]> git.sesse.net Git - nageru/blob - mixer.cpp
efd4952b7e565f379128673e11f2a7089d46c644
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30
31 #include "bmusb/bmusb.h"
32 #include "context.h"
33 #include "decklink_capture.h"
34 #include "defs.h"
35 #include "flags.h"
36 #include "quicksync_encoder.h"
37 #include "pbo_frame_allocator.h"
38 #include "ref_counted_gl_sync.h"
39 #include "timebase.h"
40
41 class QOpenGLContext;
42
43 using namespace movit;
44 using namespace std;
45 using namespace std::placeholders;
46
47 Mixer *global_mixer = nullptr;
48
49 namespace {
50
51 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
52 {
53         assert(in_channels >= out_channels);
54         for (size_t i = 0; i < num_samples; ++i) {
55                 for (size_t j = 0; j < out_channels; ++j) {
56                         uint32_t s1 = *src++;
57                         uint32_t s2 = *src++;
58                         uint32_t s3 = *src++;
59                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
60                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
61                 }
62                 src += 3 * (in_channels - out_channels);
63         }
64 }
65
66 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
67 {
68         assert(in_channels >= out_channels);
69         for (size_t i = 0; i < num_samples; ++i) {
70                 for (size_t j = 0; j < out_channels; ++j) {
71                         // Note: Assumes little-endian.
72                         int32_t s = *(int32_t *)src;
73                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
74                         src += 4;
75                 }
76                 src += 4 * (in_channels - out_channels);
77         }
78 }
79
80 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
81 {
82         if (interlaced) {
83                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
84                         input_state->buffered_frames[card_index][frame_num] =
85                                 input_state->buffered_frames[card_index][frame_num - 1];
86                 }
87                 input_state->buffered_frames[card_index][0] = { frame, field_num };
88         } else {
89                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
90                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
91                 }
92         }
93 }
94
95 string generate_local_dump_filename(int frame)
96 {
97         time_t now = time(NULL);
98         tm now_tm;
99         localtime_r(&now, &now_tm);
100
101         char timestamp[256];
102         strftime(timestamp, sizeof(timestamp), "%F-%T%z", &now_tm);
103
104         // Use the frame number to disambiguate between two cuts starting
105         // on the same second.
106         char filename[256];
107         snprintf(filename, sizeof(filename), "%s%s-f%02d%s",
108                 LOCAL_DUMP_PREFIX, timestamp, frame % 100, LOCAL_DUMP_SUFFIX);
109         return filename;
110 }
111
112 }  // namespace
113
114 void QueueLengthPolicy::update_policy(int queue_length)
115 {
116         if (queue_length < 0) {  // Starvation.
117                 if (been_at_safe_point_since_last_starvation && safe_queue_length < 5) {
118                         ++safe_queue_length;
119                         fprintf(stderr, "Card %u: Starvation, increasing safe limit to %u frames\n",
120                                 card_index, safe_queue_length);
121                 }
122                 frames_with_at_least_one = 0;
123                 been_at_safe_point_since_last_starvation = false;
124                 return;
125         }
126         if (queue_length > 0) {
127                 if (queue_length >= int(safe_queue_length)) {
128                         been_at_safe_point_since_last_starvation = true;
129                 }
130                 if (++frames_with_at_least_one >= 50 && safe_queue_length > 0) {
131                         --safe_queue_length;
132                         fprintf(stderr, "Card %u: Spare frames for more than 50 frames, reducing safe limit to %u frames\n",
133                                 card_index, safe_queue_length);
134                         frames_with_at_least_one = 0;
135                 }
136         } else {
137                 frames_with_at_least_one = 0;
138         }
139 }
140
141 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
142         : httpd(),
143           num_cards(num_cards),
144           mixer_surface(create_surface(format)),
145           h264_encoder_surface(create_surface(format)),
146           correlation(OUTPUT_FREQUENCY),
147           level_compressor(OUTPUT_FREQUENCY),
148           limiter(OUTPUT_FREQUENCY),
149           compressor(OUTPUT_FREQUENCY)
150 {
151         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
152         check_error();
153
154         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
155         // will be halved when sampling them, and we need to compensate here.
156         movit_texel_subpixel_precision /= 2.0;
157
158         resource_pool.reset(new ResourcePool);
159         theme.reset(new Theme(global_flags.theme_filename.c_str(), resource_pool.get(), num_cards));
160         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
161                 output_channel[i].parent = this;
162         }
163
164         ImageFormat inout_format;
165         inout_format.color_space = COLORSPACE_sRGB;
166         inout_format.gamma_curve = GAMMA_sRGB;
167
168         // Display chain; shows the live output produced by the main chain (its RGBA version).
169         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
170         check_error();
171         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
172         display_chain->add_input(display_input);
173         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
174         display_chain->set_dither_bits(0);  // Don't bother.
175         display_chain->finalize();
176
177         quicksync_encoder.reset(new QuickSyncEncoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
178         quicksync_encoder->open_output_file(generate_local_dump_filename(/*frame=*/0).c_str());
179
180         // Start listening for clients only once H264Encoder has written its header, if any.
181         httpd.start(9095);
182
183         // First try initializing the PCI devices, then USB, until we have the desired number of cards.
184         unsigned num_pci_devices = 0, num_usb_devices = 0;
185         unsigned card_index = 0;
186
187         IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
188         if (decklink_iterator != nullptr) {
189                 for ( ; card_index < num_cards; ++card_index) {
190                         IDeckLink *decklink;
191                         if (decklink_iterator->Next(&decklink) != S_OK) {
192                                 break;
193                         }
194
195                         configure_card(card_index, format, new DeckLinkCapture(decklink, card_index));
196                         ++num_pci_devices;
197                 }
198                 decklink_iterator->Release();
199                 fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
200         } else {
201                 fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
202         }
203         for ( ; card_index < num_cards; ++card_index) {
204                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices));
205                 ++num_usb_devices;
206         }
207
208         if (num_usb_devices > 0) {
209                 BMUSBCapture::start_bm_thread();
210         }
211
212         for (card_index = 0; card_index < num_cards; ++card_index) {
213                 cards[card_index].queue_length_policy.reset(card_index);
214                 cards[card_index].capture->start_bm_capture();
215         }
216
217         // Set up stuff for NV12 conversion.
218
219         // Cb/Cr shader.
220         string cbcr_vert_shader =
221                 "#version 130 \n"
222                 " \n"
223                 "in vec2 position; \n"
224                 "in vec2 texcoord; \n"
225                 "out vec2 tc0; \n"
226                 "uniform vec2 foo_chroma_offset_0; \n"
227                 " \n"
228                 "void main() \n"
229                 "{ \n"
230                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
231                 "    // \n"
232                 "    //   2.000  0.000  0.000 -1.000 \n"
233                 "    //   0.000  2.000  0.000 -1.000 \n"
234                 "    //   0.000  0.000 -2.000 -1.000 \n"
235                 "    //   0.000  0.000  0.000  1.000 \n"
236                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
237                 "    vec2 flipped_tc = texcoord; \n"
238                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
239                 "} \n";
240         string cbcr_frag_shader =
241                 "#version 130 \n"
242                 "in vec2 tc0; \n"
243                 "uniform sampler2D cbcr_tex; \n"
244                 "out vec4 FragColor; \n"
245                 "void main() { \n"
246                 "    FragColor = texture(cbcr_tex, tc0); \n"
247                 "} \n";
248         vector<string> frag_shader_outputs;
249         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
250
251         float vertices[] = {
252                 0.0f, 2.0f,
253                 0.0f, 0.0f,
254                 2.0f, 0.0f
255         };
256         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
257         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
258         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
259
260         r128.init(2, OUTPUT_FREQUENCY);
261         r128.integr_start();
262
263         locut.init(FILTER_HPF, 2);
264
265         // If --flat-audio is given, turn off everything that messes with the sound,
266         // except the final makeup gain.
267         if (global_flags.flat_audio) {
268                 set_locut_enabled(false);
269                 set_limiter_enabled(false);
270                 set_compressor_enabled(false);
271         }
272
273         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
274         // and there's a limit to how important the peak meter is.
275         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
276
277         alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
278 }
279
280 Mixer::~Mixer()
281 {
282         resource_pool->release_glsl_program(cbcr_program_num);
283         glDeleteBuffers(1, &cbcr_vbo);
284         BMUSBCapture::stop_bm_thread();
285
286         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
287                 {
288                         unique_lock<mutex> lock(bmusb_mutex);
289                         cards[card_index].should_quit = true;  // Unblock thread.
290                         cards[card_index].new_frames_changed.notify_all();
291                 }
292                 cards[card_index].capture->stop_dequeue_thread();
293         }
294
295         quicksync_encoder.reset(nullptr);
296 }
297
298 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
299 {
300         printf("Configuring card %d...\n", card_index);
301
302         CaptureCard *card = &cards[card_index];
303         card->capture = capture;
304         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
305         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
306         card->capture->set_video_frame_allocator(card->frame_allocator.get());
307         card->surface = create_surface(format);
308         card->capture->set_dequeue_thread_callbacks(
309                 [card]{
310                         eglBindAPI(EGL_OPENGL_API);
311                         card->context = create_context(card->surface);
312                         if (!make_current(card->context, card->surface)) {
313                                 printf("failed to create bmusb context\n");
314                                 exit(1);
315                         }
316                 },
317                 [this]{
318                         resource_pool->clean_context();
319                 });
320         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
321         card->capture->configure_card();
322 }
323
324
325 namespace {
326
327 int unwrap_timecode(uint16_t current_wrapped, int last)
328 {
329         uint16_t last_wrapped = last & 0xffff;
330         if (current_wrapped > last_wrapped) {
331                 return (last & ~0xffff) | current_wrapped;
332         } else {
333                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
334         }
335 }
336
337 float find_peak(const float *samples, size_t num_samples)
338 {
339         float m = fabs(samples[0]);
340         for (size_t i = 1; i < num_samples; ++i) {
341                 m = max(m, fabs(samples[i]));
342         }
343         return m;
344 }
345
346 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
347 {
348         size_t num_samples = in.size() / 2;
349         out_l->resize(num_samples);
350         out_r->resize(num_samples);
351
352         const float *inptr = in.data();
353         float *lptr = &(*out_l)[0];
354         float *rptr = &(*out_r)[0];
355         for (size_t i = 0; i < num_samples; ++i) {
356                 *lptr++ = *inptr++;
357                 *rptr++ = *inptr++;
358         }
359 }
360
361 }  // namespace
362
363 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
364                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
365                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
366 {
367         CaptureCard *card = &cards[card_index];
368
369         if (is_mode_scanning[card_index]) {
370                 if (video_format.has_signal) {
371                         // Found a stable signal, so stop scanning.
372                         is_mode_scanning[card_index] = false;
373                 } else {
374                         static constexpr double switch_time_s = 0.5;  // Should be enough time for the signal to stabilize.
375                         timespec now;
376                         clock_gettime(CLOCK_MONOTONIC, &now);
377                         double sec_since_last_switch = (now.tv_sec - last_mode_scan_change[card_index].tv_sec) +
378                                 1e-9 * (now.tv_nsec - last_mode_scan_change[card_index].tv_nsec);
379                         if (sec_since_last_switch > switch_time_s) {
380                                 // It isn't this mode; try the next one.
381                                 mode_scanlist_index[card_index]++;
382                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
383                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
384                                 last_mode_scan_change[card_index] = now;
385                         }
386                 }
387         }
388
389         int64_t frame_length = int64_t(TIMEBASE * video_format.frame_rate_den) / video_format.frame_rate_nom;
390
391         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
392         if (num_samples > OUTPUT_FREQUENCY / 10) {
393                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
394                         card_index, int(audio_frame.len), int(audio_offset),
395                         timecode, int(video_frame.len), int(video_offset), video_format.id);
396                 if (video_frame.owner) {
397                         video_frame.owner->release_frame(video_frame);
398                 }
399                 if (audio_frame.owner) {
400                         audio_frame.owner->release_frame(audio_frame);
401                 }
402                 return;
403         }
404
405         int64_t local_pts = card->next_local_pts;
406         int dropped_frames = 0;
407         if (card->last_timecode != -1) {
408                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
409         }
410
411         // Convert the audio to stereo fp32 and add it.
412         vector<float> audio;
413         audio.resize(num_samples * 2);
414         switch (audio_format.bits_per_sample) {
415         case 0:
416                 assert(num_samples == 0);
417                 break;
418         case 24:
419                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
420                 break;
421         case 32:
422                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
423                 break;
424         default:
425                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
426                 assert(false);
427         }
428
429         // Add the audio.
430         {
431                 unique_lock<mutex> lock(card->audio_mutex);
432
433                 // Number of samples per frame if we need to insert silence.
434                 // (Could be nonintegral, but resampling will save us then.)
435                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
436
437                 if (dropped_frames > MAX_FPS * 2) {
438                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
439                                 card_index, card->last_timecode, timecode);
440                         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
441                         dropped_frames = 0;
442                 } else if (dropped_frames > 0) {
443                         // Insert silence as needed.
444                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
445                                 card_index, dropped_frames, timecode);
446                         vector<float> silence(silence_samples * 2, 0.0f);
447                         for (int i = 0; i < dropped_frames; ++i) {
448                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
449                                 // Note that if the format changed in the meantime, we have
450                                 // no way of detecting that; we just have to assume the frame length
451                                 // is always the same.
452                                 local_pts += frame_length;
453                         }
454                 }
455                 if (num_samples == 0) {
456                         audio.resize(silence_samples * 2);
457                         num_samples = silence_samples;
458                 }
459                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
460                 card->next_local_pts = local_pts + frame_length;
461         }
462
463         card->last_timecode = timecode;
464
465         // Done with the audio, so release it.
466         if (audio_frame.owner) {
467                 audio_frame.owner->release_frame(audio_frame);
468         }
469
470         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
471         if (video_frame.len - video_offset == 0 ||
472             video_frame.len - video_offset != expected_length) {
473                 if (video_frame.len != 0) {
474                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
475                                 card_index, video_frame.len - video_offset, expected_length);
476                 }
477                 if (video_frame.owner) {
478                         video_frame.owner->release_frame(video_frame);
479                 }
480
481                 // Still send on the information that we _had_ a frame, even though it's corrupted,
482                 // so that pts can go up accordingly.
483                 {
484                         unique_lock<mutex> lock(bmusb_mutex);
485                         CaptureCard::NewFrame new_frame;
486                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
487                         new_frame.length = frame_length;
488                         new_frame.interlaced = false;
489                         new_frame.dropped_frames = dropped_frames;
490                         card->new_frames.push(move(new_frame));
491                         card->new_frames_changed.notify_all();
492                 }
493                 return;
494         }
495
496         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
497
498         unsigned num_fields = video_format.interlaced ? 2 : 1;
499         timespec frame_upload_start;
500         if (video_format.interlaced) {
501                 // Send the two fields along as separate frames; the other side will need to add
502                 // a deinterlacer to actually get this right.
503                 assert(video_format.height % 2 == 0);
504                 video_format.height /= 2;
505                 assert(frame_length % 2 == 0);
506                 frame_length /= 2;
507                 num_fields = 2;
508                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
509         }
510         userdata->last_interlaced = video_format.interlaced;
511         userdata->last_has_signal = video_format.has_signal;
512         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
513         userdata->last_frame_rate_den = video_format.frame_rate_den;
514         RefCountedFrame frame(video_frame);
515
516         // Upload the textures.
517         size_t cbcr_width = video_format.width / 2;
518         size_t cbcr_offset = video_offset / 2;
519         size_t y_offset = video_frame.size / 2 + video_offset / 2;
520
521         for (unsigned field = 0; field < num_fields; ++field) {
522                 unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
523
524                 if (userdata->tex_y[field] == 0 ||
525                     userdata->tex_cbcr[field] == 0 ||
526                     video_format.width != userdata->last_width[field] ||
527                     video_format.height != userdata->last_height[field]) {
528                         // We changed resolution since last use of this texture, so we need to create
529                         // a new object. Note that this each card has its own PBOFrameAllocator,
530                         // we don't need to worry about these flip-flopping between resolutions.
531                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
532                         check_error();
533                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
534                         check_error();
535                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
536                         check_error();
537                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
538                         check_error();
539                         userdata->last_width[field] = video_format.width;
540                         userdata->last_height[field] = video_format.height;
541                 }
542
543                 GLuint pbo = userdata->pbo;
544                 check_error();
545                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
546                 check_error();
547
548                 size_t field_y_start = y_offset + video_format.width * field_start_line;
549                 size_t field_cbcr_start = cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t);
550
551                 if (global_flags.flush_pbos) {
552                         glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_y_start, video_format.width * video_format.height);
553                         check_error();
554                         glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_cbcr_start, cbcr_width * video_format.height * sizeof(uint16_t));
555                         check_error();
556                 }
557
558                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
559                 check_error();
560                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_cbcr_start));
561                 check_error();
562                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
563                 check_error();
564                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_y_start));
565                 check_error();
566                 glBindTexture(GL_TEXTURE_2D, 0);
567                 check_error();
568                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
569                 check_error();
570                 RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
571                 check_error();
572                 assert(fence.get() != nullptr);
573                 glFlush();  // Make sure the main thread doesn't have to wait until we push out enough frames to make a new command buffer.
574                 check_error();
575
576                 if (field == 1) {
577                         // Don't upload the second field as fast as we can; wait until
578                         // the field time has approximately passed. (Otherwise, we could
579                         // get timing jitter against the other sources, and possibly also
580                         // against the video display, although the latter is not as critical.)
581                         // This requires our system clock to be reasonably close to the
582                         // video clock, but that's not an unreasonable assumption.
583                         timespec second_field_start;
584                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
585                                 frame_length * 1000000000 / TIMEBASE;
586                         second_field_start.tv_sec = frame_upload_start.tv_sec +
587                                 second_field_start.tv_nsec / 1000000000;
588                         second_field_start.tv_nsec %= 1000000000;
589
590                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
591                                                &second_field_start, nullptr) == -1 &&
592                                errno == EINTR) ;
593                 }
594
595                 {
596                         unique_lock<mutex> lock(bmusb_mutex);
597                         CaptureCard::NewFrame new_frame;
598                         new_frame.frame = frame;
599                         new_frame.length = frame_length;
600                         new_frame.field = field;
601                         new_frame.interlaced = video_format.interlaced;
602                         new_frame.ready_fence = fence;
603                         new_frame.dropped_frames = dropped_frames;
604                         card->new_frames.push(move(new_frame));
605                         card->new_frames_changed.notify_all();
606                 }
607         }
608 }
609
610 void Mixer::thread_func()
611 {
612         eglBindAPI(EGL_OPENGL_API);
613         QOpenGLContext *context = create_context(mixer_surface);
614         if (!make_current(context, mixer_surface)) {
615                 printf("oops\n");
616                 exit(1);
617         }
618
619         struct timespec start, now;
620         clock_gettime(CLOCK_MONOTONIC, &start);
621
622         int frame = 0;
623         int stats_dropped_frames = 0;
624
625         while (!should_quit) {
626                 CaptureCard::NewFrame new_frames[MAX_CARDS];
627                 bool has_new_frame[MAX_CARDS] = { false };
628                 int num_samples[MAX_CARDS] = { 0 };
629
630                 // TODO: Add a timeout.
631                 unsigned master_card_index = theme->map_signal(master_clock_channel);
632                 assert(master_card_index < num_cards);
633
634                 get_one_frame_from_each_card(master_card_index, new_frames, has_new_frame, num_samples);
635                 schedule_audio_resampling_tasks(new_frames[master_card_index].dropped_frames, num_samples[master_card_index], new_frames[master_card_index].length);
636                 stats_dropped_frames += new_frames[master_card_index].dropped_frames;
637                 send_audio_level_callback();
638
639                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
640                         if (card_index == master_card_index || !has_new_frame[card_index]) {
641                                 continue;
642                         }
643                         if (new_frames[card_index].frame->len == 0) {
644                                 ++new_frames[card_index].dropped_frames;
645                         }
646                         if (new_frames[card_index].dropped_frames > 0) {
647                                 printf("Card %u dropped %d frames before this\n",
648                                         card_index, int(new_frames[card_index].dropped_frames));
649                         }
650                 }
651
652                 // If the first card is reporting a corrupted or otherwise dropped frame,
653                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
654                 if (new_frames[master_card_index].frame->len == 0) {
655                         ++stats_dropped_frames;
656                         pts_int += new_frames[master_card_index].length;
657                         continue;
658                 }
659
660                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
661                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
662                                 continue;
663
664                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
665                         assert(new_frame->frame != nullptr);
666                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
667                         check_error();
668
669                         // The new texture might still be uploaded,
670                         // tell the GPU to wait until it's there.
671                         if (new_frame->ready_fence) {
672                                 glWaitSync(new_frame->ready_fence.get(), /*flags=*/0, GL_TIMEOUT_IGNORED);
673                                 check_error();
674                                 new_frame->ready_fence.reset();
675                                 check_error();
676                         }
677                 }
678
679                 int64_t duration = new_frames[master_card_index].length;
680                 render_one_frame(duration);
681                 ++frame;
682                 pts_int += duration;
683
684                 clock_gettime(CLOCK_MONOTONIC, &now);
685                 double elapsed = now.tv_sec - start.tv_sec +
686                         1e-9 * (now.tv_nsec - start.tv_nsec);
687                 if (frame % 100 == 0) {
688                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
689                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
690                                 1e3 * elapsed / frame);
691                 //      chain->print_phase_timing();
692                 }
693
694                 if (should_cut.exchange(false)) {  // Test and clear.
695                         string filename = generate_local_dump_filename(frame);
696                         printf("Starting new recording: %s\n", filename.c_str());
697                         quicksync_encoder->close_output_file();
698                         quicksync_encoder->shutdown();
699                         quicksync_encoder.reset(new QuickSyncEncoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
700                         quicksync_encoder->open_output_file(filename.c_str());
701                 }
702
703 #if 0
704                 // Reset every 100 frames, so that local variations in frame times
705                 // (especially for the first few frames, when the shaders are
706                 // compiled etc.) don't make it hard to measure for the entire
707                 // remaining duration of the program.
708                 if (frame == 10000) {
709                         frame = 0;
710                         start = now;
711                 }
712 #endif
713                 check_error();
714         }
715
716         resource_pool->clean_context();
717 }
718
719 void Mixer::get_one_frame_from_each_card(unsigned master_card_index, CaptureCard::NewFrame new_frames[MAX_CARDS], bool has_new_frame[MAX_CARDS], int num_samples[MAX_CARDS])
720 {
721         // The first card is the master timer, so wait for it to have a new frame.
722         unique_lock<mutex> lock(bmusb_mutex);
723         cards[master_card_index].new_frames_changed.wait(lock, [this, master_card_index]{ return !cards[master_card_index].new_frames.empty(); });
724
725         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
726                 CaptureCard *card = &cards[card_index];
727                 if (card->new_frames.empty()) {
728                         assert(card_index != master_card_index);
729                         card->queue_length_policy.update_policy(-1);
730                         continue;
731                 }
732                 new_frames[card_index] = move(card->new_frames.front());
733                 has_new_frame[card_index] = true;
734                 card->new_frames.pop();
735                 card->new_frames_changed.notify_all();
736
737                 int num_samples_times_timebase = OUTPUT_FREQUENCY * new_frames[card_index].length + card->fractional_samples;
738                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
739                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
740                 assert(num_samples[card_index] >= 0);
741
742                 if (card_index == master_card_index) {
743                         // We don't use the queue length policy for the master card,
744                         // but we will if it stops being the master. Thus, clear out
745                         // the policy in case we switch in the future.
746                         card->queue_length_policy.reset(card_index);
747                 } else {
748                         // If we have excess frames compared to the policy for this card,
749                         // drop frames from the head.
750                         card->queue_length_policy.update_policy(card->new_frames.size());
751                         while (card->new_frames.size() > card->queue_length_policy.get_safe_queue_length()) {
752                                 card->new_frames.pop();
753                         }
754                 }
755         }
756 }
757
758 void Mixer::schedule_audio_resampling_tasks(unsigned dropped_frames, int num_samples_per_frame, int length_per_frame)
759 {
760         // Resample the audio as needed, including from previously dropped frames.
761         assert(num_cards > 0);
762         for (unsigned frame_num = 0; frame_num < dropped_frames + 1; ++frame_num) {
763                 {
764                         // Signal to the audio thread to process this frame.
765                         unique_lock<mutex> lock(audio_mutex);
766                         audio_task_queue.push(AudioTask{pts_int, num_samples_per_frame});
767                         audio_task_queue_changed.notify_one();
768                 }
769                 if (frame_num != dropped_frames) {
770                         // For dropped frames, increase the pts. Note that if the format changed
771                         // in the meantime, we have no way of detecting that; we just have to
772                         // assume the frame length is always the same.
773                         pts_int += length_per_frame;
774                 }
775         }
776 }
777
778 void Mixer::render_one_frame(int64_t duration)
779 {
780         // Get the main chain from the theme, and set its state immediately.
781         Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
782         EffectChain *chain = theme_main_chain.chain;
783         theme_main_chain.setup_chain();
784         //theme_main_chain.chain->enable_phase_timing(true);
785
786         GLuint y_tex, cbcr_tex;
787         bool got_frame = quicksync_encoder->begin_frame(&y_tex, &cbcr_tex);
788         assert(got_frame);
789
790         // Render main chain.
791         GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
792         GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
793         GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
794         check_error();
795         chain->render_to_fbo(fbo, WIDTH, HEIGHT);
796         resource_pool->release_fbo(fbo);
797
798         subsample_chroma(cbcr_full_tex, cbcr_tex);
799         resource_pool->release_2d_texture(cbcr_full_tex);
800
801         // Set the right state for rgba_tex.
802         glBindFramebuffer(GL_FRAMEBUFFER, 0);
803         glBindTexture(GL_TEXTURE_2D, rgba_tex);
804         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
805         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
806         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
807
808         const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
809         RefCountedGLsync fence = quicksync_encoder->end_frame(pts_int + av_delay, duration, theme_main_chain.input_frames);
810
811         // The live frame just shows the RGBA texture we just rendered.
812         // It owns rgba_tex now.
813         DisplayFrame live_frame;
814         live_frame.chain = display_chain.get();
815         live_frame.setup_chain = [this, rgba_tex]{
816                 display_input->set_texture_num(rgba_tex);
817         };
818         live_frame.ready_fence = fence;
819         live_frame.input_frames = {};
820         live_frame.temp_textures = { rgba_tex };
821         output_channel[OUTPUT_LIVE].output_frame(live_frame);
822
823         // Set up preview and any additional channels.
824         for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
825                 DisplayFrame display_frame;
826                 Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
827                 display_frame.chain = chain.chain;
828                 display_frame.setup_chain = chain.setup_chain;
829                 display_frame.ready_fence = fence;
830                 display_frame.input_frames = chain.input_frames;
831                 display_frame.temp_textures = {};
832                 output_channel[i].output_frame(display_frame);
833         }
834 }
835
836 void Mixer::send_audio_level_callback()
837 {
838         if (audio_level_callback == nullptr) {
839                 return;
840         }
841
842         unique_lock<mutex> lock(compressor_mutex);
843         double loudness_s = r128.loudness_S();
844         double loudness_i = r128.integrated();
845         double loudness_range_low = r128.range_min();
846         double loudness_range_high = r128.range_max();
847
848         audio_level_callback(loudness_s, 20.0 * log10(peak),
849                 loudness_i, loudness_range_low, loudness_range_high,
850                 gain_staging_db, 20.0 * log10(final_makeup_gain),
851                 correlation.get_correlation());
852 }
853
854 void Mixer::audio_thread_func()
855 {
856         while (!should_quit) {
857                 AudioTask task;
858
859                 {
860                         unique_lock<mutex> lock(audio_mutex);
861                         audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
862                         task = audio_task_queue.front();
863                         audio_task_queue.pop();
864                 }
865
866                 process_audio_one_frame(task.pts_int, task.num_samples);
867         }
868 }
869
870 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
871 {
872         vector<float> samples_card;
873         vector<float> samples_out;
874
875         // TODO: Allow mixing audio from several sources.
876         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
877         assert(selected_audio_card < num_cards);
878
879         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
880                 samples_card.resize(num_samples * 2);
881                 {
882                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
883                         if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
884                                 printf("Card %d reported previous underrun.\n", card_index);
885                         }
886                 }
887                 if (card_index == selected_audio_card) {
888                         samples_out = move(samples_card);
889                 }
890         }
891
892         // Cut away everything under 120 Hz (or whatever the cutoff is);
893         // we don't need it for voice, and it will reduce headroom
894         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
895         // should be dampened.)
896         if (locut_enabled) {
897                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
898         }
899
900         // Apply a level compressor to get the general level right.
901         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
902         // (or more precisely, near it, since we don't use infinite ratio),
903         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
904         // entirely arbitrary, but from practical tests with speech, it seems to
905         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
906         {
907                 unique_lock<mutex> lock(compressor_mutex);
908                 if (level_compressor_enabled) {
909                         float threshold = 0.01f;   // -40 dBFS.
910                         float ratio = 20.0f;
911                         float attack_time = 0.5f;
912                         float release_time = 20.0f;
913                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
914                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
915                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
916                 } else {
917                         // Just apply the gain we already had.
918                         float g = pow(10.0f, gain_staging_db / 20.0f);
919                         for (size_t i = 0; i < samples_out.size(); ++i) {
920                                 samples_out[i] *= g;
921                         }
922                 }
923         }
924
925 #if 0
926         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
927                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
928                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
929                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
930 #endif
931
932 //      float limiter_att, compressor_att;
933
934         // The real compressor.
935         if (compressor_enabled) {
936                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
937                 float ratio = 20.0f;
938                 float attack_time = 0.005f;
939                 float release_time = 0.040f;
940                 float makeup_gain = 2.0f;  // +6 dB.
941                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
942 //              compressor_att = compressor.get_attenuation();
943         }
944
945         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
946         // Note that since ratio is not infinite, we could go slightly higher than this.
947         if (limiter_enabled) {
948                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
949                 float ratio = 30.0f;
950                 float attack_time = 0.0f;  // Instant.
951                 float release_time = 0.020f;
952                 float makeup_gain = 1.0f;  // 0 dB.
953                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
954 //              limiter_att = limiter.get_attenuation();
955         }
956
957 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
958
959         // Upsample 4x to find interpolated peak.
960         peak_resampler.inp_data = samples_out.data();
961         peak_resampler.inp_count = samples_out.size() / 2;
962
963         vector<float> interpolated_samples_out;
964         interpolated_samples_out.resize(samples_out.size());
965         while (peak_resampler.inp_count > 0) {  // About four iterations.
966                 peak_resampler.out_data = &interpolated_samples_out[0];
967                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
968                 peak_resampler.process();
969                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
970                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
971                 peak_resampler.out_data = nullptr;
972         }
973
974         // At this point, we are most likely close to +0 LU, but all of our
975         // measurements have been on raw sample values, not R128 values.
976         // So we have a final makeup gain to get us to +0 LU; the gain
977         // adjustments required should be relatively small, and also, the
978         // offset shouldn't change much (only if the type of audio changes
979         // significantly). Thus, we shoot for updating this value basically
980         // “whenever we process buffers”, since the R128 calculation isn't exactly
981         // something we get out per-sample.
982         //
983         // Note that there's a feedback loop here, so we choose a very slow filter
984         // (half-time of 100 seconds).
985         double target_loudness_factor, alpha;
986         {
987                 unique_lock<mutex> lock(compressor_mutex);
988                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
989                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
990                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
991
992                 // If we're outside +/- 5 LU uncorrected, we don't count it as
993                 // a normal signal (probably silence) and don't change the
994                 // correction factor; just apply what we already have.
995                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
996                         alpha = 0.0;
997                 } else {
998                         // Formula adapted from
999                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
1000                         const double half_time_s = 100.0;
1001                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
1002                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
1003                 }
1004
1005                 double m = final_makeup_gain;
1006                 for (size_t i = 0; i < samples_out.size(); i += 2) {
1007                         samples_out[i + 0] *= m;
1008                         samples_out[i + 1] *= m;
1009                         m += (target_loudness_factor - m) * alpha;
1010                 }
1011                 final_makeup_gain = m;
1012         }
1013
1014         // Find R128 levels and L/R correlation.
1015         vector<float> left, right;
1016         deinterleave_samples(samples_out, &left, &right);
1017         float *ptrs[] = { left.data(), right.data() };
1018         {
1019                 unique_lock<mutex> lock(compressor_mutex);
1020                 r128.process(left.size(), ptrs);
1021                 correlation.process_samples(samples_out);
1022         }
1023
1024         // Send the samples to the sound card.
1025         if (alsa) {
1026                 alsa->write(samples_out);
1027         }
1028
1029         // And finally add them to the output.
1030         quicksync_encoder->add_audio(frame_pts_int, move(samples_out));
1031 }
1032
1033 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
1034 {
1035         GLuint vao;
1036         glGenVertexArrays(1, &vao);
1037         check_error();
1038
1039         glBindVertexArray(vao);
1040         check_error();
1041
1042         // Extract Cb/Cr.
1043         GLuint fbo = resource_pool->create_fbo(dst_tex);
1044         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1045         glViewport(0, 0, WIDTH/2, HEIGHT/2);
1046         check_error();
1047
1048         glUseProgram(cbcr_program_num);
1049         check_error();
1050
1051         glActiveTexture(GL_TEXTURE0);
1052         check_error();
1053         glBindTexture(GL_TEXTURE_2D, src_tex);
1054         check_error();
1055         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1056         check_error();
1057         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1058         check_error();
1059         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1060         check_error();
1061
1062         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
1063         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
1064
1065         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
1066         check_error();
1067
1068         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1069                 glEnableVertexAttribArray(attr_index);
1070                 check_error();
1071                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1072                 check_error();
1073         }
1074
1075         glDrawArrays(GL_TRIANGLES, 0, 3);
1076         check_error();
1077
1078         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1079                 glDisableVertexAttribArray(attr_index);
1080                 check_error();
1081         }
1082
1083         glUseProgram(0);
1084         check_error();
1085         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1086         check_error();
1087
1088         resource_pool->release_fbo(fbo);
1089         glDeleteVertexArrays(1, &vao);
1090 }
1091
1092 void Mixer::release_display_frame(DisplayFrame *frame)
1093 {
1094         for (GLuint texnum : frame->temp_textures) {
1095                 resource_pool->release_2d_texture(texnum);
1096         }
1097         frame->temp_textures.clear();
1098         frame->ready_fence.reset();
1099         frame->input_frames.clear();
1100 }
1101
1102 void Mixer::start()
1103 {
1104         mixer_thread = thread(&Mixer::thread_func, this);
1105         audio_thread = thread(&Mixer::audio_thread_func, this);
1106 }
1107
1108 void Mixer::quit()
1109 {
1110         should_quit = true;
1111         mixer_thread.join();
1112         audio_thread.join();
1113 }
1114
1115 void Mixer::transition_clicked(int transition_num)
1116 {
1117         theme->transition_clicked(transition_num, pts());
1118 }
1119
1120 void Mixer::channel_clicked(int preview_num)
1121 {
1122         theme->channel_clicked(preview_num);
1123 }
1124
1125 void Mixer::reset_meters()
1126 {
1127         peak_resampler.reset();
1128         peak = 0.0f;
1129         r128.reset();
1130         r128.integr_start();
1131         correlation.reset();
1132 }
1133
1134 void Mixer::start_mode_scanning(unsigned card_index)
1135 {
1136         assert(card_index < num_cards);
1137         if (is_mode_scanning[card_index]) {
1138                 return;
1139         }
1140         is_mode_scanning[card_index] = true;
1141         mode_scanlist[card_index].clear();
1142         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
1143                 mode_scanlist[card_index].push_back(mode.first);
1144         }
1145         assert(!mode_scanlist[card_index].empty());
1146         mode_scanlist_index[card_index] = 0;
1147         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
1148         clock_gettime(CLOCK_MONOTONIC, &last_mode_scan_change[card_index]);
1149 }
1150
1151 Mixer::OutputChannel::~OutputChannel()
1152 {
1153         if (has_current_frame) {
1154                 parent->release_display_frame(&current_frame);
1155         }
1156         if (has_ready_frame) {
1157                 parent->release_display_frame(&ready_frame);
1158         }
1159 }
1160
1161 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1162 {
1163         // Store this frame for display. Remove the ready frame if any
1164         // (it was seemingly never used).
1165         {
1166                 unique_lock<mutex> lock(frame_mutex);
1167                 if (has_ready_frame) {
1168                         parent->release_display_frame(&ready_frame);
1169                 }
1170                 ready_frame = frame;
1171                 has_ready_frame = true;
1172         }
1173
1174         if (has_new_frame_ready_callback) {
1175                 new_frame_ready_callback();
1176         }
1177 }
1178
1179 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1180 {
1181         unique_lock<mutex> lock(frame_mutex);
1182         if (!has_current_frame && !has_ready_frame) {
1183                 return false;
1184         }
1185
1186         if (has_current_frame && has_ready_frame) {
1187                 // We have a new ready frame. Toss the current one.
1188                 parent->release_display_frame(&current_frame);
1189                 has_current_frame = false;
1190         }
1191         if (has_ready_frame) {
1192                 assert(!has_current_frame);
1193                 current_frame = ready_frame;
1194                 ready_frame.ready_fence.reset();  // Drop the refcount.
1195                 ready_frame.input_frames.clear();  // Drop the refcounts.
1196                 has_current_frame = true;
1197                 has_ready_frame = false;
1198         }
1199
1200         *frame = current_frame;
1201         return true;
1202 }
1203
1204 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1205 {
1206         new_frame_ready_callback = callback;
1207         has_new_frame_ready_callback = true;
1208 }
1209
1210 mutex RefCountedGLsync::fence_lock;