc = texcoord; \n"
237                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
238                 "} \n";
239         string cbcr_frag_shader =
240                 "#version 130 \n"
241                 "in vec2 tc0; \n"
242                 "uniform sampler2D cbcr_tex; \n"
243                 "out vec4 FragColor; \n"
244                 "void main() { \n"
245                 "    FragColor = texture(cbcr_tex, tc0); \n"
246                 "} \n";
247         vector<string> frag_shader_outputs;
248         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
249
250         float vertices[] = {
251                 0.0f, 2.0f,
252                 0.0f, 0.0f,
253                 2.0f, 0.0f
254         };
255         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
256         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
257         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
258
259         r128.init(2, OUTPUT_FREQUENCY);
260         r128.integr_start();
261
262         locut.init(FILTER_HPF, 2);
263
264         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
265         // and there's a limit to how important the peak meter is.
266         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
267
268         alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
269 }
270
271 Mixer::~Mixer()
272 {
273         resource_pool->release_glsl_program(cbcr_program_num);
274         glDeleteBuffers(1, &cbcr_vbo);
275         BMUSBCapture::stop_bm_thread();
276
277         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
278                 {
279                         unique_lock<mutex> lock(bmusb_mutex);
280                         cards[card_index].should_quit = true;  // Unblock thread.
281                         cards[card_index].new_frames_changed.notify_all();
282                 }
283                 cards[card_index].capture->stop_dequeue_thread();
284         }
285
286         h264_encoder.reset(nullptr);
287 }
288
289 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
290 {
291         printf("Configuring card %d...\n", card_index);
292
293         CaptureCard *card = &cards[card_index];
294         card->capture = capture;
295         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
296         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
297         card->capture->set_video_frame_allocator(card->frame_allocator.get());
298         card->surface = create_surface(format);
299         card->capture->set_dequeue_thread_callbacks(
300                 [card]{
301                         eglBindAPI(EGL_OPENGL_API);
302                         card->context = create_context(card->surface);
303                         if (!make_current(card->context, card->surface)) {
304                                 printf("failed to create bmusb context\n");
305                                 exit(1);
306                         }
307                 },
308                 [this]{
309                         resource_pool->clean_context();
310                 });
311         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
312         card->capture->configure_card();
313 }
314
315
316 namespace {
317
318 int unwrap_timecode(uint16_t current_wrapped, int last)
319 {
320         uint16_t last_wrapped = last & 0xffff;
321         if (current_wrapped > last_wrapped) {
322                 return (last & ~0xffff) | current_wrapped;
323         } else {
324                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
325         }
326 }
327
328 float find_peak(const float *samples, size_t num_samples)
329 {
330         float m = fabs(samples[0]);
331         for (size_t i = 1; i < num_samples; ++i) {
332                 m = max(m, fabs(samples[i]));
333         }
334         return m;
335 }
336
337 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
338 {
339         size_t num_samples = in.size() / 2;
340         out_l->resize(num_samples);
341         out_r->resize(num_samples);
342
343         const float *inptr = in.data();
344         float *lptr = &(*out_l)[0];
345         float *rptr = &(*out_r)[0];
346         for (size_t i = 0; i < num_samples; ++i) {
347                 *lptr++ = *inptr++;
348                 *rptr++ = *inptr++;
349         }
350 }
351
352 }  // namespace
353
354 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
355                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
356                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
357 {
358         CaptureCard *card = &cards[card_index];
359
360         if (is_mode_scanning[card_index]) {
361                 if (video_format.has_signal) {
362                         // Found a stable signal, so stop scanning.
363                         is_mode_scanning[card_index] = false;
364                 } else {
365                         static constexpr double switch_time_s = 0.5;  // Should be enough time for the signal to stabilize.
366                         timespec now;
367                         clock_gettime(CLOCK_MONOTONIC, &now);
368                         double sec_since_last_switch = (now.tv_sec - last_mode_scan_change[card_index].tv_sec) +
369                                 1e-9 * (now.tv_nsec - last_mode_scan_change[card_index].tv_nsec);
370                         if (sec_since_last_switch > switch_time_s) {
371                                 // It isn't this mode; try the next one.
372                                 mode_scanlist_index[card_index]++;
373                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
374                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
375                                 last_mode_scan_change[card_index] = now;
376                         }
377                 }
378         }
379
380         int64_t frame_length = int64_t(TIMEBASE * video_format.frame_rate_den) / video_format.frame_rate_nom;
381
382         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
383         if (num_samples > OUTPUT_FREQUENCY / 10) {
384                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
385                         card_index, int(audio_frame.len), int(audio_offset),
386                         timecode, int(video_frame.len), int(video_offset), video_format.id);
387                 if (video_frame.owner) {
388                         video_frame.owner->release_frame(video_frame);
389                 }
390                 if (audio_frame.owner) {
391                         audio_frame.owner->release_frame(audio_frame);
392                 }
393                 return;
394         }
395
396         int64_t local_pts = card->next_local_pts;
397         int dropped_frames = 0;
398         if (card->last_timecode != -1) {
399                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
400         }
401
402         // Convert the audio to stereo fp32 and add it.
403         vector<float> audio;
404         audio.resize(num_samples * 2);
405         switch (audio_format.bits_per_sample) {
406         case 0:
407                 assert(num_samples == 0);
408                 break;
409         case 24:
410                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
411                 break;
412         case 32:
413                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
414                 break;
415         default:
416                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
417                 assert(false);
418         }
419
420         // Add the audio.
421         {
422                 unique_lock<mutex> lock(card->audio_mutex);
423
424                 // Number of samples per frame if we need to insert silence.
425                 // (Could be nonintegral, but resampling will save us then.)
426                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
427
428                 if (dropped_frames > MAX_FPS * 2) {
429                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
430                                 card_index, card->last_timecode, timecode);
431                         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
432                         dropped_frames = 0;
433                 } else if (dropped_frames > 0) {
434                         // Insert silence as needed.
435                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
436                                 card_index, dropped_frames, timecode);
437                         vector<float> silence(silence_samples * 2, 0.0f);
438                         for (int i = 0; i < dropped_frames; ++i) {
439                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
440                                 // Note that if the format changed in the meantime, we have
441                                 // no way of detecting that; we just have to assume the frame length
442                                 // is always the same.
443                                 local_pts += frame_length;
444                         }
445                 }
446                 if (num_samples == 0) {
447                         audio.resize(silence_samples * 2);
448                         num_samples = silence_samples;
449                 }
450                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
451                 card->next_local_pts = local_pts + frame_length;
452         }
453
454         card->last_timecode = timecode;
455
456         // Done with the audio, so release it.
457         if (audio_frame.owner) {
458                 audio_frame.owner->release_frame(audio_frame);
459         }
460
461         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
462         if (video_frame.len - video_offset == 0 ||
463             video_frame.len - video_offset != expected_length) {
464                 if (video_frame.len != 0) {
465                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
466                                 card_index, video_frame.len - video_offset, expected_length);
467                 }
468                 if (video_frame.owner) {
469                         video_frame.owner->release_frame(video_frame);
470                 }
471
472                 // Still send on the information that we _had_ a frame, even though it's corrupted,
473                 // so that pts can go up accordingly.
474                 {
475                         unique_lock<mutex> lock(bmusb_mutex);
476                         CaptureCard::NewFrame new_frame;
477                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
478                         new_frame.length = frame_length;
479                         new_frame.interlaced = false;
480                         new_frame.dropped_frames = dropped_frames;
481                         card->new_frames.push(move(new_frame));
482                         card->new_frames_changed.notify_all();
483                 }
484                 return;
485         }
486
487         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
488
489         unsigned num_fields = video_format.interlaced ? 2 : 1;
490         timespec frame_upload_start;
491         if (video_format.interlaced) {
492                 // Send the two fields along as separate frames; the other side will need to add
493                 // a deinterlacer to actually get this right.
494                 assert(video_format.height % 2 == 0);
495                 video_format.height /= 2;
496                 assert(frame_length % 2 == 0);
497                 frame_length /= 2;
498                 num_fields = 2;
499                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
500         }
501         userdata->last_interlaced = video_format.interlaced;
502         userdata->last_has_signal = video_format.has_signal;
503         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
504         userdata->last_frame_rate_den = video_format.frame_rate_den;
505         RefCountedFrame frame(video_frame);
506
507         // Upload the textures.
508         size_t cbcr_width = video_format.width / 2;
509         size_t cbcr_offset = video_offset / 2;
510         size_t y_offset = video_frame.size / 2 + video_offset / 2;
511
512         for (unsigned field = 0; field < num_fields; ++field) {
513                 unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
514
515                 if (userdata->tex_y[field] == 0 ||
516                     userdata->tex_cbcr[field] == 0 ||
517                     video_format.width != userdata->last_width[field] ||
518                     video_format.height != userdata->last_height[field]) {
519                         // We changed resolution since last use of this texture, so we need to create
520                         // a new object. Note that this each card has its own PBOFrameAllocator,
521                         // we don't need to worry about these flip-flopping between resolutions.
522                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
523                         check_error();
524                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
525                         check_error();
526                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
527                         check_error();
528                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
529                         check_error();
530                         userdata->last_width[field] = video_format.width;
531                         userdata->last_height[field] = video_format.height;
532                 }
533
534                 GLuint pbo = userdata->pbo;
535                 check_error();
536                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
537                 check_error();
538                 glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, 0, video_frame.size);
539                 check_error();
540
541                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
542                 check_error();
543                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t)));
544                 check_error();
545                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
546                 check_error();
547                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(y_offset + video_format.width * field_start_line));
548                 check_error();
549                 glBindTexture(GL_TEXTURE_2D, 0);
550                 check_error();
551                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
552                 check_error();
553                 RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
554                 check_error();
555                 assert(fence.get() != nullptr);
556
557                 if (field == 1) {
558                         // Don't upload the second field as fast as we can; wait until
559                         // the field time has approximately passed. (Otherwise, we could
560                         // get timing jitter against the other sources, and possibly also
561                         // against the video display, although the latter is not as critical.)
562                         // This requires our system clock to be reasonably close to the
563                         // video clock, but that's not an unreasonable assumption.
564                         timespec second_field_start;
565                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
566                                 frame_length * 1000000000 / TIMEBASE;
567                         second_field_start.tv_sec = frame_upload_start.tv_sec +
568                                 second_field_start.tv_nsec / 1000000000;
569                         second_field_start.tv_nsec %= 1000000000;
570
571                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
572                                                &second_field_start, nullptr) == -1 &&
573                                errno == EINTR) ;
574                 }
575
576                 {
577                         unique_lock<mutex> lock(bmusb_mutex);
578                         CaptureCard::NewFrame new_frame;
579                         new_frame.frame = frame;
580                         new_frame.length = frame_length;
581                         new_frame.field = field;
582                         new_frame.interlaced = video_format.interlaced;
583                         new_frame.ready_fence = fence;
584                         new_frame.dropped_frames = dropped_frames;
585                         card->new_frames.push(move(new_frame));
586                         card->new_frames_changed.notify_all();
587                 }
588         }
589 }
590
591 void Mixer::thread_func()
592 {
593         eglBindAPI(EGL_OPENGL_API);
594         QOpenGLContext *context = create_context(mixer_surface);
595         if (!make_current(context, mixer_surface)) {
596                 printf("oops\n");
597                 exit(1);
598         }
599
600         struct timespec start, now;
601         clock_gettime(CLOCK_MONOTONIC, &start);
602
603         int frame = 0;
604         int stats_dropped_frames = 0;
605
606         while (!should_quit) {
607                 CaptureCard::NewFrame new_frames[MAX_CARDS];
608                 bool has_new_frame[MAX_CARDS] = { false };
609                 int num_samples[MAX_CARDS] = { 0 };
610
611                 // TODO: Add a timeout.
612                 unsigned master_card_index = theme->map_signal(master_clock_channel);
613                 assert(master_card_index < num_cards);
614
615                 get_one_frame_from_each_card(master_card_index, new_frames, has_new_frame, num_samples);
616                 schedule_audio_resampling_tasks(new_frames[master_card_index].dropped_frames, num_samples[master_card_index], new_frames[master_card_index].length);
617                 stats_dropped_frames += new_frames[master_card_index].dropped_frames;
618                 send_audio_level_callback();
619
620                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
621                         if (card_index == master_card_index || !has_new_frame[card_index]) {
622                                 continue;
623                         }
624                         if (new_frames[card_index].frame->len == 0) {
625                                 ++new_frames[card_index].dropped_frames;
626                         }
627                         if (new_frames[card_index].dropped_frames > 0) {
628                                 printf("Card %u dropped %d frames before this\n",
629                                         card_index, int(new_frames[card_index].dropped_frames));
630                         }
631                 }
632
633                 // If the first card is reporting a corrupted or otherwise dropped frame,
634                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
635                 if (new_frames[master_card_index].frame->len == 0) {
636                         ++stats_dropped_frames;
637                         pts_int += new_frames[master_card_index].length;
638                         continue;
639                 }
640
641                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
642                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
643                                 continue;
644
645                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
646                         assert(new_frame->frame != nullptr);
647                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
648                         check_error();
649
650                         // The new texture might still be uploaded,
651                         // tell the GPU to wait until it's there.
652                         if (new_frame->ready_fence) {
653                                 glWaitSync(new_frame->ready_fence.get(), /*flags=*/0, GL_TIMEOUT_IGNORED);
654                                 check_error();
655                                 new_frame->ready_fence.reset();
656                                 check_error();
657                         }
658                 }
659
660                 render_one_frame();
661                 ++frame;
662                 pts_int += new_frames[master_card_index].length;
663
664                 clock_gettime(CLOCK_MONOTONIC, &now);
665                 double elapsed = now.tv_sec - start.tv_sec +
666                         1e-9 * (now.tv_nsec - start.tv_nsec);
667                 if (frame % 100 == 0) {
668                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
669                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
670                                 1e3 * elapsed / frame);
671                 //      chain->print_phase_timing();
672                 }
673
674                 if (should_cut.exchange(false)) {  // Test and clear.
675                         string filename = generate_local_dump_filename(frame);
676                         printf("Starting new recording: %s\n", filename.c_str());
677                         h264_encoder->shutdown();
678                         httpd.close_output_file();
679                         httpd.open_output_file(filename.c_str());
680                         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
681                 }
682
683 #if 0
684                 // Reset every 100 frames, so that local variations in frame times
685                 // (especially for the first few frames, when the shaders are
686                 // compiled etc.) don't make it hard to measure for the entire
687                 // remaining duration of the program.
688                 if (frame == 10000) {
689                         frame = 0;
690                         start = now;
691                 }
692 #endif
693                 check_error();
694         }
695
696         resource_pool->clean_context();
697 }
698
699 void Mixer::get_one_frame_from_each_card(unsigned master_card_index, CaptureCard::NewFrame new_frames[MAX_CARDS], bool has_new_frame[MAX_CARDS], int num_samples[MAX_CARDS])
700 {
701         // The first card is the master timer, so wait for it to have a new frame.
702         unique_lock<mutex> lock(bmusb_mutex);
703         cards[master_card_index].new_frames_changed.wait(lock, [this, master_card_index]{ return !cards[master_card_index].new_frames.empty(); });
704
705         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
706                 CaptureCard *card = &cards[card_index];
707                 if (card->new_frames.empty()) {
708                         assert(card_index != master_card_index);
709                         card->queue_length_policy.update_policy(-1);
710                         continue;
711                 }
712                 new_frames[card_index] = move(card->new_frames.front());
713                 has_new_frame[card_index] = true;
714                 card->new_frames.pop();
715                 card->new_frames_changed.notify_all();
716
717                 int num_samples_times_timebase = OUTPUT_FREQUENCY * new_frames[card_index].length + card->fractional_samples;
718                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
719                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
720                 assert(num_samples[card_index] >= 0);
721
722                 if (card_index == master_card_index) {
723                         // We don't use the queue length policy for the master card,
724                         // but we will if it stops being the master. Thus, clear out
725                         // the policy in case we switch in the future.
726                         card->queue_length_policy.reset(card_index);
727                 } else {
728                         // If we have excess frames compared to the policy for this card,
729                         // drop frames from the head.
730                         card->queue_length_policy.update_policy(card->new_frames.size());
731                         while (card->new_frames.size() > card->queue_length_policy.get_safe_queue_length()) {
732                                 card->new_frames.pop();
733                         }
734                 }
735         }
736 }
737
738 void Mixer::schedule_audio_resampling_tasks(unsigned dropped_frames, int num_samples_per_frame, int length_per_frame)
739 {
740         // Resample the audio as needed, including from previously dropped frames.
741         assert(num_cards > 0);
742         for (unsigned frame_num = 0; frame_num < dropped_frames + 1; ++frame_num) {
743                 {
744                         // Signal to the audio thread to process this frame.
745                         unique_lock<mutex> lock(audio_mutex);
746                         audio_task_queue.push(AudioTask{pts_int, num_samples_per_frame});
747                         audio_task_queue_changed.notify_one();
748                 }
749                 if (frame_num != dropped_frames) {
750                         // For dropped frames, increase the pts. Note that if the format changed
751                         // in the meantime, we have no way of detecting that; we just have to
752                         // assume the frame length is always the same.
753                         pts_int += length_per_frame;
754                 }
755         }
756 }
757
758 void Mixer::render_one_frame()
759 {
760         // Get the main chain from the theme, and set its state immediately.
761         Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
762         EffectChain *chain = theme_main_chain.chain;
763         theme_main_chain.setup_chain();
764         //theme_main_chain.chain->enable_phase_timing(true);
765
766         GLuint y_tex, cbcr_tex;
767         bool got_frame = h264_encoder->begin_frame(&y_tex, &cbcr_tex);
768         assert(got_frame);
769
770         // Render main chain.
771         GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
772         GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
773         GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
774         check_error();
775         chain->render_to_fbo(fbo, WIDTH, HEIGHT);
776         resource_pool->release_fbo(fbo);
777
778         subsample_chroma(cbcr_full_tex, cbcr_tex);
779         resource_pool->release_2d_texture(cbcr_full_tex);
780
781         // Set the right state for rgba_tex.
782         glBindFramebuffer(GL_FRAMEBUFFER, 0);
783         glBindTexture(GL_TEXTURE_2D, rgba_tex);
784         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
785         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
786         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
787
788         RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
789         check_error();
790
791         const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
792         h264_encoder->end_frame(fence, pts_int + av_delay, theme_main_chain.input_frames);
793
794         // The live frame just shows the RGBA texture we just rendered.
795         // It owns rgba_tex now.
796         DisplayFrame live_frame;
797         live_frame.chain = display_chain.get();
798         live_frame.setup_chain = [this, rgba_tex]{
799                 display_input->set_texture_num(rgba_tex);
800         };
801         live_frame.ready_fence = fence;
802         live_frame.input_frames = {};
803         live_frame.temp_textures = { rgba_tex };
804         output_channel[OUTPUT_LIVE].output_frame(live_frame);
805
806         // Set up preview and any additional channels.
807         for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
808                 DisplayFrame display_frame;
809                 Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
810                 display_frame.chain = chain.chain;
811                 display_frame.setup_chain = chain.setup_chain;
812                 display_frame.ready_fence = fence;
813                 display_frame.input_frames = chain.input_frames;
814                 display_frame.temp_textures = {};
815                 output_channel[i].output_frame(display_frame);
816         }
817 }
818
819 void Mixer::send_audio_level_callback()
820 {
821         if (audio_level_callback == nullptr) {
822                 return;
823         }
824
825         unique_lock<mutex> lock(compressor_mutex);
826         double loudness_s = r128.loudness_S();
827         double loudness_i = r128.integrated();
828         double loudness_range_low = r128.range_min();
829         double loudness_range_high = r128.range_max();
830
831         audio_level_callback(loudness_s, 20.0 * log10(peak),
832                 loudness_i, loudness_range_low, loudness_range_high,
833                 gain_staging_db, 20.0 * log10(final_makeup_gain),
834                 correlation.get_correlation());
835 }
836
837 void Mixer::audio_thread_func()
838 {
839         while (!should_quit) {
840                 AudioTask task;
841
842                 {
843                         unique_lock<mutex> lock(audio_mutex);
844                         audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
845                         task = audio_task_queue.front();
846                         audio_task_queue.pop();
847                 }
848
849                 process_audio_one_frame(task.pts_int, task.num_samples);
850         }
851 }
852
853 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
854 {
855         vector<float> samples_card;
856         vector<float> samples_out;
857
858         // TODO: Allow mixing audio from several sources.
859         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
860         assert(selected_audio_card < num_cards);
861
862         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
863                 samples_card.resize(num_samples * 2);
864                 {
865                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
866                         if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
867                                 printf("Card %d reported previous underrun.\n", card_index);
868                         }
869                 }
870                 if (card_index == selected_audio_card) {
871                         samples_out = move(samples_card);
872                 }
873         }
874
875         // Cut away everything under 120 Hz (or whatever the cutoff is);
876         // we don't need it for voice, and it will reduce headroom
877         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
878         // should be dampened.)
879         if (locut_enabled) {
880                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
881         }
882
883         // Apply a level compressor to get the general level right.
884         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
885         // (or more precisely, near it, since we don't use infinite ratio),
886         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
887         // entirely arbitrary, but from practical tests with speech, it seems to
888         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
889         {
890                 unique_lock<mutex> lock(compressor_mutex);
891                 if (level_compressor_enabled) {
892                         float threshold = 0.01f;   // -40 dBFS.
893                         float ratio = 20.0f;
894                         float attack_time = 0.5f;
895                         float release_time = 20.0f;
896                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
897                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
898                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
899                 } else {
900                         // Just apply the gain we already had.
901                         float g = pow(10.0f, gain_staging_db / 20.0f);
902                         for (size_t i = 0; i < samples_out.size(); ++i) {
903                                 samples_out[i] *= g;
904                         }
905                 }
906         }
907
908 #if 0
909         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
910                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
911                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
912                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
913 #endif
914
915 //      float limiter_att, compressor_att;
916
917         // The real compressor.
918         if (compressor_enabled) {
919                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
920                 float ratio = 20.0f;
921                 float attack_time = 0.005f;
922                 float release_time = 0.040f;
923                 float makeup_gain = 2.0f;  // +6 dB.
924                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
925 //              compressor_att = compressor.get_attenuation();
926         }
927
928         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
929         // Note that since ratio is not infinite, we could go slightly higher than this.
930         if (limiter_enabled) {
931                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
932                 float ratio = 30.0f;
933                 float attack_time = 0.0f;  // Instant.
934                 float release_time = 0.020f;
935                 float makeup_gain = 1.0f;  // 0 dB.
936                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
937 //              limiter_att = limiter.get_attenuation();
938         }
939
940 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
941
942         // Upsample 4x to find interpolated peak.
943         peak_resampler.inp_data = samples_out.data();
944         peak_resampler.inp_count = samples_out.size() / 2;
945
946         vector<float> interpolated_samples_out;
947         interpolated_samples_out.resize(samples_out.size());
948         while (peak_resampler.inp_count > 0) {  // About four iterations.
949                 peak_resampler.out_data = &interpolated_samples_out[0];
950                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
951                 peak_resampler.process();
952                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
953                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
954                 peak_resampler.out_data = nullptr;
955         }
956
957         // At this point, we are most likely close to +0 LU, but all of our
958         // measurements have been on raw sample values, not R128 values.
959         // So we have a final makeup gain to get us to +0 LU; the gain
960         // adjustments required should be relatively small, and also, the
961         // offset shouldn't change much (only if the type of audio changes
962         // significantly). Thus, we shoot for updating this value basically
963         // “whenever we process buffers”, since the R128 calculation isn't exactly
964         // something we get out per-sample.
965         //
966         // Note that there's a feedback loop here, so we choose a very slow filter
967         // (half-time of 100 seconds).
968         double target_loudness_factor, alpha;
969         {
970                 unique_lock<mutex> lock(compressor_mutex);
971                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
972                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
973                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
974
975                 // If we're outside +/- 5 LU uncorrected, we don't count it as
976                 // a normal signal (probably silence) and don't change the
977                 // correction factor; just apply what we already have.
978                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
979                         alpha = 0.0;
980                 } else {
981                         // Formula adapted from
982                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
983                         const double half_time_s = 100.0;
984                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
985                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
986                 }
987
988                 double m = final_makeup_gain;
989                 for (size_t i = 0; i < samples_out.size(); i += 2) {
990                         samples_out[i + 0] *= m;
991                         samples_out[i + 1] *= m;
992                         m += (target_loudness_factor - m) * alpha;
993                 }
994                 final_makeup_gain = m;
995         }
996
997         // Find R128 levels and L/R correlation.
998         vector<float> left, right;
999         deinterleave_samples(samples_out, &left, &right);
1000         float *ptrs[] = { left.data(), right.data() };
1001         {
1002                 unique_lock<mutex> lock(compressor_mutex);
1003                 r128.process(left.size(), ptrs);
1004                 correlation.process_samples(samples_out);
1005         }
1006
1007         // Send the samples to the sound card.
1008         if (alsa) {
1009                 alsa->write(samples_out);
1010         }
1011
1012         // And finally add them to the output.
1013         h264_encoder->add_audio(frame_pts_int, move(samples_out));
1014 }
1015
1016 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
1017 {
1018         GLuint vao;
1019         glGenVertexArrays(1, &vao);
1020         check_error();
1021
1022         glBindVertexArray(vao);
1023         check_error();
1024
1025         // Extract Cb/Cr.
1026         GLuint fbo = resource_pool->create_fbo(dst_tex);
1027         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1028         glViewport(0, 0, WIDTH/2, HEIGHT/2);
1029         check_error();
1030
1031         glUseProgram(cbcr_program_num);
1032         check_error();
1033
1034         glActiveTexture(GL_TEXTURE0);
1035         check_error();
1036         glBindTexture(GL_TEXTURE_2D, src_tex);
1037         check_error();
1038         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1039         check_error();
1040         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1041         check_error();
1042         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1043         check_error();
1044
1045         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
1046         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
1047
1048         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
1049         check_error();
1050
1051         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1052                 glEnableVertexAttribArray(attr_index);
1053                 check_error();
1054                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1055                 check_error();
1056         }
1057
1058         glDrawArrays(GL_TRIANGLES, 0, 3);
1059         check_error();
1060
1061         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1062                 glDisableVertexAttribArray(attr_index);
1063                 check_error();
1064         }
1065
1066         glUseProgram(0);
1067         check_error();
1068         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1069         check_error();
1070
1071         resource_pool->release_fbo(fbo);
1072         glDeleteVertexArrays(1, &vao);
1073 }
1074
1075 void Mixer::release_display_frame(DisplayFrame *frame)
1076 {
1077         for (GLuint texnum : frame->temp_textures) {
1078                 resource_pool->release_2d_texture(texnum);
1079         }
1080         frame->temp_textures.clear();
1081         frame->ready_fence.reset();
1082         frame->input_frames.clear();
1083 }
1084
1085 void Mixer::start()
1086 {
1087         mixer_thread = thread(&Mixer::thread_func, this);
1088         audio_thread = thread(&Mixer::audio_thread_func, this);
1089 }
1090
1091 void Mixer::quit()
1092 {
1093         should_quit = true;
1094         mixer_thread.join();
1095         audio_thread.join();
1096 }
1097
1098 void Mixer::transition_clicked(int transition_num)
1099 {
1100         theme->transition_clicked(transition_num, pts());
1101 }
1102
1103 void Mixer::channel_clicked(int preview_num)
1104 {
1105         theme->channel_clicked(preview_num);
1106 }
1107
1108 void Mixer::reset_meters()
1109 {
1110         peak_resampler.reset();
1111         peak = 0.0f;
1112         r128.reset();
1113         r128.integr_start();
1114         correlation.reset();
1115 }
1116
1117 void Mixer::start_mode_scanning(unsigned card_index)
1118 {
1119         assert(card_index < num_cards);
1120         if (is_mode_scanning[card_index]) {
1121                 return;
1122         }
1123         is_mode_scanning[card_index] = true;
1124         mode_scanlist[card_index].clear();
1125         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
1126                 mode_scanlist[card_index].push_back(mode.first);
1127         }
1128         assert(!mode_scanlist[card_index].empty());
1129         mode_scanlist_index[card_index] = 0;
1130         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
1131         clock_gettime(CLOCK_MONOTONIC, &last_mode_scan_change[card_index]);
1132 }
1133
1134 Mixer::OutputChannel::~OutputChannel()
1135 {
1136         if (has_current_frame) {
1137                 parent->release_display_frame(&current_frame);
1138         }
1139         if (has_ready_frame) {
1140                 parent->release_display_frame(&ready_frame);
1141         }
1142 }
1143
1144 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1145 {
1146         // Store this frame for display. Remove the ready frame if any
1147         // (it was seemingly never used).
1148         {
1149                 unique_lock<mutex> lock(frame_mutex);
1150                 if (has_ready_frame) {
1151                         parent->release_display_frame(&ready_frame);
1152                 }
1153                 ready_frame = frame;
1154                 has_ready_frame = true;
1155         }
1156
1157         if (has_new_frame_ready_callback) {
1158                 new_frame_ready_callback();
1159         }
1160 }
1161
1162 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1163 {
1164         unique_lock<mutex> lock(frame_mutex);
1165         if (!has_current_frame && !has_ready_frame) {
1166                 return false;
1167         }
1168
1169         if (has_current_frame && has_ready_frame) {
1170                 // We have a new ready frame. Toss the current one.
1171                 parent->release_display_frame(&current_frame);
1172                 has_current_frame = false;
1173         }
1174         if (has_ready_frame) {
1175                 assert(!has_current_frame);
1176                 current_frame = ready_frame;
1177                 ready_frame.ready_fence.reset();  // Drop the refcount.
1178                 ready_frame.input_frames.clear();  // Drop the refcounts.
1179                 has_current_frame = true;
1180                 has_ready_frame = false;
1181         }
1182
1183         *frame = current_frame;
1184         return true;
1185 }
1186
1187 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1188 {
1189         new_frame_ready_callback = callback;
1190         has_new_frame_ready_callback = true;
1191 }