]> git.sesse.net Git - nageru/blob - mixer.cpp
Add a system for queue length policies, so that we have as little as possible (but...
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30
31 #include "bmusb/bmusb.h"
32 #include "context.h"
33 #include "decklink_capture.h"
34 #include "defs.h"
35 #include "flags.h"
36 #include "h264encode.h"
37 #include "pbo_frame_allocator.h"
38 #include "ref_counted_gl_sync.h"
39 #include "timebase.h"
40
41 class QOpenGLContext;
42
43 using namespace movit;
44 using namespace std;
45 using namespace std::placeholders;
46
47 Mixer *global_mixer = nullptr;
48
49 namespace {
50
51 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
52 {
53         assert(in_channels >= out_channels);
54         for (size_t i = 0; i < num_samples; ++i) {
55                 for (size_t j = 0; j < out_channels; ++j) {
56                         uint32_t s1 = *src++;
57                         uint32_t s2 = *src++;
58                         uint32_t s3 = *src++;
59                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
60                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
61                 }
62                 src += 3 * (in_channels - out_channels);
63         }
64 }
65
66 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
67 {
68         assert(in_channels >= out_channels);
69         for (size_t i = 0; i < num_samples; ++i) {
70                 for (size_t j = 0; j < out_channels; ++j) {
71                         // Note: Assumes little-endian.
72                         int32_t s = *(int32_t *)src;
73                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
74                         src += 4;
75                 }
76                 src += 4 * (in_channels - out_channels);
77         }
78 }
79
80 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
81 {
82         if (interlaced) {
83                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
84                         input_state->buffered_frames[card_index][frame_num] =
85                                 input_state->buffered_frames[card_index][frame_num - 1];
86                 }
87                 input_state->buffered_frames[card_index][0] = { frame, field_num };
88         } else {
89                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
90                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
91                 }
92         }
93 }
94
95 string generate_local_dump_filename(int frame)
96 {
97         time_t now = time(NULL);
98         tm now_tm;
99         localtime_r(&now, &now_tm);
100
101         char timestamp[256];
102         strftime(timestamp, sizeof(timestamp), "%F-%T%z", &now_tm);
103
104         // Use the frame number to disambiguate between two cuts starting
105         // on the same second.
106         char filename[256];
107         snprintf(filename, sizeof(filename), "%s%s-f%02d%s",
108                 LOCAL_DUMP_PREFIX, timestamp, frame % 100, LOCAL_DUMP_SUFFIX);
109         return filename;
110 }
111
112 }  // namespace
113
114 void QueueLengthPolicy::update_policy(int queue_length)
115 {
116         if (queue_length < 0) {  // Starvation.
117                 if (safe_queue_length < 5) {
118                         ++safe_queue_length;
119                         fprintf(stderr, "Card %u: Starvation, increasing safe limit to %u frames\n",
120                                 card_index, safe_queue_length);
121                 }
122                 frames_with_at_least_one = 0;
123                 return;
124         }
125         if (queue_length > 0) {
126                 if (++frames_with_at_least_one >= 50) {
127                         --safe_queue_length;
128                         fprintf(stderr, "Card %u: Spare frames for more than 50 frames, reducing safe limit to %u frames\n",
129                                 card_index, safe_queue_length);
130                         frames_with_at_least_one = 0;
131                 }
132         } else {
133                 frames_with_at_least_one = 0;
134         }
135 }
136
137 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
138         : httpd(WIDTH, HEIGHT),
139           num_cards(num_cards),
140           mixer_surface(create_surface(format)),
141           h264_encoder_surface(create_surface(format)),
142           correlation(OUTPUT_FREQUENCY),
143           level_compressor(OUTPUT_FREQUENCY),
144           limiter(OUTPUT_FREQUENCY),
145           compressor(OUTPUT_FREQUENCY)
146 {
147         httpd.open_output_file(generate_local_dump_filename(/*frame=*/0).c_str());
148         httpd.start(9095);
149
150         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
151         check_error();
152
153         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
154         // will be halved when sampling them, and we need to compensate here.
155         movit_texel_subpixel_precision /= 2.0;
156
157         resource_pool.reset(new ResourcePool);
158         theme.reset(new Theme("theme.lua", resource_pool.get(), num_cards));
159         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
160                 output_channel[i].parent = this;
161         }
162
163         ImageFormat inout_format;
164         inout_format.color_space = COLORSPACE_sRGB;
165         inout_format.gamma_curve = GAMMA_sRGB;
166
167         // Display chain; shows the live output produced by the main chain (its RGBA version).
168         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
169         check_error();
170         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
171         display_chain->add_input(display_input);
172         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
173         display_chain->set_dither_bits(0);  // Don't bother.
174         display_chain->finalize();
175
176         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
177
178         // First try initializing the PCI devices, then USB, until we have the desired number of cards.
179         unsigned num_pci_devices = 0, num_usb_devices = 0;
180         unsigned card_index = 0;
181
182         IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
183         if (decklink_iterator != nullptr) {
184                 for ( ; card_index < num_cards; ++card_index) {
185                         IDeckLink *decklink;
186                         if (decklink_iterator->Next(&decklink) != S_OK) {
187                                 break;
188                         }
189
190                         configure_card(card_index, format, new DeckLinkCapture(decklink, card_index));
191                         ++num_pci_devices;
192                 }
193                 decklink_iterator->Release();
194                 fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
195         } else {
196                 fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
197         }
198         for ( ; card_index < num_cards; ++card_index) {
199                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices));
200                 ++num_usb_devices;
201         }
202
203         if (num_usb_devices > 0) {
204                 BMUSBCapture::start_bm_thread();
205         }
206
207         for (card_index = 0; card_index < num_cards; ++card_index) {
208                 cards[card_index].queue_length_policy.reset(card_index);
209                 cards[card_index].capture->start_bm_capture();
210         }
211
212         // Set up stuff for NV12 conversion.
213
214         // Cb/Cr shader.
215         string cbcr_vert_shader =
216                 "#version 130 \n"
217                 " \n"
218                 "in vec2 position; \n"
219                 "in vec2 texcoord; \n"
220                 "out vec2 tc0; \n"
221                 "uniform vec2 foo_chroma_offset_0; \n"
222                 " \n"
223                 "void main() \n"
224                 "{ \n"
225                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
226                 "    // \n"
227                 "    //   2.000  0.000  0.000 -1.000 \n"
228                 "    //   0.000  2.000  0.000 -1.000 \n"
229                 "    //   0.000  0.000 -2.000 -1.000 \n"
230                 "    //   0.000  0.000  0.000  1.000 \n"
231                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
232                 "    vec2 flipped_tc = texcoord; \n"
233                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
234                 "} \n";
235         string cbcr_frag_shader =
236                 "#version 130 \n"
237                 "in vec2 tc0; \n"
238                 "uniform sampler2D cbcr_tex; \n"
239                 "out vec4 FragColor; \n"
240                 "void main() { \n"
241                 "    FragColor = texture(cbcr_tex, tc0); \n"
242                 "} \n";
243         vector<string> frag_shader_outputs;
244         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
245
246         float vertices[] = {
247                 0.0f, 2.0f,
248                 0.0f, 0.0f,
249                 2.0f, 0.0f
250         };
251         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
252         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
253         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
254
255         r128.init(2, OUTPUT_FREQUENCY);
256         r128.integr_start();
257
258         locut.init(FILTER_HPF, 2);
259
260         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
261         // and there's a limit to how important the peak meter is.
262         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
263
264         alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
265 }
266
267 Mixer::~Mixer()
268 {
269         resource_pool->release_glsl_program(cbcr_program_num);
270         glDeleteBuffers(1, &cbcr_vbo);
271         BMUSBCapture::stop_bm_thread();
272
273         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
274                 {
275                         unique_lock<mutex> lock(bmusb_mutex);
276                         cards[card_index].should_quit = true;  // Unblock thread.
277                         cards[card_index].new_frames_changed.notify_all();
278                 }
279                 cards[card_index].capture->stop_dequeue_thread();
280         }
281
282         h264_encoder.reset(nullptr);
283 }
284
285 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
286 {
287         printf("Configuring card %d...\n", card_index);
288
289         CaptureCard *card = &cards[card_index];
290         card->capture = capture;
291         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
292         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
293         card->capture->set_video_frame_allocator(card->frame_allocator.get());
294         card->surface = create_surface(format);
295         card->capture->set_dequeue_thread_callbacks(
296                 [card]{
297                         eglBindAPI(EGL_OPENGL_API);
298                         card->context = create_context(card->surface);
299                         if (!make_current(card->context, card->surface)) {
300                                 printf("failed to create bmusb context\n");
301                                 exit(1);
302                         }
303                 },
304                 [this]{
305                         resource_pool->clean_context();
306                 });
307         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
308         card->capture->configure_card();
309 }
310
311
312 namespace {
313
314 int unwrap_timecode(uint16_t current_wrapped, int last)
315 {
316         uint16_t last_wrapped = last & 0xffff;
317         if (current_wrapped > last_wrapped) {
318                 return (last & ~0xffff) | current_wrapped;
319         } else {
320                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
321         }
322 }
323
324 float find_peak(const float *samples, size_t num_samples)
325 {
326         float m = fabs(samples[0]);
327         for (size_t i = 1; i < num_samples; ++i) {
328                 m = max(m, fabs(samples[i]));
329         }
330         return m;
331 }
332
333 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
334 {
335         size_t num_samples = in.size() / 2;
336         out_l->resize(num_samples);
337         out_r->resize(num_samples);
338
339         const float *inptr = in.data();
340         float *lptr = &(*out_l)[0];
341         float *rptr = &(*out_r)[0];
342         for (size_t i = 0; i < num_samples; ++i) {
343                 *lptr++ = *inptr++;
344                 *rptr++ = *inptr++;
345         }
346 }
347
348 }  // namespace
349
350 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
351                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
352                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
353 {
354         CaptureCard *card = &cards[card_index];
355
356         if (is_mode_scanning[card_index]) {
357                 if (video_format.has_signal) {
358                         // Found a stable signal, so stop scanning.
359                         is_mode_scanning[card_index] = false;
360                 } else {
361                         static constexpr double switch_time_s = 0.5;  // Should be enough time for the signal to stabilize.
362                         timespec now;
363                         clock_gettime(CLOCK_MONOTONIC, &now);
364                         double sec_since_last_switch = (now.tv_sec - last_mode_scan_change[card_index].tv_sec) +
365                                 1e-9 * (now.tv_nsec - last_mode_scan_change[card_index].tv_nsec);
366                         if (sec_since_last_switch > switch_time_s) {
367                                 // It isn't this mode; try the next one.
368                                 mode_scanlist_index[card_index]++;
369                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
370                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
371                                 last_mode_scan_change[card_index] = now;
372                         }
373                 }
374         }
375
376         int64_t frame_length = int64_t(TIMEBASE * video_format.frame_rate_den) / video_format.frame_rate_nom;
377
378         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
379         if (num_samples > OUTPUT_FREQUENCY / 10) {
380                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
381                         card_index, int(audio_frame.len), int(audio_offset),
382                         timecode, int(video_frame.len), int(video_offset), video_format.id);
383                 if (video_frame.owner) {
384                         video_frame.owner->release_frame(video_frame);
385                 }
386                 if (audio_frame.owner) {
387                         audio_frame.owner->release_frame(audio_frame);
388                 }
389                 return;
390         }
391
392         int64_t local_pts = card->next_local_pts;
393         int dropped_frames = 0;
394         if (card->last_timecode != -1) {
395                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
396         }
397
398         // Convert the audio to stereo fp32 and add it.
399         vector<float> audio;
400         audio.resize(num_samples * 2);
401         switch (audio_format.bits_per_sample) {
402         case 0:
403                 assert(num_samples == 0);
404                 break;
405         case 24:
406                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
407                 break;
408         case 32:
409                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
410                 break;
411         default:
412                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
413                 assert(false);
414         }
415
416         // Add the audio.
417         {
418                 unique_lock<mutex> lock(card->audio_mutex);
419
420                 // Number of samples per frame if we need to insert silence.
421                 // (Could be nonintegral, but resampling will save us then.)
422                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
423
424                 if (dropped_frames > MAX_FPS * 2) {
425                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
426                                 card_index, card->last_timecode, timecode);
427                         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
428                         dropped_frames = 0;
429                 } else if (dropped_frames > 0) {
430                         // Insert silence as needed.
431                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
432                                 card_index, dropped_frames, timecode);
433                         vector<float> silence(silence_samples * 2, 0.0f);
434                         for (int i = 0; i < dropped_frames; ++i) {
435                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
436                                 // Note that if the format changed in the meantime, we have
437                                 // no way of detecting that; we just have to assume the frame length
438                                 // is always the same.
439                                 local_pts += frame_length;
440                         }
441                 }
442                 if (num_samples == 0) {
443                         audio.resize(silence_samples * 2);
444                         num_samples = silence_samples;
445                 }
446                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
447                 card->next_local_pts = local_pts + frame_length;
448         }
449
450         card->last_timecode = timecode;
451
452         // Done with the audio, so release it.
453         if (audio_frame.owner) {
454                 audio_frame.owner->release_frame(audio_frame);
455         }
456
457         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
458         if (video_frame.len - video_offset == 0 ||
459             video_frame.len - video_offset != expected_length) {
460                 if (video_frame.len != 0) {
461                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
462                                 card_index, video_frame.len - video_offset, expected_length);
463                 }
464                 if (video_frame.owner) {
465                         video_frame.owner->release_frame(video_frame);
466                 }
467
468                 // Still send on the information that we _had_ a frame, even though it's corrupted,
469                 // so that pts can go up accordingly.
470                 {
471                         unique_lock<mutex> lock(bmusb_mutex);
472                         CaptureCard::NewFrame new_frame;
473                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
474                         new_frame.length = frame_length;
475                         new_frame.interlaced = false;
476                         new_frame.ready_fence = nullptr;
477                         new_frame.dropped_frames = dropped_frames;
478                         card->new_frames.push(move(new_frame));
479                         card->new_frames_changed.notify_all();
480                 }
481                 return;
482         }
483
484         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
485
486         unsigned num_fields = video_format.interlaced ? 2 : 1;
487         timespec frame_upload_start;
488         if (video_format.interlaced) {
489                 // Send the two fields along as separate frames; the other side will need to add
490                 // a deinterlacer to actually get this right.
491                 assert(video_format.height % 2 == 0);
492                 video_format.height /= 2;
493                 assert(frame_length % 2 == 0);
494                 frame_length /= 2;
495                 num_fields = 2;
496                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
497         }
498         userdata->last_interlaced = video_format.interlaced;
499         userdata->last_has_signal = video_format.has_signal;
500         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
501         userdata->last_frame_rate_den = video_format.frame_rate_den;
502         RefCountedFrame frame(video_frame);
503
504         // Upload the textures.
505         size_t cbcr_width = video_format.width / 2;
506         size_t cbcr_offset = video_offset / 2;
507         size_t y_offset = video_frame.size / 2 + video_offset / 2;
508
509         for (unsigned field = 0; field < num_fields; ++field) {
510                 unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
511
512                 if (userdata->tex_y[field] == 0 ||
513                     userdata->tex_cbcr[field] == 0 ||
514                     video_format.width != userdata->last_width[field] ||
515                     video_format.height != userdata->last_height[field]) {
516                         // We changed resolution since last use of this texture, so we need to create
517                         // a new object. Note that this each card has its own PBOFrameAllocator,
518                         // we don't need to worry about these flip-flopping between resolutions.
519                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
520                         check_error();
521                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
522                         check_error();
523                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
524                         check_error();
525                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
526                         check_error();
527                         userdata->last_width[field] = video_format.width;
528                         userdata->last_height[field] = video_format.height;
529                 }
530
531                 GLuint pbo = userdata->pbo;
532                 check_error();
533                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
534                 check_error();
535                 glMemoryBarrier(GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT);
536                 check_error();
537
538                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
539                 check_error();
540                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t)));
541                 check_error();
542                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
543                 check_error();
544                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(y_offset + video_format.width * field_start_line));
545                 check_error();
546                 glBindTexture(GL_TEXTURE_2D, 0);
547                 check_error();
548                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
549                 check_error();
550                 GLsync fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
551                 check_error();
552                 assert(fence != nullptr);
553
554                 if (field == 1) {
555                         // Don't upload the second field as fast as we can; wait until
556                         // the field time has approximately passed. (Otherwise, we could
557                         // get timing jitter against the other sources, and possibly also
558                         // against the video display, although the latter is not as critical.)
559                         // This requires our system clock to be reasonably close to the
560                         // video clock, but that's not an unreasonable assumption.
561                         timespec second_field_start;
562                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
563                                 frame_length * 1000000000 / TIMEBASE;
564                         second_field_start.tv_sec = frame_upload_start.tv_sec +
565                                 second_field_start.tv_nsec / 1000000000;
566                         second_field_start.tv_nsec %= 1000000000;
567
568                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
569                                                &second_field_start, nullptr) == -1 &&
570                                errno == EINTR) ;
571                 }
572
573                 {
574                         unique_lock<mutex> lock(bmusb_mutex);
575                         CaptureCard::NewFrame new_frame;
576                         new_frame.frame = frame;
577                         new_frame.length = frame_length;
578                         new_frame.field = field;
579                         new_frame.interlaced = video_format.interlaced;
580                         new_frame.ready_fence = fence;
581                         new_frame.dropped_frames = dropped_frames;
582                         card->new_frames.push(move(new_frame));
583                         card->new_frames_changed.notify_all();
584                 }
585         }
586 }
587
588 void Mixer::thread_func()
589 {
590         eglBindAPI(EGL_OPENGL_API);
591         QOpenGLContext *context = create_context(mixer_surface);
592         if (!make_current(context, mixer_surface)) {
593                 printf("oops\n");
594                 exit(1);
595         }
596
597         struct timespec start, now;
598         clock_gettime(CLOCK_MONOTONIC, &start);
599
600         int frame = 0;
601         int stats_dropped_frames = 0;
602
603         while (!should_quit) {
604                 CaptureCard::NewFrame new_frames[MAX_CARDS];
605                 bool has_new_frame[MAX_CARDS] = { false };
606                 int num_samples[MAX_CARDS] = { 0 };
607
608                 // The first card is the master timer, so wait for it to have a new frame.
609                 // TODO: Make configurable, and with a timeout.
610                 unsigned master_card_index = 0;
611
612                 {
613                         unique_lock<mutex> lock(bmusb_mutex);
614
615                         cards[master_card_index].new_frames_changed.wait(lock, [this, master_card_index]{ return !cards[master_card_index].new_frames.empty(); });
616
617                         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
618                                 CaptureCard *card = &cards[card_index];
619                                 if (card->new_frames.empty()) {
620                                         assert(card_index != master_card_index);
621                                         card->queue_length_policy.update_policy(-1);
622                                         continue;
623                                 }
624                                 new_frames[card_index] = move(card->new_frames.front());
625                                 has_new_frame[card_index] = true;
626                                 card->new_frames.pop();
627                                 card->new_frames_changed.notify_all();
628
629                                 int num_samples_times_timebase = OUTPUT_FREQUENCY * new_frames[card_index].length + card->fractional_samples;
630                                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
631                                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
632                                 assert(num_samples[card_index] >= 0);
633
634                                 if (card_index != master_card_index) {
635                                         // If we have excess frames compared to the policy for this card,
636                                         // drop frames from the head.
637                                         card->queue_length_policy.update_policy(card->new_frames.size());
638                                         while (card->new_frames.size() > card->queue_length_policy.get_safe_queue_length()) {
639                                                 card->new_frames.pop();
640                                         }
641                                 }
642                         }
643                 }
644
645                 // Resample the audio as needed, including from previously dropped frames.
646                 assert(num_cards > 0);
647                 for (unsigned frame_num = 0; frame_num < new_frames[master_card_index].dropped_frames + 1; ++frame_num) {
648                         {
649                                 // Signal to the audio thread to process this frame.
650                                 unique_lock<mutex> lock(audio_mutex);
651                                 audio_task_queue.push(AudioTask{pts_int, num_samples[master_card_index]});
652                                 audio_task_queue_changed.notify_one();
653                         }
654                         if (frame_num != new_frames[master_card_index].dropped_frames) {
655                                 // For dropped frames, increase the pts. Note that if the format changed
656                                 // in the meantime, we have no way of detecting that; we just have to
657                                 // assume the frame length is always the same.
658                                 ++stats_dropped_frames;
659                                 pts_int += new_frames[master_card_index].length;
660                         }
661                 }
662
663                 if (audio_level_callback != nullptr) {
664                         unique_lock<mutex> lock(compressor_mutex);
665                         double loudness_s = r128.loudness_S();
666                         double loudness_i = r128.integrated();
667                         double loudness_range_low = r128.range_min();
668                         double loudness_range_high = r128.range_max();
669
670                         audio_level_callback(loudness_s, 20.0 * log10(peak),
671                                              loudness_i, loudness_range_low, loudness_range_high,
672                                              gain_staging_db, 20.0 * log10(final_makeup_gain),
673                                              correlation.get_correlation());
674                 }
675
676                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
677                         if (card_index == master_card_index || !has_new_frame[card_index]) {
678                                 continue;
679                         }
680                         if (new_frames[card_index].frame->len == 0) {
681                                 ++new_frames[card_index].dropped_frames;
682                         }
683                         if (new_frames[card_index].dropped_frames > 0) {
684                                 printf("Card %u dropped %d frames before this\n",
685                                         card_index, int(new_frames[card_index].dropped_frames));
686                         }
687                 }
688
689                 // If the first card is reporting a corrupted or otherwise dropped frame,
690                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
691                 if (new_frames[master_card_index].frame->len == 0) {
692                         ++stats_dropped_frames;
693                         pts_int += new_frames[master_card_index].length;
694                         continue;
695                 }
696
697                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
698                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
699                                 continue;
700
701                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
702                         assert(new_frame->frame != nullptr);
703                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
704                         check_error();
705
706                         // The new texture might still be uploaded,
707                         // tell the GPU to wait until it's there.
708                         if (new_frame->ready_fence) {
709                                 glWaitSync(new_frame->ready_fence, /*flags=*/0, GL_TIMEOUT_IGNORED);
710                                 check_error();
711                                 glDeleteSync(new_frame->ready_fence);
712                                 check_error();
713                         }
714                 }
715
716                 // Get the main chain from the theme, and set its state immediately.
717                 Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
718                 EffectChain *chain = theme_main_chain.chain;
719                 theme_main_chain.setup_chain();
720                 //theme_main_chain.chain->enable_phase_timing(true);
721
722                 GLuint y_tex, cbcr_tex;
723                 bool got_frame = h264_encoder->begin_frame(&y_tex, &cbcr_tex);
724                 assert(got_frame);
725
726                 // Render main chain.
727                 GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
728                 GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
729                 GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
730                 check_error();
731                 chain->render_to_fbo(fbo, WIDTH, HEIGHT);
732                 resource_pool->release_fbo(fbo);
733
734                 subsample_chroma(cbcr_full_tex, cbcr_tex);
735                 resource_pool->release_2d_texture(cbcr_full_tex);
736
737                 // Set the right state for rgba_tex.
738                 glBindFramebuffer(GL_FRAMEBUFFER, 0);
739                 glBindTexture(GL_TEXTURE_2D, rgba_tex);
740                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
741                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
742                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
743
744                 RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
745                 check_error();
746
747                 const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
748                 h264_encoder->end_frame(fence, pts_int + av_delay, theme_main_chain.input_frames);
749                 ++frame;
750                 pts_int += new_frames[master_card_index].length;
751
752                 // The live frame just shows the RGBA texture we just rendered.
753                 // It owns rgba_tex now.
754                 DisplayFrame live_frame;
755                 live_frame.chain = display_chain.get();
756                 live_frame.setup_chain = [this, rgba_tex]{
757                         display_input->set_texture_num(rgba_tex);
758                 };
759                 live_frame.ready_fence = fence;
760                 live_frame.input_frames = {};
761                 live_frame.temp_textures = { rgba_tex };
762                 output_channel[OUTPUT_LIVE].output_frame(live_frame);
763
764                 // Set up preview and any additional channels.
765                 for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
766                         DisplayFrame display_frame;
767                         Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
768                         display_frame.chain = chain.chain;
769                         display_frame.setup_chain = chain.setup_chain;
770                         display_frame.ready_fence = fence;
771                         display_frame.input_frames = chain.input_frames;
772                         display_frame.temp_textures = {};
773                         output_channel[i].output_frame(display_frame);
774                 }
775
776                 clock_gettime(CLOCK_MONOTONIC, &now);
777                 double elapsed = now.tv_sec - start.tv_sec +
778                         1e-9 * (now.tv_nsec - start.tv_nsec);
779                 if (frame % 100 == 0) {
780                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
781                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
782                                 1e3 * elapsed / frame);
783                 //      chain->print_phase_timing();
784                 }
785
786                 if (should_cut.exchange(false)) {  // Test and clear.
787                         string filename = generate_local_dump_filename(frame);
788                         printf("Starting new recording: %s\n", filename.c_str());
789                         h264_encoder->shutdown();
790                         httpd.close_output_file();
791                         httpd.open_output_file(filename.c_str());
792                         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
793                 }
794
795 #if 0
796                 // Reset every 100 frames, so that local variations in frame times
797                 // (especially for the first few frames, when the shaders are
798                 // compiled etc.) don't make it hard to measure for the entire
799                 // remaining duration of the program.
800                 if (frame == 10000) {
801                         frame = 0;
802                         start = now;
803                 }
804 #endif
805                 check_error();
806         }
807
808         resource_pool->clean_context();
809 }
810
811 void Mixer::audio_thread_func()
812 {
813         while (!should_quit) {
814                 AudioTask task;
815
816                 {
817                         unique_lock<mutex> lock(audio_mutex);
818                         audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
819                         task = audio_task_queue.front();
820                         audio_task_queue.pop();
821                 }
822
823                 process_audio_one_frame(task.pts_int, task.num_samples);
824         }
825 }
826
827 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
828 {
829         vector<float> samples_card;
830         vector<float> samples_out;
831
832         // TODO: Allow mixing audio from several sources.
833         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
834         assert(selected_audio_card < num_cards);
835
836         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
837                 samples_card.resize(num_samples * 2);
838                 {
839                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
840                         if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
841                                 printf("Card %d reported previous underrun.\n", card_index);
842                         }
843                 }
844                 if (card_index == selected_audio_card) {
845                         samples_out = move(samples_card);
846                 }
847         }
848
849         // Cut away everything under 120 Hz (or whatever the cutoff is);
850         // we don't need it for voice, and it will reduce headroom
851         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
852         // should be dampened.)
853         if (locut_enabled) {
854                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
855         }
856
857         // Apply a level compressor to get the general level right.
858         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
859         // (or more precisely, near it, since we don't use infinite ratio),
860         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
861         // entirely arbitrary, but from practical tests with speech, it seems to
862         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
863         {
864                 unique_lock<mutex> lock(compressor_mutex);
865                 if (level_compressor_enabled) {
866                         float threshold = 0.01f;   // -40 dBFS.
867                         float ratio = 20.0f;
868                         float attack_time = 0.5f;
869                         float release_time = 20.0f;
870                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
871                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
872                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
873                 } else {
874                         // Just apply the gain we already had.
875                         float g = pow(10.0f, gain_staging_db / 20.0f);
876                         for (size_t i = 0; i < samples_out.size(); ++i) {
877                                 samples_out[i] *= g;
878                         }
879                 }
880         }
881
882 #if 0
883         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
884                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
885                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
886                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
887 #endif
888
889 //      float limiter_att, compressor_att;
890
891         // The real compressor.
892         if (compressor_enabled) {
893                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
894                 float ratio = 20.0f;
895                 float attack_time = 0.005f;
896                 float release_time = 0.040f;
897                 float makeup_gain = 2.0f;  // +6 dB.
898                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
899 //              compressor_att = compressor.get_attenuation();
900         }
901
902         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
903         // Note that since ratio is not infinite, we could go slightly higher than this.
904         if (limiter_enabled) {
905                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
906                 float ratio = 30.0f;
907                 float attack_time = 0.0f;  // Instant.
908                 float release_time = 0.020f;
909                 float makeup_gain = 1.0f;  // 0 dB.
910                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
911 //              limiter_att = limiter.get_attenuation();
912         }
913
914 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
915
916         // Upsample 4x to find interpolated peak.
917         peak_resampler.inp_data = samples_out.data();
918         peak_resampler.inp_count = samples_out.size() / 2;
919
920         vector<float> interpolated_samples_out;
921         interpolated_samples_out.resize(samples_out.size());
922         while (peak_resampler.inp_count > 0) {  // About four iterations.
923                 peak_resampler.out_data = &interpolated_samples_out[0];
924                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
925                 peak_resampler.process();
926                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
927                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
928                 peak_resampler.out_data = nullptr;
929         }
930
931         // At this point, we are most likely close to +0 LU, but all of our
932         // measurements have been on raw sample values, not R128 values.
933         // So we have a final makeup gain to get us to +0 LU; the gain
934         // adjustments required should be relatively small, and also, the
935         // offset shouldn't change much (only if the type of audio changes
936         // significantly). Thus, we shoot for updating this value basically
937         // “whenever we process buffers”, since the R128 calculation isn't exactly
938         // something we get out per-sample.
939         //
940         // Note that there's a feedback loop here, so we choose a very slow filter
941         // (half-time of 100 seconds).
942         double target_loudness_factor, alpha;
943         {
944                 unique_lock<mutex> lock(compressor_mutex);
945                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
946                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
947                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
948
949                 // If we're outside +/- 5 LU uncorrected, we don't count it as
950                 // a normal signal (probably silence) and don't change the
951                 // correction factor; just apply what we already have.
952                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
953                         alpha = 0.0;
954                 } else {
955                         // Formula adapted from
956                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
957                         const double half_time_s = 100.0;
958                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
959                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
960                 }
961
962                 double m = final_makeup_gain;
963                 for (size_t i = 0; i < samples_out.size(); i += 2) {
964                         samples_out[i + 0] *= m;
965                         samples_out[i + 1] *= m;
966                         m += (target_loudness_factor - m) * alpha;
967                 }
968                 final_makeup_gain = m;
969         }
970
971         // Find R128 levels and L/R correlation.
972         vector<float> left, right;
973         deinterleave_samples(samples_out, &left, &right);
974         float *ptrs[] = { left.data(), right.data() };
975         {
976                 unique_lock<mutex> lock(compressor_mutex);
977                 r128.process(left.size(), ptrs);
978                 correlation.process_samples(samples_out);
979         }
980
981         // Send the samples to the sound card.
982         if (alsa) {
983                 alsa->write(samples_out);
984         }
985
986         // And finally add them to the output.
987         h264_encoder->add_audio(frame_pts_int, move(samples_out));
988 }
989
990 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
991 {
992         GLuint vao;
993         glGenVertexArrays(1, &vao);
994         check_error();
995
996         glBindVertexArray(vao);
997         check_error();
998
999         // Extract Cb/Cr.
1000         GLuint fbo = resource_pool->create_fbo(dst_tex);
1001         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1002         glViewport(0, 0, WIDTH/2, HEIGHT/2);
1003         check_error();
1004
1005         glUseProgram(cbcr_program_num);
1006         check_error();
1007
1008         glActiveTexture(GL_TEXTURE0);
1009         check_error();
1010         glBindTexture(GL_TEXTURE_2D, src_tex);
1011         check_error();
1012         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1013         check_error();
1014         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1015         check_error();
1016         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1017         check_error();
1018
1019         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
1020         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
1021
1022         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
1023         check_error();
1024
1025         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1026                 glEnableVertexAttribArray(attr_index);
1027                 check_error();
1028                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1029                 check_error();
1030         }
1031
1032         glDrawArrays(GL_TRIANGLES, 0, 3);
1033         check_error();
1034
1035         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1036                 glDisableVertexAttribArray(attr_index);
1037                 check_error();
1038         }
1039
1040         glUseProgram(0);
1041         check_error();
1042         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1043         check_error();
1044
1045         resource_pool->release_fbo(fbo);
1046         glDeleteVertexArrays(1, &vao);
1047 }
1048
1049 void Mixer::release_display_frame(DisplayFrame *frame)
1050 {
1051         for (GLuint texnum : frame->temp_textures) {
1052                 resource_pool->release_2d_texture(texnum);
1053         }
1054         frame->temp_textures.clear();
1055         frame->ready_fence.reset();
1056         frame->input_frames.clear();
1057 }
1058
1059 void Mixer::start()
1060 {
1061         mixer_thread = thread(&Mixer::thread_func, this);
1062         audio_thread = thread(&Mixer::audio_thread_func, this);
1063 }
1064
1065 void Mixer::quit()
1066 {
1067         should_quit = true;
1068         mixer_thread.join();
1069         audio_thread.join();
1070 }
1071
1072 void Mixer::transition_clicked(int transition_num)
1073 {
1074         theme->transition_clicked(transition_num, pts());
1075 }
1076
1077 void Mixer::channel_clicked(int preview_num)
1078 {
1079         theme->channel_clicked(preview_num);
1080 }
1081
1082 void Mixer::reset_meters()
1083 {
1084         peak_resampler.reset();
1085         peak = 0.0f;
1086         r128.reset();
1087         r128.integr_start();
1088         correlation.reset();
1089 }
1090
1091 void Mixer::start_mode_scanning(unsigned card_index)
1092 {
1093         assert(card_index < num_cards);
1094         if (is_mode_scanning[card_index]) {
1095                 return;
1096         }
1097         is_mode_scanning[card_index] = true;
1098         mode_scanlist[card_index].clear();
1099         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
1100                 mode_scanlist[card_index].push_back(mode.first);
1101         }
1102         assert(!mode_scanlist[card_index].empty());
1103         mode_scanlist_index[card_index] = 0;
1104         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
1105         clock_gettime(CLOCK_MONOTONIC, &last_mode_scan_change[card_index]);
1106 }
1107
1108 Mixer::OutputChannel::~OutputChannel()
1109 {
1110         if (has_current_frame) {
1111                 parent->release_display_frame(&current_frame);
1112         }
1113         if (has_ready_frame) {
1114                 parent->release_display_frame(&ready_frame);
1115         }
1116 }
1117
1118 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1119 {
1120         // Store this frame for display. Remove the ready frame if any
1121         // (it was seemingly never used).
1122         {
1123                 unique_lock<mutex> lock(frame_mutex);
1124                 if (has_ready_frame) {
1125                         parent->release_display_frame(&ready_frame);
1126                 }
1127                 ready_frame = frame;
1128                 has_ready_frame = true;
1129         }
1130
1131         if (has_new_frame_ready_callback) {
1132                 new_frame_ready_callback();
1133         }
1134 }
1135
1136 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1137 {
1138         unique_lock<mutex> lock(frame_mutex);
1139         if (!has_current_frame && !has_ready_frame) {
1140                 return false;
1141         }
1142
1143         if (has_current_frame && has_ready_frame) {
1144                 // We have a new ready frame. Toss the current one.
1145                 parent->release_display_frame(&current_frame);
1146                 has_current_frame = false;
1147         }
1148         if (has_ready_frame) {
1149                 assert(!has_current_frame);
1150                 current_frame = ready_frame;
1151                 ready_frame.ready_fence.reset();  // Drop the refcount.
1152                 ready_frame.input_frames.clear();  // Drop the refcounts.
1153                 has_current_frame = true;
1154                 has_ready_frame = false;
1155         }
1156
1157         *frame = current_frame;
1158         return true;
1159 }
1160
1161 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1162 {
1163         new_frame_ready_callback = callback;
1164         has_new_frame_ready_callback = true;
1165 }