]> git.sesse.net Git - nageru/blob - mixer.cpp
Add some asserts that will trigger if a driver gives very bogus fps values.
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30
31 #include "bmusb/bmusb.h"
32 #include "context.h"
33 #include "decklink_capture.h"
34 #include "defs.h"
35 #include "flags.h"
36 #include "video_encoder.h"
37 #include "pbo_frame_allocator.h"
38 #include "ref_counted_gl_sync.h"
39 #include "timebase.h"
40
41 class QOpenGLContext;
42
43 using namespace movit;
44 using namespace std;
45 using namespace std::placeholders;
46
47 Mixer *global_mixer = nullptr;
48
49 namespace {
50
51 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
52 {
53         assert(in_channels >= out_channels);
54         for (size_t i = 0; i < num_samples; ++i) {
55                 for (size_t j = 0; j < out_channels; ++j) {
56                         uint32_t s1 = *src++;
57                         uint32_t s2 = *src++;
58                         uint32_t s3 = *src++;
59                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
60                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
61                 }
62                 src += 3 * (in_channels - out_channels);
63         }
64 }
65
66 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
67 {
68         assert(in_channels >= out_channels);
69         for (size_t i = 0; i < num_samples; ++i) {
70                 for (size_t j = 0; j < out_channels; ++j) {
71                         // Note: Assumes little-endian.
72                         int32_t s = *(int32_t *)src;
73                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
74                         src += 4;
75                 }
76                 src += 4 * (in_channels - out_channels);
77         }
78 }
79
80 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
81 {
82         if (interlaced) {
83                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
84                         input_state->buffered_frames[card_index][frame_num] =
85                                 input_state->buffered_frames[card_index][frame_num - 1];
86                 }
87                 input_state->buffered_frames[card_index][0] = { frame, field_num };
88         } else {
89                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
90                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
91                 }
92         }
93 }
94
95 }  // namespace
96
97 void QueueLengthPolicy::update_policy(int queue_length)
98 {
99         if (queue_length < 0) {  // Starvation.
100                 if (been_at_safe_point_since_last_starvation && safe_queue_length < 5) {
101                         ++safe_queue_length;
102                         fprintf(stderr, "Card %u: Starvation, increasing safe limit to %u frames\n",
103                                 card_index, safe_queue_length);
104                 }
105                 frames_with_at_least_one = 0;
106                 been_at_safe_point_since_last_starvation = false;
107                 return;
108         }
109         if (queue_length > 0) {
110                 if (queue_length >= int(safe_queue_length)) {
111                         been_at_safe_point_since_last_starvation = true;
112                 }
113                 if (++frames_with_at_least_one >= 1000 && safe_queue_length > 0) {
114                         --safe_queue_length;
115                         fprintf(stderr, "Card %u: Spare frames for more than 1000 frames, reducing safe limit to %u frames\n",
116                                 card_index, safe_queue_length);
117                         frames_with_at_least_one = 0;
118                 }
119         } else {
120                 frames_with_at_least_one = 0;
121         }
122 }
123
124 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
125         : httpd(),
126           num_cards(num_cards),
127           mixer_surface(create_surface(format)),
128           h264_encoder_surface(create_surface(format)),
129           correlation(OUTPUT_FREQUENCY),
130           level_compressor(OUTPUT_FREQUENCY),
131           limiter(OUTPUT_FREQUENCY),
132           compressor(OUTPUT_FREQUENCY)
133 {
134         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
135         check_error();
136
137         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
138         // will be halved when sampling them, and we need to compensate here.
139         movit_texel_subpixel_precision /= 2.0;
140
141         resource_pool.reset(new ResourcePool);
142         theme.reset(new Theme(global_flags.theme_filename.c_str(), resource_pool.get(), num_cards));
143         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
144                 output_channel[i].parent = this;
145                 output_channel[i].channel = i;
146         }
147
148         ImageFormat inout_format;
149         inout_format.color_space = COLORSPACE_sRGB;
150         inout_format.gamma_curve = GAMMA_sRGB;
151
152         // Display chain; shows the live output produced by the main chain (its RGBA version).
153         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
154         check_error();
155         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
156         display_chain->add_input(display_input);
157         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
158         display_chain->set_dither_bits(0);  // Don't bother.
159         display_chain->finalize();
160
161         video_encoder.reset(new VideoEncoder(resource_pool.get(), h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
162
163         // Start listening for clients only once VideoEncoder has written its header, if any.
164         httpd.start(9095);
165
166         // First try initializing the PCI devices, then USB, until we have the desired number of cards.
167         unsigned num_pci_devices = 0, num_usb_devices = 0;
168         unsigned card_index = 0;
169
170         IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
171         if (decklink_iterator != nullptr) {
172                 for ( ; card_index < num_cards; ++card_index) {
173                         IDeckLink *decklink;
174                         if (decklink_iterator->Next(&decklink) != S_OK) {
175                                 break;
176                         }
177
178                         configure_card(card_index, format, new DeckLinkCapture(decklink, card_index));
179                         ++num_pci_devices;
180                 }
181                 decklink_iterator->Release();
182                 fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
183         } else {
184                 fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
185         }
186         for ( ; card_index < num_cards; ++card_index) {
187                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices));
188                 ++num_usb_devices;
189         }
190
191         if (num_usb_devices > 0) {
192                 BMUSBCapture::start_bm_thread();
193         }
194
195         for (card_index = 0; card_index < num_cards; ++card_index) {
196                 cards[card_index].queue_length_policy.reset(card_index);
197                 cards[card_index].capture->start_bm_capture();
198         }
199
200         // Set up stuff for NV12 conversion.
201
202         // Cb/Cr shader.
203         string cbcr_vert_shader =
204                 "#version 130 \n"
205                 " \n"
206                 "in vec2 position; \n"
207                 "in vec2 texcoord; \n"
208                 "out vec2 tc0; \n"
209                 "uniform vec2 foo_chroma_offset_0; \n"
210                 " \n"
211                 "void main() \n"
212                 "{ \n"
213                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
214                 "    // \n"
215                 "    //   2.000  0.000  0.000 -1.000 \n"
216                 "    //   0.000  2.000  0.000 -1.000 \n"
217                 "    //   0.000  0.000 -2.000 -1.000 \n"
218                 "    //   0.000  0.000  0.000  1.000 \n"
219                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
220                 "    vec2 flipped_tc = texcoord; \n"
221                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
222                 "} \n";
223         string cbcr_frag_shader =
224                 "#version 130 \n"
225                 "in vec2 tc0; \n"
226                 "uniform sampler2D cbcr_tex; \n"
227                 "out vec4 FragColor; \n"
228                 "void main() { \n"
229                 "    FragColor = texture(cbcr_tex, tc0); \n"
230                 "} \n";
231         vector<string> frag_shader_outputs;
232         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
233
234         float vertices[] = {
235                 0.0f, 2.0f,
236                 0.0f, 0.0f,
237                 2.0f, 0.0f
238         };
239         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
240         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
241         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
242
243         r128.init(2, OUTPUT_FREQUENCY);
244         r128.integr_start();
245
246         locut.init(FILTER_HPF, 2);
247
248         // If --flat-audio is given, turn off everything that messes with the sound,
249         // except the final makeup gain.
250         if (global_flags.flat_audio) {
251                 set_locut_enabled(false);
252                 set_gain_staging_auto(false);
253                 set_limiter_enabled(false);
254                 set_compressor_enabled(false);
255         }
256
257         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
258         // and there's a limit to how important the peak meter is.
259         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
260
261         if (global_flags.enable_alsa_output) {
262                 alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
263         }
264 }
265
266 Mixer::~Mixer()
267 {
268         resource_pool->release_glsl_program(cbcr_program_num);
269         glDeleteBuffers(1, &cbcr_vbo);
270         BMUSBCapture::stop_bm_thread();
271
272         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
273                 {
274                         unique_lock<mutex> lock(bmusb_mutex);
275                         cards[card_index].should_quit = true;  // Unblock thread.
276                         cards[card_index].new_frames_changed.notify_all();
277                 }
278                 cards[card_index].capture->stop_dequeue_thread();
279         }
280
281         video_encoder.reset(nullptr);
282 }
283
284 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
285 {
286         printf("Configuring card %d...\n", card_index);
287
288         CaptureCard *card = &cards[card_index];
289         card->capture = capture;
290         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
291         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
292         card->capture->set_video_frame_allocator(card->frame_allocator.get());
293         card->surface = create_surface(format);
294         card->resampling_queue.reset(new ResamplingQueue(card_index, OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
295         card->capture->configure_card();
296 }
297
298
299 namespace {
300
301 int unwrap_timecode(uint16_t current_wrapped, int last)
302 {
303         uint16_t last_wrapped = last & 0xffff;
304         if (current_wrapped > last_wrapped) {
305                 return (last & ~0xffff) | current_wrapped;
306         } else {
307                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
308         }
309 }
310
311 float find_peak(const float *samples, size_t num_samples)
312 {
313         float m = fabs(samples[0]);
314         for (size_t i = 1; i < num_samples; ++i) {
315                 m = max(m, fabs(samples[i]));
316         }
317         return m;
318 }
319
320 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
321 {
322         size_t num_samples = in.size() / 2;
323         out_l->resize(num_samples);
324         out_r->resize(num_samples);
325
326         const float *inptr = in.data();
327         float *lptr = &(*out_l)[0];
328         float *rptr = &(*out_r)[0];
329         for (size_t i = 0; i < num_samples; ++i) {
330                 *lptr++ = *inptr++;
331                 *rptr++ = *inptr++;
332         }
333 }
334
335 }  // namespace
336
337 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
338                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
339                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
340 {
341         CaptureCard *card = &cards[card_index];
342
343         if (is_mode_scanning[card_index]) {
344                 if (video_format.has_signal) {
345                         // Found a stable signal, so stop scanning.
346                         is_mode_scanning[card_index] = false;
347                 } else {
348                         static constexpr double switch_time_s = 0.5;  // Should be enough time for the signal to stabilize.
349                         timespec now;
350                         clock_gettime(CLOCK_MONOTONIC, &now);
351                         double sec_since_last_switch = (now.tv_sec - last_mode_scan_change[card_index].tv_sec) +
352                                 1e-9 * (now.tv_nsec - last_mode_scan_change[card_index].tv_nsec);
353                         if (sec_since_last_switch > switch_time_s) {
354                                 // It isn't this mode; try the next one.
355                                 mode_scanlist_index[card_index]++;
356                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
357                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
358                                 last_mode_scan_change[card_index] = now;
359                         }
360                 }
361         }
362
363         int64_t frame_length = int64_t(TIMEBASE) * video_format.frame_rate_den / video_format.frame_rate_nom;
364         assert(frame_length > 0);
365
366         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
367         if (num_samples > OUTPUT_FREQUENCY / 10) {
368                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
369                         card_index, int(audio_frame.len), int(audio_offset),
370                         timecode, int(video_frame.len), int(video_offset), video_format.id);
371                 if (video_frame.owner) {
372                         video_frame.owner->release_frame(video_frame);
373                 }
374                 if (audio_frame.owner) {
375                         audio_frame.owner->release_frame(audio_frame);
376                 }
377                 return;
378         }
379
380         int64_t local_pts = card->next_local_pts;
381         int dropped_frames = 0;
382         if (card->last_timecode != -1) {
383                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
384         }
385
386         // Convert the audio to stereo fp32 and add it.
387         vector<float> audio;
388         audio.resize(num_samples * 2);
389         switch (audio_format.bits_per_sample) {
390         case 0:
391                 assert(num_samples == 0);
392                 break;
393         case 24:
394                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
395                 break;
396         case 32:
397                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
398                 break;
399         default:
400                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
401                 assert(false);
402         }
403
404         // Add the audio.
405         {
406                 unique_lock<mutex> lock(card->audio_mutex);
407
408                 // Number of samples per frame if we need to insert silence.
409                 // (Could be nonintegral, but resampling will save us then.)
410                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
411
412                 if (dropped_frames > MAX_FPS * 2) {
413                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
414                                 card_index, card->last_timecode, timecode);
415                         card->resampling_queue.reset(new ResamplingQueue(card_index, OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
416                         dropped_frames = 0;
417                 } else if (dropped_frames > 0) {
418                         // Insert silence as needed.
419                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
420                                 card_index, dropped_frames, timecode);
421                         vector<float> silence(silence_samples * 2, 0.0f);
422                         for (int i = 0; i < dropped_frames; ++i) {
423                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
424                                 // Note that if the format changed in the meantime, we have
425                                 // no way of detecting that; we just have to assume the frame length
426                                 // is always the same.
427                                 local_pts += frame_length;
428                         }
429                 }
430                 if (num_samples == 0) {
431                         audio.resize(silence_samples * 2);
432                         num_samples = silence_samples;
433                 }
434                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
435                 card->next_local_pts = local_pts + frame_length;
436         }
437
438         card->last_timecode = timecode;
439
440         // Done with the audio, so release it.
441         if (audio_frame.owner) {
442                 audio_frame.owner->release_frame(audio_frame);
443         }
444
445         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
446         if (video_frame.len - video_offset == 0 ||
447             video_frame.len - video_offset != expected_length) {
448                 if (video_frame.len != 0) {
449                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
450                                 card_index, video_frame.len - video_offset, expected_length);
451                 }
452                 if (video_frame.owner) {
453                         video_frame.owner->release_frame(video_frame);
454                 }
455
456                 // Still send on the information that we _had_ a frame, even though it's corrupted,
457                 // so that pts can go up accordingly.
458                 {
459                         unique_lock<mutex> lock(bmusb_mutex);
460                         CaptureCard::NewFrame new_frame;
461                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
462                         new_frame.length = frame_length;
463                         new_frame.interlaced = false;
464                         new_frame.dropped_frames = dropped_frames;
465                         card->new_frames.push(move(new_frame));
466                         card->new_frames_changed.notify_all();
467                 }
468                 return;
469         }
470
471         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
472
473         unsigned num_fields = video_format.interlaced ? 2 : 1;
474         timespec frame_upload_start;
475         if (video_format.interlaced) {
476                 // Send the two fields along as separate frames; the other side will need to add
477                 // a deinterlacer to actually get this right.
478                 assert(video_format.height % 2 == 0);
479                 video_format.height /= 2;
480                 assert(frame_length % 2 == 0);
481                 frame_length /= 2;
482                 num_fields = 2;
483                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
484         }
485         userdata->last_interlaced = video_format.interlaced;
486         userdata->last_has_signal = video_format.has_signal;
487         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
488         userdata->last_frame_rate_den = video_format.frame_rate_den;
489         RefCountedFrame frame(video_frame);
490
491         // Upload the textures.
492         size_t cbcr_width = video_format.width / 2;
493         size_t cbcr_offset = video_offset / 2;
494         size_t y_offset = video_frame.size / 2 + video_offset / 2;
495
496         for (unsigned field = 0; field < num_fields; ++field) {
497                 // Put the actual texture upload in a lambda that is executed in the main thread.
498                 // It is entirely possible to do this in the same thread (and it might even be
499                 // faster, depending on the GPU and driver), but it appears to be trickling
500                 // driver bugs very easily.
501                 //
502                 // Note that this means we must hold on to the actual frame data in <userdata>
503                 // until the upload command is run, but we hold on to <frame> much longer than that
504                 // (in fact, all the way until we no longer use the texture in rendering).
505                 auto upload_func = [field, video_format, y_offset, cbcr_offset, cbcr_width, userdata]() {
506                         unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
507
508                         if (userdata->tex_y[field] == 0 ||
509                             userdata->tex_cbcr[field] == 0 ||
510                             video_format.width != userdata->last_width[field] ||
511                             video_format.height != userdata->last_height[field]) {
512                                 // We changed resolution since last use of this texture, so we need to create
513                                 // a new object. Note that this each card has its own PBOFrameAllocator,
514                                 // we don't need to worry about these flip-flopping between resolutions.
515                                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
516                                 check_error();
517                                 glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
518                                 check_error();
519                                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
520                                 check_error();
521                                 glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
522                                 check_error();
523                                 userdata->last_width[field] = video_format.width;
524                                 userdata->last_height[field] = video_format.height;
525                         }
526
527                         GLuint pbo = userdata->pbo;
528                         check_error();
529                         glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
530                         check_error();
531
532                         size_t field_y_start = y_offset + video_format.width * field_start_line;
533                         size_t field_cbcr_start = cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t);
534
535                         if (global_flags.flush_pbos) {
536                                 glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_y_start, video_format.width * video_format.height);
537                                 check_error();
538                                 glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_cbcr_start, cbcr_width * video_format.height * sizeof(uint16_t));
539                                 check_error();
540                         }
541
542                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
543                         check_error();
544                         glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_cbcr_start));
545                         check_error();
546                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
547                         check_error();
548                         glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_y_start));
549                         check_error();
550                         glBindTexture(GL_TEXTURE_2D, 0);
551                         check_error();
552                         glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
553                         check_error();
554                 };
555
556                 if (field == 1) {
557                         // Don't upload the second field as fast as we can; wait until
558                         // the field time has approximately passed. (Otherwise, we could
559                         // get timing jitter against the other sources, and possibly also
560                         // against the video display, although the latter is not as critical.)
561                         // This requires our system clock to be reasonably close to the
562                         // video clock, but that's not an unreasonable assumption.
563                         timespec second_field_start;
564                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
565                                 frame_length * 1000000000 / TIMEBASE;
566                         second_field_start.tv_sec = frame_upload_start.tv_sec +
567                                 second_field_start.tv_nsec / 1000000000;
568                         second_field_start.tv_nsec %= 1000000000;
569
570                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
571                                                &second_field_start, nullptr) == -1 &&
572                                errno == EINTR) ;
573                 }
574
575                 {
576                         unique_lock<mutex> lock(bmusb_mutex);
577                         CaptureCard::NewFrame new_frame;
578                         new_frame.frame = frame;
579                         new_frame.length = frame_length;
580                         new_frame.field = field;
581                         new_frame.interlaced = video_format.interlaced;
582                         new_frame.upload_func = upload_func;
583                         new_frame.dropped_frames = dropped_frames;
584                         card->new_frames.push(move(new_frame));
585                         card->new_frames_changed.notify_all();
586                 }
587         }
588 }
589
590 void Mixer::thread_func()
591 {
592         eglBindAPI(EGL_OPENGL_API);
593         QOpenGLContext *context = create_context(mixer_surface);
594         if (!make_current(context, mixer_surface)) {
595                 printf("oops\n");
596                 exit(1);
597         }
598
599         struct timespec start, now;
600         clock_gettime(CLOCK_MONOTONIC, &start);
601
602         int frame = 0;
603         int stats_dropped_frames = 0;
604
605         while (!should_quit) {
606                 CaptureCard::NewFrame new_frames[MAX_CARDS];
607                 bool has_new_frame[MAX_CARDS] = { false };
608                 int num_samples[MAX_CARDS] = { 0 };
609
610                 // TODO: Add a timeout.
611                 unsigned master_card_index = theme->map_signal(master_clock_channel);
612                 assert(master_card_index < num_cards);
613
614                 get_one_frame_from_each_card(master_card_index, new_frames, has_new_frame, num_samples);
615                 schedule_audio_resampling_tasks(new_frames[master_card_index].dropped_frames, num_samples[master_card_index], new_frames[master_card_index].length);
616                 stats_dropped_frames += new_frames[master_card_index].dropped_frames;
617                 send_audio_level_callback();
618
619                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
620                         if (card_index == master_card_index || !has_new_frame[card_index]) {
621                                 continue;
622                         }
623                         if (new_frames[card_index].frame->len == 0) {
624                                 ++new_frames[card_index].dropped_frames;
625                         }
626                         if (new_frames[card_index].dropped_frames > 0) {
627                                 printf("Card %u dropped %d frames before this\n",
628                                         card_index, int(new_frames[card_index].dropped_frames));
629                         }
630                 }
631
632                 // If the first card is reporting a corrupted or otherwise dropped frame,
633                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
634                 if (new_frames[master_card_index].frame->len == 0) {
635                         ++stats_dropped_frames;
636                         pts_int += new_frames[master_card_index].length;
637                         continue;
638                 }
639
640                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
641                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
642                                 continue;
643
644                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
645                         assert(new_frame->frame != nullptr);
646                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
647                         check_error();
648
649                         // The new texture might need uploading before use.
650                         if (new_frame->upload_func) {
651                                 new_frame->upload_func();
652                                 new_frame->upload_func = nullptr;
653                         }
654                 }
655
656                 int64_t duration = new_frames[master_card_index].length;
657                 render_one_frame(duration);
658                 ++frame;
659                 pts_int += duration;
660
661                 clock_gettime(CLOCK_MONOTONIC, &now);
662                 double elapsed = now.tv_sec - start.tv_sec +
663                         1e-9 * (now.tv_nsec - start.tv_nsec);
664                 if (frame % 100 == 0) {
665                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
666                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
667                                 1e3 * elapsed / frame);
668                 //      chain->print_phase_timing();
669                 }
670
671                 if (should_cut.exchange(false)) {  // Test and clear.
672                         video_encoder->do_cut(frame);
673                 }
674
675 #if 0
676                 // Reset every 100 frames, so that local variations in frame times
677                 // (especially for the first few frames, when the shaders are
678                 // compiled etc.) don't make it hard to measure for the entire
679                 // remaining duration of the program.
680                 if (frame == 10000) {
681                         frame = 0;
682                         start = now;
683                 }
684 #endif
685                 check_error();
686         }
687
688         resource_pool->clean_context();
689 }
690
691 void Mixer::get_one_frame_from_each_card(unsigned master_card_index, CaptureCard::NewFrame new_frames[MAX_CARDS], bool has_new_frame[MAX_CARDS], int num_samples[MAX_CARDS])
692 {
693         // The first card is the master timer, so wait for it to have a new frame.
694         unique_lock<mutex> lock(bmusb_mutex);
695         cards[master_card_index].new_frames_changed.wait(lock, [this, master_card_index]{ return !cards[master_card_index].new_frames.empty(); });
696
697         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
698                 CaptureCard *card = &cards[card_index];
699                 if (card->new_frames.empty()) {
700                         assert(card_index != master_card_index);
701                         card->queue_length_policy.update_policy(-1);
702                         continue;
703                 }
704                 new_frames[card_index] = move(card->new_frames.front());
705                 has_new_frame[card_index] = true;
706                 card->new_frames.pop();
707                 card->new_frames_changed.notify_all();
708
709                 int num_samples_times_timebase = OUTPUT_FREQUENCY * new_frames[card_index].length + card->fractional_samples;
710                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
711                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
712                 assert(num_samples[card_index] >= 0);
713
714                 if (card_index == master_card_index) {
715                         // We don't use the queue length policy for the master card,
716                         // but we will if it stops being the master. Thus, clear out
717                         // the policy in case we switch in the future.
718                         card->queue_length_policy.reset(card_index);
719                 } else {
720                         // If we have excess frames compared to the policy for this card,
721                         // drop frames from the head.
722                         card->queue_length_policy.update_policy(card->new_frames.size());
723                         while (card->new_frames.size() > card->queue_length_policy.get_safe_queue_length()) {
724                                 card->new_frames.pop();
725                         }
726                 }
727         }
728 }
729
730 void Mixer::schedule_audio_resampling_tasks(unsigned dropped_frames, int num_samples_per_frame, int length_per_frame)
731 {
732         // Resample the audio as needed, including from previously dropped frames.
733         assert(num_cards > 0);
734         for (unsigned frame_num = 0; frame_num < dropped_frames + 1; ++frame_num) {
735                 {
736                         // Signal to the audio thread to process this frame.
737                         unique_lock<mutex> lock(audio_mutex);
738                         audio_task_queue.push(AudioTask{pts_int, num_samples_per_frame});
739                         audio_task_queue_changed.notify_one();
740                 }
741                 if (frame_num != dropped_frames) {
742                         // For dropped frames, increase the pts. Note that if the format changed
743                         // in the meantime, we have no way of detecting that; we just have to
744                         // assume the frame length is always the same.
745                         pts_int += length_per_frame;
746                 }
747         }
748 }
749
750 void Mixer::render_one_frame(int64_t duration)
751 {
752         // Get the main chain from the theme, and set its state immediately.
753         Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
754         EffectChain *chain = theme_main_chain.chain;
755         theme_main_chain.setup_chain();
756         //theme_main_chain.chain->enable_phase_timing(true);
757
758         GLuint y_tex, cbcr_tex;
759         bool got_frame = video_encoder->begin_frame(&y_tex, &cbcr_tex);
760         assert(got_frame);
761
762         // Render main chain.
763         GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
764         GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
765         GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
766         check_error();
767         chain->render_to_fbo(fbo, WIDTH, HEIGHT);
768         resource_pool->release_fbo(fbo);
769
770         subsample_chroma(cbcr_full_tex, cbcr_tex);
771         resource_pool->release_2d_texture(cbcr_full_tex);
772
773         // Set the right state for rgba_tex.
774         glBindFramebuffer(GL_FRAMEBUFFER, 0);
775         glBindTexture(GL_TEXTURE_2D, rgba_tex);
776         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
777         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
778         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
779
780         const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
781         RefCountedGLsync fence = video_encoder->end_frame(pts_int + av_delay, duration, theme_main_chain.input_frames);
782
783         // The live frame just shows the RGBA texture we just rendered.
784         // It owns rgba_tex now.
785         DisplayFrame live_frame;
786         live_frame.chain = display_chain.get();
787         live_frame.setup_chain = [this, rgba_tex]{
788                 display_input->set_texture_num(rgba_tex);
789         };
790         live_frame.ready_fence = fence;
791         live_frame.input_frames = {};
792         live_frame.temp_textures = { rgba_tex };
793         output_channel[OUTPUT_LIVE].output_frame(live_frame);
794
795         // Set up preview and any additional channels.
796         for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
797                 DisplayFrame display_frame;
798                 Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
799                 display_frame.chain = chain.chain;
800                 display_frame.setup_chain = chain.setup_chain;
801                 display_frame.ready_fence = fence;
802                 display_frame.input_frames = chain.input_frames;
803                 display_frame.temp_textures = {};
804                 output_channel[i].output_frame(display_frame);
805         }
806 }
807
808 void Mixer::send_audio_level_callback()
809 {
810         if (audio_level_callback == nullptr) {
811                 return;
812         }
813
814         unique_lock<mutex> lock(compressor_mutex);
815         double loudness_s = r128.loudness_S();
816         double loudness_i = r128.integrated();
817         double loudness_range_low = r128.range_min();
818         double loudness_range_high = r128.range_max();
819
820         audio_level_callback(loudness_s, 20.0 * log10(peak),
821                 loudness_i, loudness_range_low, loudness_range_high,
822                 gain_staging_db, 20.0 * log10(final_makeup_gain),
823                 correlation.get_correlation());
824 }
825
826 void Mixer::audio_thread_func()
827 {
828         while (!should_quit) {
829                 AudioTask task;
830
831                 {
832                         unique_lock<mutex> lock(audio_mutex);
833                         audio_task_queue_changed.wait(lock, [this]{ return should_quit || !audio_task_queue.empty(); });
834                         if (should_quit) {
835                                 return;
836                         }
837                         task = audio_task_queue.front();
838                         audio_task_queue.pop();
839                 }
840
841                 process_audio_one_frame(task.pts_int, task.num_samples);
842         }
843 }
844
845 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
846 {
847         vector<float> samples_card;
848         vector<float> samples_out;
849
850         // TODO: Allow mixing audio from several sources.
851         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
852         assert(selected_audio_card < num_cards);
853
854         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
855                 samples_card.resize(num_samples * 2);
856                 {
857                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
858                         cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples);
859                 }
860                 if (card_index == selected_audio_card) {
861                         samples_out = move(samples_card);
862                 }
863         }
864
865         // Cut away everything under 120 Hz (or whatever the cutoff is);
866         // we don't need it for voice, and it will reduce headroom
867         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
868         // should be dampened.)
869         if (locut_enabled) {
870                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
871         }
872
873         // Apply a level compressor to get the general level right.
874         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
875         // (or more precisely, near it, since we don't use infinite ratio),
876         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
877         // entirely arbitrary, but from practical tests with speech, it seems to
878         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
879         {
880                 unique_lock<mutex> lock(compressor_mutex);
881                 if (level_compressor_enabled) {
882                         float threshold = 0.01f;   // -40 dBFS.
883                         float ratio = 20.0f;
884                         float attack_time = 0.5f;
885                         float release_time = 20.0f;
886                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
887                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
888                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
889                 } else {
890                         // Just apply the gain we already had.
891                         float g = pow(10.0f, gain_staging_db / 20.0f);
892                         for (size_t i = 0; i < samples_out.size(); ++i) {
893                                 samples_out[i] *= g;
894                         }
895                 }
896         }
897
898 #if 0
899         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
900                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
901                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
902                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
903 #endif
904
905 //      float limiter_att, compressor_att;
906
907         // The real compressor.
908         if (compressor_enabled) {
909                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
910                 float ratio = 20.0f;
911                 float attack_time = 0.005f;
912                 float release_time = 0.040f;
913                 float makeup_gain = 2.0f;  // +6 dB.
914                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
915 //              compressor_att = compressor.get_attenuation();
916         }
917
918         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
919         // Note that since ratio is not infinite, we could go slightly higher than this.
920         if (limiter_enabled) {
921                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
922                 float ratio = 30.0f;
923                 float attack_time = 0.0f;  // Instant.
924                 float release_time = 0.020f;
925                 float makeup_gain = 1.0f;  // 0 dB.
926                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
927 //              limiter_att = limiter.get_attenuation();
928         }
929
930 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
931
932         // Upsample 4x to find interpolated peak.
933         peak_resampler.inp_data = samples_out.data();
934         peak_resampler.inp_count = samples_out.size() / 2;
935
936         vector<float> interpolated_samples_out;
937         interpolated_samples_out.resize(samples_out.size());
938         while (peak_resampler.inp_count > 0) {  // About four iterations.
939                 peak_resampler.out_data = &interpolated_samples_out[0];
940                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
941                 peak_resampler.process();
942                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
943                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
944                 peak_resampler.out_data = nullptr;
945         }
946
947         // At this point, we are most likely close to +0 LU, but all of our
948         // measurements have been on raw sample values, not R128 values.
949         // So we have a final makeup gain to get us to +0 LU; the gain
950         // adjustments required should be relatively small, and also, the
951         // offset shouldn't change much (only if the type of audio changes
952         // significantly). Thus, we shoot for updating this value basically
953         // “whenever we process buffers”, since the R128 calculation isn't exactly
954         // something we get out per-sample.
955         //
956         // Note that there's a feedback loop here, so we choose a very slow filter
957         // (half-time of 100 seconds).
958         double target_loudness_factor, alpha;
959         {
960                 unique_lock<mutex> lock(compressor_mutex);
961                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
962                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
963                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
964
965                 // If we're outside +/- 5 LU uncorrected, we don't count it as
966                 // a normal signal (probably silence) and don't change the
967                 // correction factor; just apply what we already have.
968                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
969                         alpha = 0.0;
970                 } else {
971                         // Formula adapted from
972                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
973                         const double half_time_s = 100.0;
974                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
975                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
976                 }
977
978                 double m = final_makeup_gain;
979                 for (size_t i = 0; i < samples_out.size(); i += 2) {
980                         samples_out[i + 0] *= m;
981                         samples_out[i + 1] *= m;
982                         m += (target_loudness_factor - m) * alpha;
983                 }
984                 final_makeup_gain = m;
985         }
986
987         // Find R128 levels and L/R correlation.
988         vector<float> left, right;
989         deinterleave_samples(samples_out, &left, &right);
990         float *ptrs[] = { left.data(), right.data() };
991         {
992                 unique_lock<mutex> lock(compressor_mutex);
993                 r128.process(left.size(), ptrs);
994                 correlation.process_samples(samples_out);
995         }
996
997         // Send the samples to the sound card.
998         if (alsa) {
999                 alsa->write(samples_out);
1000         }
1001
1002         // And finally add them to the output.
1003         video_encoder->add_audio(frame_pts_int, move(samples_out));
1004 }
1005
1006 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
1007 {
1008         GLuint vao;
1009         glGenVertexArrays(1, &vao);
1010         check_error();
1011
1012         glBindVertexArray(vao);
1013         check_error();
1014
1015         // Extract Cb/Cr.
1016         GLuint fbo = resource_pool->create_fbo(dst_tex);
1017         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1018         glViewport(0, 0, WIDTH/2, HEIGHT/2);
1019         check_error();
1020
1021         glUseProgram(cbcr_program_num);
1022         check_error();
1023
1024         glActiveTexture(GL_TEXTURE0);
1025         check_error();
1026         glBindTexture(GL_TEXTURE_2D, src_tex);
1027         check_error();
1028         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1029         check_error();
1030         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1031         check_error();
1032         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1033         check_error();
1034
1035         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
1036         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
1037
1038         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
1039         check_error();
1040
1041         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1042                 glEnableVertexAttribArray(attr_index);
1043                 check_error();
1044                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1045                 check_error();
1046         }
1047
1048         glDrawArrays(GL_TRIANGLES, 0, 3);
1049         check_error();
1050
1051         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1052                 glDisableVertexAttribArray(attr_index);
1053                 check_error();
1054         }
1055
1056         glUseProgram(0);
1057         check_error();
1058         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1059         check_error();
1060
1061         resource_pool->release_fbo(fbo);
1062         glDeleteVertexArrays(1, &vao);
1063 }
1064
1065 void Mixer::release_display_frame(DisplayFrame *frame)
1066 {
1067         for (GLuint texnum : frame->temp_textures) {
1068                 resource_pool->release_2d_texture(texnum);
1069         }
1070         frame->temp_textures.clear();
1071         frame->ready_fence.reset();
1072         frame->input_frames.clear();
1073 }
1074
1075 void Mixer::start()
1076 {
1077         mixer_thread = thread(&Mixer::thread_func, this);
1078         audio_thread = thread(&Mixer::audio_thread_func, this);
1079 }
1080
1081 void Mixer::quit()
1082 {
1083         should_quit = true;
1084         audio_task_queue_changed.notify_one();
1085         mixer_thread.join();
1086         audio_thread.join();
1087 }
1088
1089 void Mixer::transition_clicked(int transition_num)
1090 {
1091         theme->transition_clicked(transition_num, pts());
1092 }
1093
1094 void Mixer::channel_clicked(int preview_num)
1095 {
1096         theme->channel_clicked(preview_num);
1097 }
1098
1099 void Mixer::reset_meters()
1100 {
1101         peak_resampler.reset();
1102         peak = 0.0f;
1103         r128.reset();
1104         r128.integr_start();
1105         correlation.reset();
1106 }
1107
1108 void Mixer::start_mode_scanning(unsigned card_index)
1109 {
1110         assert(card_index < num_cards);
1111         if (is_mode_scanning[card_index]) {
1112                 return;
1113         }
1114         is_mode_scanning[card_index] = true;
1115         mode_scanlist[card_index].clear();
1116         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
1117                 mode_scanlist[card_index].push_back(mode.first);
1118         }
1119         assert(!mode_scanlist[card_index].empty());
1120         mode_scanlist_index[card_index] = 0;
1121         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
1122         clock_gettime(CLOCK_MONOTONIC, &last_mode_scan_change[card_index]);
1123 }
1124
1125 Mixer::OutputChannel::~OutputChannel()
1126 {
1127         if (has_current_frame) {
1128                 parent->release_display_frame(&current_frame);
1129         }
1130         if (has_ready_frame) {
1131                 parent->release_display_frame(&ready_frame);
1132         }
1133 }
1134
1135 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1136 {
1137         // Store this frame for display. Remove the ready frame if any
1138         // (it was seemingly never used).
1139         {
1140                 unique_lock<mutex> lock(frame_mutex);
1141                 if (has_ready_frame) {
1142                         parent->release_display_frame(&ready_frame);
1143                 }
1144                 ready_frame = frame;
1145                 has_ready_frame = true;
1146         }
1147
1148         if (new_frame_ready_callback) {
1149                 new_frame_ready_callback();
1150         }
1151
1152         // Reduce the number of callbacks by filtering duplicates. The reason
1153         // why we bother doing this is that Qt seemingly can get into a state
1154         // where its builds up an essentially unbounded queue of signals,
1155         // consuming more and more memory, and there's no good way of collapsing
1156         // user-defined signals or limiting the length of the queue.
1157         if (transition_names_updated_callback) {
1158                 vector<string> transition_names = global_mixer->get_transition_names();
1159                 bool changed = false;
1160                 if (transition_names.size() != last_transition_names.size()) {
1161                         changed = true;
1162                 } else {
1163                         for (unsigned i = 0; i < transition_names.size(); ++i) {
1164                                 if (transition_names[i] != last_transition_names[i]) {
1165                                         changed = true;
1166                                         break;
1167                                 }
1168                         }
1169                 }
1170                 if (changed) {
1171                         transition_names_updated_callback(transition_names);
1172                         last_transition_names = transition_names;
1173                 }
1174         }
1175         if (name_updated_callback) {
1176                 string name = global_mixer->get_channel_name(channel);
1177                 if (name != last_name) {
1178                         name_updated_callback(name);
1179                         last_name = name;
1180                 }
1181         }
1182         if (color_updated_callback) {
1183                 string color = global_mixer->get_channel_color(channel);
1184                 if (color != last_color) {
1185                         color_updated_callback(color);
1186                         last_color = color;
1187                 }
1188         }
1189 }
1190
1191 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1192 {
1193         unique_lock<mutex> lock(frame_mutex);
1194         if (!has_current_frame && !has_ready_frame) {
1195                 return false;
1196         }
1197
1198         if (has_current_frame && has_ready_frame) {
1199                 // We have a new ready frame. Toss the current one.
1200                 parent->release_display_frame(&current_frame);
1201                 has_current_frame = false;
1202         }
1203         if (has_ready_frame) {
1204                 assert(!has_current_frame);
1205                 current_frame = ready_frame;
1206                 ready_frame.ready_fence.reset();  // Drop the refcount.
1207                 ready_frame.input_frames.clear();  // Drop the refcounts.
1208                 has_current_frame = true;
1209                 has_ready_frame = false;
1210         }
1211
1212         *frame = current_frame;
1213         return true;
1214 }
1215
1216 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1217 {
1218         new_frame_ready_callback = callback;
1219 }
1220
1221 void Mixer::OutputChannel::set_transition_names_updated_callback(Mixer::transition_names_updated_callback_t callback)
1222 {
1223         transition_names_updated_callback = callback;
1224 }
1225
1226 void Mixer::OutputChannel::set_name_updated_callback(Mixer::name_updated_callback_t callback)
1227 {
1228         name_updated_callback = callback;
1229 }
1230
1231 void Mixer::OutputChannel::set_color_updated_callback(Mixer::color_updated_callback_t callback)
1232 {
1233         color_updated_callback = callback;
1234 }
1235
1236 mutex RefCountedGLsync::fence_lock;