]> git.sesse.net Git - nageru/blob - mixer.cpp
Cleanup: Remove the last case of non-refcounted fences.
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30
31 #include "bmusb/bmusb.h"
32 #include "context.h"
33 #include "decklink_capture.h"
34 #include "defs.h"
35 #include "flags.h"
36 #include "h264encode.h"
37 #include "pbo_frame_allocator.h"
38 #include "ref_counted_gl_sync.h"
39 #include "timebase.h"
40
41 class QOpenGLContext;
42
43 using namespace movit;
44 using namespace std;
45 using namespace std::placeholders;
46
47 Mixer *global_mixer = nullptr;
48
49 namespace {
50
51 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
52 {
53         assert(in_channels >= out_channels);
54         for (size_t i = 0; i < num_samples; ++i) {
55                 for (size_t j = 0; j < out_channels; ++j) {
56                         uint32_t s1 = *src++;
57                         uint32_t s2 = *src++;
58                         uint32_t s3 = *src++;
59                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
60                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
61                 }
62                 src += 3 * (in_channels - out_channels);
63         }
64 }
65
66 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
67 {
68         assert(in_channels >= out_channels);
69         for (size_t i = 0; i < num_samples; ++i) {
70                 for (size_t j = 0; j < out_channels; ++j) {
71                         // Note: Assumes little-endian.
72                         int32_t s = *(int32_t *)src;
73                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
74                         src += 4;
75                 }
76                 src += 4 * (in_channels - out_channels);
77         }
78 }
79
80 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
81 {
82         if (interlaced) {
83                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
84                         input_state->buffered_frames[card_index][frame_num] =
85                                 input_state->buffered_frames[card_index][frame_num - 1];
86                 }
87                 input_state->buffered_frames[card_index][0] = { frame, field_num };
88         } else {
89                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
90                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
91                 }
92         }
93 }
94
95 string generate_local_dump_filename(int frame)
96 {
97         time_t now = time(NULL);
98         tm now_tm;
99         localtime_r(&now, &now_tm);
100
101         char timestamp[256];
102         strftime(timestamp, sizeof(timestamp), "%F-%T%z", &now_tm);
103
104         // Use the frame number to disambiguate between two cuts starting
105         // on the same second.
106         char filename[256];
107         snprintf(filename, sizeof(filename), "%s%s-f%02d%s",
108                 LOCAL_DUMP_PREFIX, timestamp, frame % 100, LOCAL_DUMP_SUFFIX);
109         return filename;
110 }
111
112 }  // namespace
113
114 void QueueLengthPolicy::update_policy(int queue_length)
115 {
116         if (queue_length < 0) {  // Starvation.
117                 if (safe_queue_length < 5) {
118                         ++safe_queue_length;
119                         fprintf(stderr, "Card %u: Starvation, increasing safe limit to %u frames\n",
120                                 card_index, safe_queue_length);
121                 }
122                 frames_with_at_least_one = 0;
123                 return;
124         }
125         if (queue_length > 0) {
126                 if (++frames_with_at_least_one >= 50 && safe_queue_length > 0) {
127                         --safe_queue_length;
128                         fprintf(stderr, "Card %u: Spare frames for more than 50 frames, reducing safe limit to %u frames\n",
129                                 card_index, safe_queue_length);
130                         frames_with_at_least_one = 0;
131                 }
132         } else {
133                 frames_with_at_least_one = 0;
134         }
135 }
136
137 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
138         : httpd(WIDTH, HEIGHT),
139           num_cards(num_cards),
140           mixer_surface(create_surface(format)),
141           h264_encoder_surface(create_surface(format)),
142           correlation(OUTPUT_FREQUENCY),
143           level_compressor(OUTPUT_FREQUENCY),
144           limiter(OUTPUT_FREQUENCY),
145           compressor(OUTPUT_FREQUENCY)
146 {
147         httpd.open_output_file(generate_local_dump_filename(/*frame=*/0).c_str());
148         httpd.start(9095);
149
150         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
151         check_error();
152
153         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
154         // will be halved when sampling them, and we need to compensate here.
155         movit_texel_subpixel_precision /= 2.0;
156
157         resource_pool.reset(new ResourcePool);
158         theme.reset(new Theme("theme.lua", resource_pool.get(), num_cards));
159         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
160                 output_channel[i].parent = this;
161         }
162
163         ImageFormat inout_format;
164         inout_format.color_space = COLORSPACE_sRGB;
165         inout_format.gamma_curve = GAMMA_sRGB;
166
167         // Display chain; shows the live output produced by the main chain (its RGBA version).
168         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
169         check_error();
170         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
171         display_chain->add_input(display_input);
172         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
173         display_chain->set_dither_bits(0);  // Don't bother.
174         display_chain->finalize();
175
176         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
177
178         // First try initializing the PCI devices, then USB, until we have the desired number of cards.
179         unsigned num_pci_devices = 0, num_usb_devices = 0;
180         unsigned card_index = 0;
181
182         IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
183         if (decklink_iterator != nullptr) {
184                 for ( ; card_index < num_cards; ++card_index) {
185                         IDeckLink *decklink;
186                         if (decklink_iterator->Next(&decklink) != S_OK) {
187                                 break;
188                         }
189
190                         configure_card(card_index, format, new DeckLinkCapture(decklink, card_index));
191                         ++num_pci_devices;
192                 }
193                 decklink_iterator->Release();
194                 fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
195         } else {
196                 fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
197         }
198         for ( ; card_index < num_cards; ++card_index) {
199                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices));
200                 ++num_usb_devices;
201         }
202
203         if (num_usb_devices > 0) {
204                 BMUSBCapture::start_bm_thread();
205         }
206
207         for (card_index = 0; card_index < num_cards; ++card_index) {
208                 cards[card_index].queue_length_policy.reset(card_index);
209                 cards[card_index].capture->start_bm_capture();
210         }
211
212         // Set up stuff for NV12 conversion.
213
214         // Cb/Cr shader.
215         string cbcr_vert_shader =
216                 "#version 130 \n"
217                 " \n"
218                 "in vec2 position; \n"
219                 "in vec2 texcoord; \n"
220                 "out vec2 tc0; \n"
221                 "uniform vec2 foo_chroma_offset_0; \n"
222                 " \n"
223                 "void main() \n"
224                 "{ \n"
225                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
226                 "    // \n"
227                 "    //   2.000  0.000  0.000 -1.000 \n"
228                 "    //   0.000  2.000  0.000 -1.000 \n"
229                 "    //   0.000  0.000 -2.000 -1.000 \n"
230                 "    //   0.000  0.000  0.000  1.000 \n"
231                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
232                 "    vec2 flipped_tc = texcoord; \n"
233                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
234                 "} \n";
235         string cbcr_frag_shader =
236                 "#version 130 \n"
237                 "in vec2 tc0; \n"
238                 "uniform sampler2D cbcr_tex; \n"
239                 "out vec4 FragColor; \n"
240                 "void main() { \n"
241                 "    FragColor = texture(cbcr_tex, tc0); \n"
242                 "} \n";
243         vector<string> frag_shader_outputs;
244         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
245
246         float vertices[] = {
247                 0.0f, 2.0f,
248                 0.0f, 0.0f,
249                 2.0f, 0.0f
250         };
251         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
252         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
253         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
254
255         r128.init(2, OUTPUT_FREQUENCY);
256         r128.integr_start();
257
258         locut.init(FILTER_HPF, 2);
259
260         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
261         // and there's a limit to how important the peak meter is.
262         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
263
264         alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
265 }
266
267 Mixer::~Mixer()
268 {
269         resource_pool->release_glsl_program(cbcr_program_num);
270         glDeleteBuffers(1, &cbcr_vbo);
271         BMUSBCapture::stop_bm_thread();
272
273         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
274                 {
275                         unique_lock<mutex> lock(bmusb_mutex);
276                         cards[card_index].should_quit = true;  // Unblock thread.
277                         cards[card_index].new_frames_changed.notify_all();
278                 }
279                 cards[card_index].capture->stop_dequeue_thread();
280         }
281
282         h264_encoder.reset(nullptr);
283 }
284
285 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
286 {
287         printf("Configuring card %d...\n", card_index);
288
289         CaptureCard *card = &cards[card_index];
290         card->capture = capture;
291         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
292         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
293         card->capture->set_video_frame_allocator(card->frame_allocator.get());
294         card->surface = create_surface(format);
295         card->capture->set_dequeue_thread_callbacks(
296                 [card]{
297                         eglBindAPI(EGL_OPENGL_API);
298                         card->context = create_context(card->surface);
299                         if (!make_current(card->context, card->surface)) {
300                                 printf("failed to create bmusb context\n");
301                                 exit(1);
302                         }
303                 },
304                 [this]{
305                         resource_pool->clean_context();
306                 });
307         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
308         card->capture->configure_card();
309 }
310
311
312 namespace {
313
314 int unwrap_timecode(uint16_t current_wrapped, int last)
315 {
316         uint16_t last_wrapped = last & 0xffff;
317         if (current_wrapped > last_wrapped) {
318                 return (last & ~0xffff) | current_wrapped;
319         } else {
320                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
321         }
322 }
323
324 float find_peak(const float *samples, size_t num_samples)
325 {
326         float m = fabs(samples[0]);
327         for (size_t i = 1; i < num_samples; ++i) {
328                 m = max(m, fabs(samples[i]));
329         }
330         return m;
331 }
332
333 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
334 {
335         size_t num_samples = in.size() / 2;
336         out_l->resize(num_samples);
337         out_r->resize(num_samples);
338
339         const float *inptr = in.data();
340         float *lptr = &(*out_l)[0];
341         float *rptr = &(*out_r)[0];
342         for (size_t i = 0; i < num_samples; ++i) {
343                 *lptr++ = *inptr++;
344                 *rptr++ = *inptr++;
345         }
346 }
347
348 }  // namespace
349
350 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
351                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
352                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
353 {
354         CaptureCard *card = &cards[card_index];
355
356         if (is_mode_scanning[card_index]) {
357                 if (video_format.has_signal) {
358                         // Found a stable signal, so stop scanning.
359                         is_mode_scanning[card_index] = false;
360                 } else {
361                         static constexpr double switch_time_s = 0.5;  // Should be enough time for the signal to stabilize.
362                         timespec now;
363                         clock_gettime(CLOCK_MONOTONIC, &now);
364                         double sec_since_last_switch = (now.tv_sec - last_mode_scan_change[card_index].tv_sec) +
365                                 1e-9 * (now.tv_nsec - last_mode_scan_change[card_index].tv_nsec);
366                         if (sec_since_last_switch > switch_time_s) {
367                                 // It isn't this mode; try the next one.
368                                 mode_scanlist_index[card_index]++;
369                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
370                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
371                                 last_mode_scan_change[card_index] = now;
372                         }
373                 }
374         }
375
376         int64_t frame_length = int64_t(TIMEBASE * video_format.frame_rate_den) / video_format.frame_rate_nom;
377
378         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
379         if (num_samples > OUTPUT_FREQUENCY / 10) {
380                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
381                         card_index, int(audio_frame.len), int(audio_offset),
382                         timecode, int(video_frame.len), int(video_offset), video_format.id);
383                 if (video_frame.owner) {
384                         video_frame.owner->release_frame(video_frame);
385                 }
386                 if (audio_frame.owner) {
387                         audio_frame.owner->release_frame(audio_frame);
388                 }
389                 return;
390         }
391
392         int64_t local_pts = card->next_local_pts;
393         int dropped_frames = 0;
394         if (card->last_timecode != -1) {
395                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
396         }
397
398         // Convert the audio to stereo fp32 and add it.
399         vector<float> audio;
400         audio.resize(num_samples * 2);
401         switch (audio_format.bits_per_sample) {
402         case 0:
403                 assert(num_samples == 0);
404                 break;
405         case 24:
406                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
407                 break;
408         case 32:
409                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
410                 break;
411         default:
412                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
413                 assert(false);
414         }
415
416         // Add the audio.
417         {
418                 unique_lock<mutex> lock(card->audio_mutex);
419
420                 // Number of samples per frame if we need to insert silence.
421                 // (Could be nonintegral, but resampling will save us then.)
422                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
423
424                 if (dropped_frames > MAX_FPS * 2) {
425                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
426                                 card_index, card->last_timecode, timecode);
427                         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
428                         dropped_frames = 0;
429                 } else if (dropped_frames > 0) {
430                         // Insert silence as needed.
431                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
432                                 card_index, dropped_frames, timecode);
433                         vector<float> silence(silence_samples * 2, 0.0f);
434                         for (int i = 0; i < dropped_frames; ++i) {
435                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
436                                 // Note that if the format changed in the meantime, we have
437                                 // no way of detecting that; we just have to assume the frame length
438                                 // is always the same.
439                                 local_pts += frame_length;
440                         }
441                 }
442                 if (num_samples == 0) {
443                         audio.resize(silence_samples * 2);
444                         num_samples = silence_samples;
445                 }
446                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
447                 card->next_local_pts = local_pts + frame_length;
448         }
449
450         card->last_timecode = timecode;
451
452         // Done with the audio, so release it.
453         if (audio_frame.owner) {
454                 audio_frame.owner->release_frame(audio_frame);
455         }
456
457         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
458         if (video_frame.len - video_offset == 0 ||
459             video_frame.len - video_offset != expected_length) {
460                 if (video_frame.len != 0) {
461                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
462                                 card_index, video_frame.len - video_offset, expected_length);
463                 }
464                 if (video_frame.owner) {
465                         video_frame.owner->release_frame(video_frame);
466                 }
467
468                 // Still send on the information that we _had_ a frame, even though it's corrupted,
469                 // so that pts can go up accordingly.
470                 {
471                         unique_lock<mutex> lock(bmusb_mutex);
472                         CaptureCard::NewFrame new_frame;
473                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
474                         new_frame.length = frame_length;
475                         new_frame.interlaced = false;
476                         new_frame.dropped_frames = dropped_frames;
477                         card->new_frames.push(move(new_frame));
478                         card->new_frames_changed.notify_all();
479                 }
480                 return;
481         }
482
483         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
484
485         unsigned num_fields = video_format.interlaced ? 2 : 1;
486         timespec frame_upload_start;
487         if (video_format.interlaced) {
488                 // Send the two fields along as separate frames; the other side will need to add
489                 // a deinterlacer to actually get this right.
490                 assert(video_format.height % 2 == 0);
491                 video_format.height /= 2;
492                 assert(frame_length % 2 == 0);
493                 frame_length /= 2;
494                 num_fields = 2;
495                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
496         }
497         userdata->last_interlaced = video_format.interlaced;
498         userdata->last_has_signal = video_format.has_signal;
499         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
500         userdata->last_frame_rate_den = video_format.frame_rate_den;
501         RefCountedFrame frame(video_frame);
502
503         // Upload the textures.
504         size_t cbcr_width = video_format.width / 2;
505         size_t cbcr_offset = video_offset / 2;
506         size_t y_offset = video_frame.size / 2 + video_offset / 2;
507
508         for (unsigned field = 0; field < num_fields; ++field) {
509                 unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
510
511                 if (userdata->tex_y[field] == 0 ||
512                     userdata->tex_cbcr[field] == 0 ||
513                     video_format.width != userdata->last_width[field] ||
514                     video_format.height != userdata->last_height[field]) {
515                         // We changed resolution since last use of this texture, so we need to create
516                         // a new object. Note that this each card has its own PBOFrameAllocator,
517                         // we don't need to worry about these flip-flopping between resolutions.
518                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
519                         check_error();
520                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
521                         check_error();
522                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
523                         check_error();
524                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
525                         check_error();
526                         userdata->last_width[field] = video_format.width;
527                         userdata->last_height[field] = video_format.height;
528                 }
529
530                 GLuint pbo = userdata->pbo;
531                 check_error();
532                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
533                 check_error();
534                 glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, 0, video_frame.size);
535                 check_error();
536
537                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
538                 check_error();
539                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t)));
540                 check_error();
541                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
542                 check_error();
543                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(y_offset + video_format.width * field_start_line));
544                 check_error();
545                 glBindTexture(GL_TEXTURE_2D, 0);
546                 check_error();
547                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
548                 check_error();
549                 RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
550                 check_error();
551                 assert(fence.get() != nullptr);
552
553                 if (field == 1) {
554                         // Don't upload the second field as fast as we can; wait until
555                         // the field time has approximately passed. (Otherwise, we could
556                         // get timing jitter against the other sources, and possibly also
557                         // against the video display, although the latter is not as critical.)
558                         // This requires our system clock to be reasonably close to the
559                         // video clock, but that's not an unreasonable assumption.
560                         timespec second_field_start;
561                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
562                                 frame_length * 1000000000 / TIMEBASE;
563                         second_field_start.tv_sec = frame_upload_start.tv_sec +
564                                 second_field_start.tv_nsec / 1000000000;
565                         second_field_start.tv_nsec %= 1000000000;
566
567                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
568                                                &second_field_start, nullptr) == -1 &&
569                                errno == EINTR) ;
570                 }
571
572                 {
573                         unique_lock<mutex> lock(bmusb_mutex);
574                         CaptureCard::NewFrame new_frame;
575                         new_frame.frame = frame;
576                         new_frame.length = frame_length;
577                         new_frame.field = field;
578                         new_frame.interlaced = video_format.interlaced;
579                         new_frame.ready_fence = fence;
580                         new_frame.dropped_frames = dropped_frames;
581                         card->new_frames.push(move(new_frame));
582                         card->new_frames_changed.notify_all();
583                 }
584         }
585 }
586
587 void Mixer::thread_func()
588 {
589         eglBindAPI(EGL_OPENGL_API);
590         QOpenGLContext *context = create_context(mixer_surface);
591         if (!make_current(context, mixer_surface)) {
592                 printf("oops\n");
593                 exit(1);
594         }
595
596         struct timespec start, now;
597         clock_gettime(CLOCK_MONOTONIC, &start);
598
599         int frame = 0;
600         int stats_dropped_frames = 0;
601
602         while (!should_quit) {
603                 CaptureCard::NewFrame new_frames[MAX_CARDS];
604                 bool has_new_frame[MAX_CARDS] = { false };
605                 int num_samples[MAX_CARDS] = { 0 };
606
607                 // TODO: Add a timeout.
608                 unsigned master_card_index = theme->map_signal(master_clock_channel);
609                 assert(master_card_index < num_cards);
610
611                 get_one_frame_from_each_card(master_card_index, new_frames, has_new_frame, num_samples);
612                 schedule_audio_resampling_tasks(new_frames[master_card_index].dropped_frames, num_samples[master_card_index], new_frames[master_card_index].length);
613                 stats_dropped_frames += new_frames[master_card_index].dropped_frames;
614                 send_audio_level_callback();
615
616                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
617                         if (card_index == master_card_index || !has_new_frame[card_index]) {
618                                 continue;
619                         }
620                         if (new_frames[card_index].frame->len == 0) {
621                                 ++new_frames[card_index].dropped_frames;
622                         }
623                         if (new_frames[card_index].dropped_frames > 0) {
624                                 printf("Card %u dropped %d frames before this\n",
625                                         card_index, int(new_frames[card_index].dropped_frames));
626                         }
627                 }
628
629                 // If the first card is reporting a corrupted or otherwise dropped frame,
630                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
631                 if (new_frames[master_card_index].frame->len == 0) {
632                         ++stats_dropped_frames;
633                         pts_int += new_frames[master_card_index].length;
634                         continue;
635                 }
636
637                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
638                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
639                                 continue;
640
641                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
642                         assert(new_frame->frame != nullptr);
643                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
644                         check_error();
645
646                         // The new texture might still be uploaded,
647                         // tell the GPU to wait until it's there.
648                         if (new_frame->ready_fence) {
649                                 glWaitSync(new_frame->ready_fence.get(), /*flags=*/0, GL_TIMEOUT_IGNORED);
650                                 check_error();
651                                 new_frame->ready_fence.reset();
652                                 check_error();
653                         }
654                 }
655
656                 render_one_frame();
657                 ++frame;
658                 pts_int += new_frames[master_card_index].length;
659
660                 clock_gettime(CLOCK_MONOTONIC, &now);
661                 double elapsed = now.tv_sec - start.tv_sec +
662                         1e-9 * (now.tv_nsec - start.tv_nsec);
663                 if (frame % 100 == 0) {
664                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
665                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
666                                 1e3 * elapsed / frame);
667                 //      chain->print_phase_timing();
668                 }
669
670                 if (should_cut.exchange(false)) {  // Test and clear.
671                         string filename = generate_local_dump_filename(frame);
672                         printf("Starting new recording: %s\n", filename.c_str());
673                         h264_encoder->shutdown();
674                         httpd.close_output_file();
675                         httpd.open_output_file(filename.c_str());
676                         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
677                 }
678
679 #if 0
680                 // Reset every 100 frames, so that local variations in frame times
681                 // (especially for the first few frames, when the shaders are
682                 // compiled etc.) don't make it hard to measure for the entire
683                 // remaining duration of the program.
684                 if (frame == 10000) {
685                         frame = 0;
686                         start = now;
687                 }
688 #endif
689                 check_error();
690         }
691
692         resource_pool->clean_context();
693 }
694
695 void Mixer::get_one_frame_from_each_card(unsigned master_card_index, CaptureCard::NewFrame new_frames[MAX_CARDS], bool has_new_frame[MAX_CARDS], int num_samples[MAX_CARDS])
696 {
697         // The first card is the master timer, so wait for it to have a new frame.
698         unique_lock<mutex> lock(bmusb_mutex);
699         cards[master_card_index].new_frames_changed.wait(lock, [this, master_card_index]{ return !cards[master_card_index].new_frames.empty(); });
700
701         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
702                 CaptureCard *card = &cards[card_index];
703                 if (card->new_frames.empty()) {
704                         assert(card_index != master_card_index);
705                         card->queue_length_policy.update_policy(-1);
706                         continue;
707                 }
708                 new_frames[card_index] = move(card->new_frames.front());
709                 has_new_frame[card_index] = true;
710                 card->new_frames.pop();
711                 card->new_frames_changed.notify_all();
712
713                 int num_samples_times_timebase = OUTPUT_FREQUENCY * new_frames[card_index].length + card->fractional_samples;
714                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
715                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
716                 assert(num_samples[card_index] >= 0);
717
718                 if (card_index == master_card_index) {
719                         // We don't use the queue length policy for the master card,
720                         // but we will if it stops being the master. Thus, clear out
721                         // the policy in case we switch in the future.
722                         card->queue_length_policy.reset(card_index);
723                 } else {
724                         // If we have excess frames compared to the policy for this card,
725                         // drop frames from the head.
726                         card->queue_length_policy.update_policy(card->new_frames.size());
727                         while (card->new_frames.size() > card->queue_length_policy.get_safe_queue_length()) {
728                                 card->new_frames.pop();
729                         }
730                 }
731         }
732 }
733
734 void Mixer::schedule_audio_resampling_tasks(unsigned dropped_frames, int num_samples_per_frame, int length_per_frame)
735 {
736         // Resample the audio as needed, including from previously dropped frames.
737         assert(num_cards > 0);
738         for (unsigned frame_num = 0; frame_num < dropped_frames + 1; ++frame_num) {
739                 {
740                         // Signal to the audio thread to process this frame.
741                         unique_lock<mutex> lock(audio_mutex);
742                         audio_task_queue.push(AudioTask{pts_int, num_samples_per_frame});
743                         audio_task_queue_changed.notify_one();
744                 }
745                 if (frame_num != dropped_frames) {
746                         // For dropped frames, increase the pts. Note that if the format changed
747                         // in the meantime, we have no way of detecting that; we just have to
748                         // assume the frame length is always the same.
749                         pts_int += length_per_frame;
750                 }
751         }
752 }
753
754 void Mixer::render_one_frame()
755 {
756         // Get the main chain from the theme, and set its state immediately.
757         Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
758         EffectChain *chain = theme_main_chain.chain;
759         theme_main_chain.setup_chain();
760         //theme_main_chain.chain->enable_phase_timing(true);
761
762         GLuint y_tex, cbcr_tex;
763         bool got_frame = h264_encoder->begin_frame(&y_tex, &cbcr_tex);
764         assert(got_frame);
765
766         // Render main chain.
767         GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
768         GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
769         GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
770         check_error();
771         chain->render_to_fbo(fbo, WIDTH, HEIGHT);
772         resource_pool->release_fbo(fbo);
773
774         subsample_chroma(cbcr_full_tex, cbcr_tex);
775         resource_pool->release_2d_texture(cbcr_full_tex);
776
777         // Set the right state for rgba_tex.
778         glBindFramebuffer(GL_FRAMEBUFFER, 0);
779         glBindTexture(GL_TEXTURE_2D, rgba_tex);
780         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
781         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
782         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
783
784         RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
785         check_error();
786
787         const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
788         h264_encoder->end_frame(fence, pts_int + av_delay, theme_main_chain.input_frames);
789
790         // The live frame just shows the RGBA texture we just rendered.
791         // It owns rgba_tex now.
792         DisplayFrame live_frame;
793         live_frame.chain = display_chain.get();
794         live_frame.setup_chain = [this, rgba_tex]{
795                 display_input->set_texture_num(rgba_tex);
796         };
797         live_frame.ready_fence = fence;
798         live_frame.input_frames = {};
799         live_frame.temp_textures = { rgba_tex };
800         output_channel[OUTPUT_LIVE].output_frame(live_frame);
801
802         // Set up preview and any additional channels.
803         for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
804                 DisplayFrame display_frame;
805                 Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
806                 display_frame.chain = chain.chain;
807                 display_frame.setup_chain = chain.setup_chain;
808                 display_frame.ready_fence = fence;
809                 display_frame.input_frames = chain.input_frames;
810                 display_frame.temp_textures = {};
811                 output_channel[i].output_frame(display_frame);
812         }
813 }
814
815 void Mixer::send_audio_level_callback()
816 {
817         if (audio_level_callback == nullptr) {
818                 return;
819         }
820
821         unique_lock<mutex> lock(compressor_mutex);
822         double loudness_s = r128.loudness_S();
823         double loudness_i = r128.integrated();
824         double loudness_range_low = r128.range_min();
825         double loudness_range_high = r128.range_max();
826
827         audio_level_callback(loudness_s, 20.0 * log10(peak),
828                 loudness_i, loudness_range_low, loudness_range_high,
829                 gain_staging_db, 20.0 * log10(final_makeup_gain),
830                 correlation.get_correlation());
831 }
832
833 void Mixer::audio_thread_func()
834 {
835         while (!should_quit) {
836                 AudioTask task;
837
838                 {
839                         unique_lock<mutex> lock(audio_mutex);
840                         audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
841                         task = audio_task_queue.front();
842                         audio_task_queue.pop();
843                 }
844
845                 process_audio_one_frame(task.pts_int, task.num_samples);
846         }
847 }
848
849 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
850 {
851         vector<float> samples_card;
852         vector<float> samples_out;
853
854         // TODO: Allow mixing audio from several sources.
855         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
856         assert(selected_audio_card < num_cards);
857
858         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
859                 samples_card.resize(num_samples * 2);
860                 {
861                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
862                         if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
863                                 printf("Card %d reported previous underrun.\n", card_index);
864                         }
865                 }
866                 if (card_index == selected_audio_card) {
867                         samples_out = move(samples_card);
868                 }
869         }
870
871         // Cut away everything under 120 Hz (or whatever the cutoff is);
872         // we don't need it for voice, and it will reduce headroom
873         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
874         // should be dampened.)
875         if (locut_enabled) {
876                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
877         }
878
879         // Apply a level compressor to get the general level right.
880         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
881         // (or more precisely, near it, since we don't use infinite ratio),
882         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
883         // entirely arbitrary, but from practical tests with speech, it seems to
884         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
885         {
886                 unique_lock<mutex> lock(compressor_mutex);
887                 if (level_compressor_enabled) {
888                         float threshold = 0.01f;   // -40 dBFS.
889                         float ratio = 20.0f;
890                         float attack_time = 0.5f;
891                         float release_time = 20.0f;
892                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
893                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
894                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
895                 } else {
896                         // Just apply the gain we already had.
897                         float g = pow(10.0f, gain_staging_db / 20.0f);
898                         for (size_t i = 0; i < samples_out.size(); ++i) {
899                                 samples_out[i] *= g;
900                         }
901                 }
902         }
903
904 #if 0
905         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
906                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
907                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
908                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
909 #endif
910
911 //      float limiter_att, compressor_att;
912
913         // The real compressor.
914         if (compressor_enabled) {
915                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
916                 float ratio = 20.0f;
917                 float attack_time = 0.005f;
918                 float release_time = 0.040f;
919                 float makeup_gain = 2.0f;  // +6 dB.
920                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
921 //              compressor_att = compressor.get_attenuation();
922         }
923
924         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
925         // Note that since ratio is not infinite, we could go slightly higher than this.
926         if (limiter_enabled) {
927                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
928                 float ratio = 30.0f;
929                 float attack_time = 0.0f;  // Instant.
930                 float release_time = 0.020f;
931                 float makeup_gain = 1.0f;  // 0 dB.
932                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
933 //              limiter_att = limiter.get_attenuation();
934         }
935
936 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
937
938         // Upsample 4x to find interpolated peak.
939         peak_resampler.inp_data = samples_out.data();
940         peak_resampler.inp_count = samples_out.size() / 2;
941
942         vector<float> interpolated_samples_out;
943         interpolated_samples_out.resize(samples_out.size());
944         while (peak_resampler.inp_count > 0) {  // About four iterations.
945                 peak_resampler.out_data = &interpolated_samples_out[0];
946                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
947                 peak_resampler.process();
948                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
949                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
950                 peak_resampler.out_data = nullptr;
951         }
952
953         // At this point, we are most likely close to +0 LU, but all of our
954         // measurements have been on raw sample values, not R128 values.
955         // So we have a final makeup gain to get us to +0 LU; the gain
956         // adjustments required should be relatively small, and also, the
957         // offset shouldn't change much (only if the type of audio changes
958         // significantly). Thus, we shoot for updating this value basically
959         // “whenever we process buffers”, since the R128 calculation isn't exactly
960         // something we get out per-sample.
961         //
962         // Note that there's a feedback loop here, so we choose a very slow filter
963         // (half-time of 100 seconds).
964         double target_loudness_factor, alpha;
965         {
966                 unique_lock<mutex> lock(compressor_mutex);
967                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
968                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
969                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
970
971                 // If we're outside +/- 5 LU uncorrected, we don't count it as
972                 // a normal signal (probably silence) and don't change the
973                 // correction factor; just apply what we already have.
974                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
975                         alpha = 0.0;
976                 } else {
977                         // Formula adapted from
978                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
979                         const double half_time_s = 100.0;
980                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
981                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
982                 }
983
984                 double m = final_makeup_gain;
985                 for (size_t i = 0; i < samples_out.size(); i += 2) {
986                         samples_out[i + 0] *= m;
987                         samples_out[i + 1] *= m;
988                         m += (target_loudness_factor - m) * alpha;
989                 }
990                 final_makeup_gain = m;
991         }
992
993         // Find R128 levels and L/R correlation.
994         vector<float> left, right;
995         deinterleave_samples(samples_out, &left, &right);
996         float *ptrs[] = { left.data(), right.data() };
997         {
998                 unique_lock<mutex> lock(compressor_mutex);
999                 r128.process(left.size(), ptrs);
1000                 correlation.process_samples(samples_out);
1001         }
1002
1003         // Send the samples to the sound card.
1004         if (alsa) {
1005                 alsa->write(samples_out);
1006         }
1007
1008         // And finally add them to the output.
1009         h264_encoder->add_audio(frame_pts_int, move(samples_out));
1010 }
1011
1012 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
1013 {
1014         GLuint vao;
1015         glGenVertexArrays(1, &vao);
1016         check_error();
1017
1018         glBindVertexArray(vao);
1019         check_error();
1020
1021         // Extract Cb/Cr.
1022         GLuint fbo = resource_pool->create_fbo(dst_tex);
1023         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1024         glViewport(0, 0, WIDTH/2, HEIGHT/2);
1025         check_error();
1026
1027         glUseProgram(cbcr_program_num);
1028         check_error();
1029
1030         glActiveTexture(GL_TEXTURE0);
1031         check_error();
1032         glBindTexture(GL_TEXTURE_2D, src_tex);
1033         check_error();
1034         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1035         check_error();
1036         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1037         check_error();
1038         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1039         check_error();
1040
1041         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
1042         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
1043
1044         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
1045         check_error();
1046
1047         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1048                 glEnableVertexAttribArray(attr_index);
1049                 check_error();
1050                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1051                 check_error();
1052         }
1053
1054         glDrawArrays(GL_TRIANGLES, 0, 3);
1055         check_error();
1056
1057         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1058                 glDisableVertexAttribArray(attr_index);
1059                 check_error();
1060         }
1061
1062         glUseProgram(0);
1063         check_error();
1064         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1065         check_error();
1066
1067         resource_pool->release_fbo(fbo);
1068         glDeleteVertexArrays(1, &vao);
1069 }
1070
1071 void Mixer::release_display_frame(DisplayFrame *frame)
1072 {
1073         for (GLuint texnum : frame->temp_textures) {
1074                 resource_pool->release_2d_texture(texnum);
1075         }
1076         frame->temp_textures.clear();
1077         frame->ready_fence.reset();
1078         frame->input_frames.clear();
1079 }
1080
1081 void Mixer::start()
1082 {
1083         mixer_thread = thread(&Mixer::thread_func, this);
1084         audio_thread = thread(&Mixer::audio_thread_func, this);
1085 }
1086
1087 void Mixer::quit()
1088 {
1089         should_quit = true;
1090         mixer_thread.join();
1091         audio_thread.join();
1092 }
1093
1094 void Mixer::transition_clicked(int transition_num)
1095 {
1096         theme->transition_clicked(transition_num, pts());
1097 }
1098
1099 void Mixer::channel_clicked(int preview_num)
1100 {
1101         theme->channel_clicked(preview_num);
1102 }
1103
1104 void Mixer::reset_meters()
1105 {
1106         peak_resampler.reset();
1107         peak = 0.0f;
1108         r128.reset();
1109         r128.integr_start();
1110         correlation.reset();
1111 }
1112
1113 void Mixer::start_mode_scanning(unsigned card_index)
1114 {
1115         assert(card_index < num_cards);
1116         if (is_mode_scanning[card_index]) {
1117                 return;
1118         }
1119         is_mode_scanning[card_index] = true;
1120         mode_scanlist[card_index].clear();
1121         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
1122                 mode_scanlist[card_index].push_back(mode.first);
1123         }
1124         assert(!mode_scanlist[card_index].empty());
1125         mode_scanlist_index[card_index] = 0;
1126         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
1127         clock_gettime(CLOCK_MONOTONIC, &last_mode_scan_change[card_index]);
1128 }
1129
1130 Mixer::OutputChannel::~OutputChannel()
1131 {
1132         if (has_current_frame) {
1133                 parent->release_display_frame(&current_frame);
1134         }
1135         if (has_ready_frame) {
1136                 parent->release_display_frame(&ready_frame);
1137         }
1138 }
1139
1140 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1141 {
1142         // Store this frame for display. Remove the ready frame if any
1143         // (it was seemingly never used).
1144         {
1145                 unique_lock<mutex> lock(frame_mutex);
1146                 if (has_ready_frame) {
1147                         parent->release_display_frame(&ready_frame);
1148                 }
1149                 ready_frame = frame;
1150                 has_ready_frame = true;
1151         }
1152
1153         if (has_new_frame_ready_callback) {
1154                 new_frame_ready_callback();
1155         }
1156 }
1157
1158 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1159 {
1160         unique_lock<mutex> lock(frame_mutex);
1161         if (!has_current_frame && !has_ready_frame) {
1162                 return false;
1163         }
1164
1165         if (has_current_frame && has_ready_frame) {
1166                 // We have a new ready frame. Toss the current one.
1167                 parent->release_display_frame(&current_frame);
1168                 has_current_frame = false;
1169         }
1170         if (has_ready_frame) {
1171                 assert(!has_current_frame);
1172                 current_frame = ready_frame;
1173                 ready_frame.ready_fence.reset();  // Drop the refcount.
1174                 ready_frame.input_frames.clear();  // Drop the refcounts.
1175                 has_current_frame = true;
1176                 has_ready_frame = false;
1177         }
1178
1179         *frame = current_frame;
1180         return true;
1181 }
1182
1183 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1184 {
1185         new_frame_ready_callback = callback;
1186         has_new_frame_ready_callback = true;
1187 }