]> git.sesse.net Git - nageru/blob - mixer.cpp
Add audio support for the DeckLink inputs.
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30
31 #include "bmusb/bmusb.h"
32 #include "context.h"
33 #include "decklink_capture.h"
34 #include "defs.h"
35 #include "flags.h"
36 #include "h264encode.h"
37 #include "pbo_frame_allocator.h"
38 #include "ref_counted_gl_sync.h"
39 #include "timebase.h"
40
41 class QOpenGLContext;
42
43 using namespace movit;
44 using namespace std;
45 using namespace std::placeholders;
46
47 Mixer *global_mixer = nullptr;
48
49 namespace {
50
51 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
52 {
53         assert(in_channels >= out_channels);
54         for (size_t i = 0; i < num_samples; ++i) {
55                 for (size_t j = 0; j < out_channels; ++j) {
56                         uint32_t s1 = *src++;
57                         uint32_t s2 = *src++;
58                         uint32_t s3 = *src++;
59                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
60                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
61                 }
62                 src += 3 * (in_channels - out_channels);
63         }
64 }
65
66 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
67 {
68         assert(in_channels >= out_channels);
69         for (size_t i = 0; i < num_samples; ++i) {
70                 for (size_t j = 0; j < out_channels; ++j) {
71                         // Note: Assumes little-endian.
72                         int32_t s = *(int32_t *)src;
73                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
74                         src += 4;
75                 }
76                 src += 4 * (in_channels - out_channels);
77         }
78 }
79
80 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
81 {
82         if (interlaced) {
83                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
84                         input_state->buffered_frames[card_index][frame_num] =
85                                 input_state->buffered_frames[card_index][frame_num - 1];
86                 }
87                 input_state->buffered_frames[card_index][0] = { frame, field_num };
88         } else {
89                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
90                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
91                 }
92         }
93 }
94
95 string generate_local_dump_filename(int frame)
96 {
97         time_t now = time(NULL);
98         tm now_tm;
99         localtime_r(&now, &now_tm);
100
101         char timestamp[256];
102         strftime(timestamp, sizeof(timestamp), "%F-%T%z", &now_tm);
103
104         // Use the frame number to disambiguate between two cuts starting
105         // on the same second.
106         char filename[256];
107         snprintf(filename, sizeof(filename), "%s%s-f%02d%s",
108                 LOCAL_DUMP_PREFIX, timestamp, frame % 100, LOCAL_DUMP_SUFFIX);
109         return filename;
110 }
111
112 }  // namespace
113
114 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
115         : httpd(WIDTH, HEIGHT),
116           num_cards(num_cards),
117           mixer_surface(create_surface(format)),
118           h264_encoder_surface(create_surface(format)),
119           correlation(OUTPUT_FREQUENCY),
120           level_compressor(OUTPUT_FREQUENCY),
121           limiter(OUTPUT_FREQUENCY),
122           compressor(OUTPUT_FREQUENCY)
123 {
124         httpd.open_output_file(generate_local_dump_filename(/*frame=*/0).c_str());
125         httpd.start(9095);
126
127         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
128         check_error();
129
130         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
131         // will be halved when sampling them, and we need to compensate here.
132         movit_texel_subpixel_precision /= 2.0;
133
134         resource_pool.reset(new ResourcePool);
135         theme.reset(new Theme("theme.lua", resource_pool.get(), num_cards));
136         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
137                 output_channel[i].parent = this;
138         }
139
140         ImageFormat inout_format;
141         inout_format.color_space = COLORSPACE_sRGB;
142         inout_format.gamma_curve = GAMMA_sRGB;
143
144         // Display chain; shows the live output produced by the main chain (its RGBA version).
145         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
146         check_error();
147         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
148         display_chain->add_input(display_input);
149         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
150         display_chain->set_dither_bits(0);  // Don't bother.
151         display_chain->finalize();
152
153         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
154
155         // First try initializing the PCI devices, then USB, until we have the desired number of cards.
156         unsigned num_pci_devices = 0, num_usb_devices = 0;
157         unsigned card_index = 0;
158
159         IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
160         if (decklink_iterator != nullptr) {
161                 for ( ; card_index < num_cards; ++card_index) {
162                         IDeckLink *decklink;
163                         if (decklink_iterator->Next(&decklink) != S_OK) {
164                                 break;
165                         }
166
167                         configure_card(card_index, format, new DeckLinkCapture(decklink, card_index));
168                         ++num_pci_devices;
169                 }
170                 decklink_iterator->Release();
171                 fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
172         } else {
173                 fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
174         }
175         for ( ; card_index < num_cards; ++card_index) {
176                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices));
177                 ++num_usb_devices;
178         }
179
180         if (num_usb_devices > 0) {
181                 BMUSBCapture::start_bm_thread();
182         }
183
184         for (card_index = 0; card_index < num_cards; ++card_index) {
185                 cards[card_index].capture->start_bm_capture();
186         }
187
188         // Set up stuff for NV12 conversion.
189
190         // Cb/Cr shader.
191         string cbcr_vert_shader =
192                 "#version 130 \n"
193                 " \n"
194                 "in vec2 position; \n"
195                 "in vec2 texcoord; \n"
196                 "out vec2 tc0; \n"
197                 "uniform vec2 foo_chroma_offset_0; \n"
198                 " \n"
199                 "void main() \n"
200                 "{ \n"
201                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
202                 "    // \n"
203                 "    //   2.000  0.000  0.000 -1.000 \n"
204                 "    //   0.000  2.000  0.000 -1.000 \n"
205                 "    //   0.000  0.000 -2.000 -1.000 \n"
206                 "    //   0.000  0.000  0.000  1.000 \n"
207                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
208                 "    vec2 flipped_tc = texcoord; \n"
209                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
210                 "} \n";
211         string cbcr_frag_shader =
212                 "#version 130 \n"
213                 "in vec2 tc0; \n"
214                 "uniform sampler2D cbcr_tex; \n"
215                 "out vec4 FragColor; \n"
216                 "void main() { \n"
217                 "    FragColor = texture(cbcr_tex, tc0); \n"
218                 "} \n";
219         vector<string> frag_shader_outputs;
220         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
221
222         float vertices[] = {
223                 0.0f, 2.0f,
224                 0.0f, 0.0f,
225                 2.0f, 0.0f
226         };
227         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
228         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
229         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
230
231         r128.init(2, OUTPUT_FREQUENCY);
232         r128.integr_start();
233
234         locut.init(FILTER_HPF, 2);
235
236         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
237         // and there's a limit to how important the peak meter is.
238         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
239
240         alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
241 }
242
243 Mixer::~Mixer()
244 {
245         resource_pool->release_glsl_program(cbcr_program_num);
246         glDeleteBuffers(1, &cbcr_vbo);
247         BMUSBCapture::stop_bm_thread();
248
249         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
250                 {
251                         unique_lock<mutex> lock(bmusb_mutex);
252                         cards[card_index].should_quit = true;  // Unblock thread.
253                         cards[card_index].new_data_ready_changed.notify_all();
254                 }
255                 cards[card_index].capture->stop_dequeue_thread();
256         }
257
258         h264_encoder.reset(nullptr);
259 }
260
261 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
262 {
263         printf("Configuring card %d...\n", card_index);
264
265         CaptureCard *card = &cards[card_index];
266         card->capture = capture;
267         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
268         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
269         card->capture->set_video_frame_allocator(card->frame_allocator.get());
270         card->surface = create_surface(format);
271         card->capture->set_dequeue_thread_callbacks(
272                 [card]{
273                         eglBindAPI(EGL_OPENGL_API);
274                         card->context = create_context(card->surface);
275                         if (!make_current(card->context, card->surface)) {
276                                 printf("failed to create bmusb context\n");
277                                 exit(1);
278                         }
279                 },
280                 [this]{
281                         resource_pool->clean_context();
282                 });
283         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
284         card->capture->configure_card();
285 }
286
287
288 namespace {
289
290 int unwrap_timecode(uint16_t current_wrapped, int last)
291 {
292         uint16_t last_wrapped = last & 0xffff;
293         if (current_wrapped > last_wrapped) {
294                 return (last & ~0xffff) | current_wrapped;
295         } else {
296                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
297         }
298 }
299
300 float find_peak(const float *samples, size_t num_samples)
301 {
302         float m = fabs(samples[0]);
303         for (size_t i = 1; i < num_samples; ++i) {
304                 m = max(m, fabs(samples[i]));
305         }
306         return m;
307 }
308
309 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
310 {
311         size_t num_samples = in.size() / 2;
312         out_l->resize(num_samples);
313         out_r->resize(num_samples);
314
315         const float *inptr = in.data();
316         float *lptr = &(*out_l)[0];
317         float *rptr = &(*out_r)[0];
318         for (size_t i = 0; i < num_samples; ++i) {
319                 *lptr++ = *inptr++;
320                 *rptr++ = *inptr++;
321         }
322 }
323
324 }  // namespace
325
326 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
327                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
328                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
329 {
330         CaptureCard *card = &cards[card_index];
331
332         int64_t frame_length = int64_t(TIMEBASE * video_format.frame_rate_den) / video_format.frame_rate_nom;
333
334         size_t num_samples = (audio_frame.len >= audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
335         if (num_samples > OUTPUT_FREQUENCY / 10) {
336                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
337                         card_index, int(audio_frame.len), int(audio_offset),
338                         timecode, int(video_frame.len), int(video_offset), video_format.id);
339                 if (video_frame.owner) {
340                         video_frame.owner->release_frame(video_frame);
341                 }
342                 if (audio_frame.owner) {
343                         audio_frame.owner->release_frame(audio_frame);
344                 }
345                 return;
346         }
347
348         int64_t local_pts = card->next_local_pts;
349         int dropped_frames = 0;
350         if (card->last_timecode != -1) {
351                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
352         }
353
354         // Convert the audio to stereo fp32 and add it.
355         vector<float> audio;
356         audio.resize(num_samples * 2);
357         switch (audio_format.bits_per_sample) {
358         case 24:
359                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
360                 break;
361         case 32:
362                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
363                 break;
364         default:
365                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
366                 assert(false);
367         }
368
369         // Add the audio.
370         {
371                 unique_lock<mutex> lock(card->audio_mutex);
372
373                 // Number of samples per frame if we need to insert silence.
374                 // (Could be nonintegral, but resampling will save us then.)
375                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
376
377                 if (dropped_frames > MAX_FPS * 2) {
378                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
379                                 card_index, card->last_timecode, timecode);
380                         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
381                         dropped_frames = 0;
382                 } else if (dropped_frames > 0) {
383                         // Insert silence as needed.
384                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
385                                 card_index, dropped_frames, timecode);
386                         vector<float> silence(silence_samples * 2, 0.0f);
387                         for (int i = 0; i < dropped_frames; ++i) {
388                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
389                                 // Note that if the format changed in the meantime, we have
390                                 // no way of detecting that; we just have to assume the frame length
391                                 // is always the same.
392                                 local_pts += frame_length;
393                         }
394                 }
395                 if (num_samples == 0) {
396                         audio.resize(silence_samples * 2);
397                         num_samples = silence_samples;
398                 }
399                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
400                 card->next_local_pts = local_pts + frame_length;
401         }
402
403         card->last_timecode = timecode;
404
405         // Done with the audio, so release it.
406         if (audio_frame.owner) {
407                 audio_frame.owner->release_frame(audio_frame);
408         }
409
410         {
411                 // Wait until the previous frame was consumed.
412                 unique_lock<mutex> lock(bmusb_mutex);
413                 card->new_data_ready_changed.wait(lock, [card]{ return !card->new_data_ready || card->should_quit; });
414                 if (card->should_quit) return;
415         }
416
417         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
418         if (video_frame.len - video_offset == 0 ||
419             video_frame.len - video_offset != expected_length) {
420                 if (video_frame.len != 0) {
421                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
422                                 card_index, video_frame.len - video_offset, expected_length);
423                 }
424                 if (video_frame.owner) {
425                         video_frame.owner->release_frame(video_frame);
426                 }
427
428                 // Still send on the information that we _had_ a frame, even though it's corrupted,
429                 // so that pts can go up accordingly.
430                 {
431                         unique_lock<mutex> lock(bmusb_mutex);
432                         card->new_data_ready = true;
433                         card->new_frame = RefCountedFrame(FrameAllocator::Frame());
434                         card->new_frame_length = frame_length;
435                         card->new_frame_interlaced = false;
436                         card->new_data_ready_fence = nullptr;
437                         card->dropped_frames = dropped_frames;
438                         card->new_data_ready_changed.notify_all();
439                 }
440                 return;
441         }
442
443         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
444
445         unsigned num_fields = video_format.interlaced ? 2 : 1;
446         timespec frame_upload_start;
447         if (video_format.interlaced) {
448                 // Send the two fields along as separate frames; the other side will need to add
449                 // a deinterlacer to actually get this right.
450                 assert(video_format.height % 2 == 0);
451                 video_format.height /= 2;
452                 assert(frame_length % 2 == 0);
453                 frame_length /= 2;
454                 num_fields = 2;
455                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
456         }
457         userdata->last_interlaced = video_format.interlaced;
458         userdata->last_has_signal = video_format.has_signal;
459         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
460         userdata->last_frame_rate_den = video_format.frame_rate_den;
461         RefCountedFrame new_frame(video_frame);
462
463         // Upload the textures.
464         size_t cbcr_width = video_format.width / 2;
465         size_t cbcr_offset = video_offset / 2;
466         size_t y_offset = video_frame.size / 2 + video_offset / 2;
467
468         for (unsigned field = 0; field < num_fields; ++field) {
469                 unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
470
471                 if (userdata->tex_y[field] == 0 ||
472                     userdata->tex_cbcr[field] == 0 ||
473                     video_format.width != userdata->last_width[field] ||
474                     video_format.height != userdata->last_height[field]) {
475                         // We changed resolution since last use of this texture, so we need to create
476                         // a new object. Note that this each card has its own PBOFrameAllocator,
477                         // we don't need to worry about these flip-flopping between resolutions.
478                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
479                         check_error();
480                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
481                         check_error();
482                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
483                         check_error();
484                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
485                         check_error();
486                         userdata->last_width[field] = video_format.width;
487                         userdata->last_height[field] = video_format.height;
488                 }
489
490                 GLuint pbo = userdata->pbo;
491                 check_error();
492                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
493                 check_error();
494                 glMemoryBarrier(GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT);
495                 check_error();
496
497                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
498                 check_error();
499                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t)));
500                 check_error();
501                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
502                 check_error();
503                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(y_offset + video_format.width * field_start_line));
504                 check_error();
505                 glBindTexture(GL_TEXTURE_2D, 0);
506                 check_error();
507                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
508                 check_error();
509                 GLsync fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
510                 check_error();
511                 assert(fence != nullptr);
512
513                 if (field == 1) {
514                         // Don't upload the second field as fast as we can; wait until
515                         // the field time has approximately passed. (Otherwise, we could
516                         // get timing jitter against the other sources, and possibly also
517                         // against the video display, although the latter is not as critical.)
518                         // This requires our system clock to be reasonably close to the
519                         // video clock, but that's not an unreasonable assumption.
520                         timespec second_field_start;
521                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
522                                 frame_length * 1000000000 / TIMEBASE;
523                         second_field_start.tv_sec = frame_upload_start.tv_sec +
524                                 second_field_start.tv_nsec / 1000000000;
525                         second_field_start.tv_nsec %= 1000000000;
526
527                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
528                                                &second_field_start, nullptr) == -1 &&
529                                errno == EINTR) ;
530                 }
531
532                 {
533                         unique_lock<mutex> lock(bmusb_mutex);
534                         card->new_data_ready = true;
535                         card->new_frame = new_frame;
536                         card->new_frame_length = frame_length;
537                         card->new_frame_field = field;
538                         card->new_frame_interlaced = video_format.interlaced;
539                         card->new_data_ready_fence = fence;
540                         card->dropped_frames = dropped_frames;
541                         card->new_data_ready_changed.notify_all();
542
543                         if (field != num_fields - 1) {
544                                 // Wait until the previous frame was consumed.
545                                 card->new_data_ready_changed.wait(lock, [card]{ return !card->new_data_ready || card->should_quit; });
546                                 if (card->should_quit) return;
547                         }
548                 }
549         }
550 }
551
552 void Mixer::thread_func()
553 {
554         eglBindAPI(EGL_OPENGL_API);
555         QOpenGLContext *context = create_context(mixer_surface);
556         if (!make_current(context, mixer_surface)) {
557                 printf("oops\n");
558                 exit(1);
559         }
560
561         struct timespec start, now;
562         clock_gettime(CLOCK_MONOTONIC, &start);
563
564         int frame = 0;
565         int stats_dropped_frames = 0;
566
567         while (!should_quit) {
568                 CaptureCard card_copy[MAX_CARDS];
569                 int num_samples[MAX_CARDS];
570
571                 {
572                         unique_lock<mutex> lock(bmusb_mutex);
573
574                         // The first card is the master timer, so wait for it to have a new frame.
575                         // TODO: Make configurable, and with a timeout.
576                         cards[0].new_data_ready_changed.wait(lock, [this]{ return cards[0].new_data_ready; });
577
578                         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
579                                 CaptureCard *card = &cards[card_index];
580                                 card_copy[card_index].new_data_ready = card->new_data_ready;
581                                 card_copy[card_index].new_frame = card->new_frame;
582                                 card_copy[card_index].new_frame_length = card->new_frame_length;
583                                 card_copy[card_index].new_frame_field = card->new_frame_field;
584                                 card_copy[card_index].new_frame_interlaced = card->new_frame_interlaced;
585                                 card_copy[card_index].new_data_ready_fence = card->new_data_ready_fence;
586                                 card_copy[card_index].dropped_frames = card->dropped_frames;
587                                 card->new_data_ready = false;
588                                 card->new_data_ready_changed.notify_all();
589
590                                 int num_samples_times_timebase = OUTPUT_FREQUENCY * card->new_frame_length + card->fractional_samples;
591                                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
592                                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
593                                 assert(num_samples[card_index] >= 0);
594                         }
595                 }
596
597                 // Resample the audio as needed, including from previously dropped frames.
598                 assert(num_cards > 0);
599                 for (unsigned frame_num = 0; frame_num < card_copy[0].dropped_frames + 1; ++frame_num) {
600                         {
601                                 // Signal to the audio thread to process this frame.
602                                 unique_lock<mutex> lock(audio_mutex);
603                                 audio_task_queue.push(AudioTask{pts_int, num_samples[0]});
604                                 audio_task_queue_changed.notify_one();
605                         }
606                         if (frame_num != card_copy[0].dropped_frames) {
607                                 // For dropped frames, increase the pts. Note that if the format changed
608                                 // in the meantime, we have no way of detecting that; we just have to
609                                 // assume the frame length is always the same.
610                                 ++stats_dropped_frames;
611                                 pts_int += card_copy[0].new_frame_length;
612                         }
613                 }
614
615                 if (audio_level_callback != nullptr) {
616                         unique_lock<mutex> lock(compressor_mutex);
617                         double loudness_s = r128.loudness_S();
618                         double loudness_i = r128.integrated();
619                         double loudness_range_low = r128.range_min();
620                         double loudness_range_high = r128.range_max();
621
622                         audio_level_callback(loudness_s, 20.0 * log10(peak),
623                                              loudness_i, loudness_range_low, loudness_range_high,
624                                              gain_staging_db, 20.0 * log10(final_makeup_gain),
625                                              correlation.get_correlation());
626                 }
627
628                 for (unsigned card_index = 1; card_index < num_cards; ++card_index) {
629                         if (card_copy[card_index].new_data_ready && card_copy[card_index].new_frame->len == 0) {
630                                 ++card_copy[card_index].dropped_frames;
631                         }
632                         if (card_copy[card_index].dropped_frames > 0) {
633                                 printf("Card %u dropped %d frames before this\n",
634                                         card_index, int(card_copy[card_index].dropped_frames));
635                         }
636                 }
637
638                 // If the first card is reporting a corrupted or otherwise dropped frame,
639                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
640                 if (card_copy[0].new_frame->len == 0) {
641                         ++stats_dropped_frames;
642                         pts_int += card_copy[0].new_frame_length;
643                         continue;
644                 }
645
646                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
647                         CaptureCard *card = &card_copy[card_index];
648                         if (!card->new_data_ready || card->new_frame->len == 0)
649                                 continue;
650
651                         assert(card->new_frame != nullptr);
652                         insert_new_frame(card->new_frame, card->new_frame_field, card->new_frame_interlaced, card_index, &input_state);
653                         check_error();
654
655                         // The new texture might still be uploaded,
656                         // tell the GPU to wait until it's there.
657                         if (card->new_data_ready_fence) {
658                                 glWaitSync(card->new_data_ready_fence, /*flags=*/0, GL_TIMEOUT_IGNORED);
659                                 check_error();
660                                 glDeleteSync(card->new_data_ready_fence);
661                                 check_error();
662                         }
663                 }
664
665                 // Get the main chain from the theme, and set its state immediately.
666                 Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
667                 EffectChain *chain = theme_main_chain.chain;
668                 theme_main_chain.setup_chain();
669                 //theme_main_chain.chain->enable_phase_timing(true);
670
671                 GLuint y_tex, cbcr_tex;
672                 bool got_frame = h264_encoder->begin_frame(&y_tex, &cbcr_tex);
673                 assert(got_frame);
674
675                 // Render main chain.
676                 GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
677                 GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
678                 GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
679                 check_error();
680                 chain->render_to_fbo(fbo, WIDTH, HEIGHT);
681                 resource_pool->release_fbo(fbo);
682
683                 subsample_chroma(cbcr_full_tex, cbcr_tex);
684                 resource_pool->release_2d_texture(cbcr_full_tex);
685
686                 // Set the right state for rgba_tex.
687                 glBindFramebuffer(GL_FRAMEBUFFER, 0);
688                 glBindTexture(GL_TEXTURE_2D, rgba_tex);
689                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
690                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
691                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
692
693                 RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
694                 check_error();
695
696                 const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
697                 h264_encoder->end_frame(fence, pts_int + av_delay, theme_main_chain.input_frames);
698                 ++frame;
699                 pts_int += card_copy[0].new_frame_length;
700
701                 // The live frame just shows the RGBA texture we just rendered.
702                 // It owns rgba_tex now.
703                 DisplayFrame live_frame;
704                 live_frame.chain = display_chain.get();
705                 live_frame.setup_chain = [this, rgba_tex]{
706                         display_input->set_texture_num(rgba_tex);
707                 };
708                 live_frame.ready_fence = fence;
709                 live_frame.input_frames = {};
710                 live_frame.temp_textures = { rgba_tex };
711                 output_channel[OUTPUT_LIVE].output_frame(live_frame);
712
713                 // Set up preview and any additional channels.
714                 for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
715                         DisplayFrame display_frame;
716                         Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
717                         display_frame.chain = chain.chain;
718                         display_frame.setup_chain = chain.setup_chain;
719                         display_frame.ready_fence = fence;
720                         display_frame.input_frames = chain.input_frames;
721                         display_frame.temp_textures = {};
722                         output_channel[i].output_frame(display_frame);
723                 }
724
725                 clock_gettime(CLOCK_MONOTONIC, &now);
726                 double elapsed = now.tv_sec - start.tv_sec +
727                         1e-9 * (now.tv_nsec - start.tv_nsec);
728                 if (frame % 100 == 0) {
729                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
730                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
731                                 1e3 * elapsed / frame);
732                 //      chain->print_phase_timing();
733                 }
734
735                 if (should_cut.exchange(false)) {  // Test and clear.
736                         string filename = generate_local_dump_filename(frame);
737                         printf("Starting new recording: %s\n", filename.c_str());
738                         h264_encoder->shutdown();
739                         httpd.close_output_file();
740                         httpd.open_output_file(filename.c_str());
741                         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
742                 }
743
744 #if 0
745                 // Reset every 100 frames, so that local variations in frame times
746                 // (especially for the first few frames, when the shaders are
747                 // compiled etc.) don't make it hard to measure for the entire
748                 // remaining duration of the program.
749                 if (frame == 10000) {
750                         frame = 0;
751                         start = now;
752                 }
753 #endif
754                 check_error();
755         }
756
757         resource_pool->clean_context();
758 }
759
760 void Mixer::audio_thread_func()
761 {
762         while (!should_quit) {
763                 AudioTask task;
764
765                 {
766                         unique_lock<mutex> lock(audio_mutex);
767                         audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
768                         task = audio_task_queue.front();
769                         audio_task_queue.pop();
770                 }
771
772                 process_audio_one_frame(task.pts_int, task.num_samples);
773         }
774 }
775
776 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
777 {
778         vector<float> samples_card;
779         vector<float> samples_out;
780
781         // TODO: Allow mixing audio from several sources.
782         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
783         assert(selected_audio_card < num_cards);
784
785         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
786                 samples_card.resize(num_samples * 2);
787                 {
788                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
789                         if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
790                                 printf("Card %d reported previous underrun.\n", card_index);
791                         }
792                 }
793                 if (card_index == selected_audio_card) {
794                         samples_out = move(samples_card);
795                 }
796         }
797
798         // Cut away everything under 120 Hz (or whatever the cutoff is);
799         // we don't need it for voice, and it will reduce headroom
800         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
801         // should be dampened.)
802         if (locut_enabled) {
803                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
804         }
805
806         // Apply a level compressor to get the general level right.
807         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
808         // (or more precisely, near it, since we don't use infinite ratio),
809         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
810         // entirely arbitrary, but from practical tests with speech, it seems to
811         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
812         {
813                 unique_lock<mutex> lock(compressor_mutex);
814                 if (level_compressor_enabled) {
815                         float threshold = 0.01f;   // -40 dBFS.
816                         float ratio = 20.0f;
817                         float attack_time = 0.5f;
818                         float release_time = 20.0f;
819                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
820                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
821                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
822                 } else {
823                         // Just apply the gain we already had.
824                         float g = pow(10.0f, gain_staging_db / 20.0f);
825                         for (size_t i = 0; i < samples_out.size(); ++i) {
826                                 samples_out[i] *= g;
827                         }
828                 }
829         }
830
831 #if 0
832         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
833                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
834                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
835                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
836 #endif
837
838 //      float limiter_att, compressor_att;
839
840         // The real compressor.
841         if (compressor_enabled) {
842                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
843                 float ratio = 20.0f;
844                 float attack_time = 0.005f;
845                 float release_time = 0.040f;
846                 float makeup_gain = 2.0f;  // +6 dB.
847                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
848 //              compressor_att = compressor.get_attenuation();
849         }
850
851         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
852         // Note that since ratio is not infinite, we could go slightly higher than this.
853         if (limiter_enabled) {
854                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
855                 float ratio = 30.0f;
856                 float attack_time = 0.0f;  // Instant.
857                 float release_time = 0.020f;
858                 float makeup_gain = 1.0f;  // 0 dB.
859                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
860 //              limiter_att = limiter.get_attenuation();
861         }
862
863 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
864
865         // Upsample 4x to find interpolated peak.
866         peak_resampler.inp_data = samples_out.data();
867         peak_resampler.inp_count = samples_out.size() / 2;
868
869         vector<float> interpolated_samples_out;
870         interpolated_samples_out.resize(samples_out.size());
871         while (peak_resampler.inp_count > 0) {  // About four iterations.
872                 peak_resampler.out_data = &interpolated_samples_out[0];
873                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
874                 peak_resampler.process();
875                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
876                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
877                 peak_resampler.out_data = nullptr;
878         }
879
880         // At this point, we are most likely close to +0 LU, but all of our
881         // measurements have been on raw sample values, not R128 values.
882         // So we have a final makeup gain to get us to +0 LU; the gain
883         // adjustments required should be relatively small, and also, the
884         // offset shouldn't change much (only if the type of audio changes
885         // significantly). Thus, we shoot for updating this value basically
886         // “whenever we process buffers”, since the R128 calculation isn't exactly
887         // something we get out per-sample.
888         //
889         // Note that there's a feedback loop here, so we choose a very slow filter
890         // (half-time of 100 seconds).
891         double target_loudness_factor, alpha;
892         {
893                 unique_lock<mutex> lock(compressor_mutex);
894                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
895                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
896                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
897
898                 // If we're outside +/- 5 LU uncorrected, we don't count it as
899                 // a normal signal (probably silence) and don't change the
900                 // correction factor; just apply what we already have.
901                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
902                         alpha = 0.0;
903                 } else {
904                         // Formula adapted from
905                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
906                         const double half_time_s = 100.0;
907                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
908                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
909                 }
910
911                 double m = final_makeup_gain;
912                 for (size_t i = 0; i < samples_out.size(); i += 2) {
913                         samples_out[i + 0] *= m;
914                         samples_out[i + 1] *= m;
915                         m += (target_loudness_factor - m) * alpha;
916                 }
917                 final_makeup_gain = m;
918         }
919
920         // Find R128 levels and L/R correlation.
921         vector<float> left, right;
922         deinterleave_samples(samples_out, &left, &right);
923         float *ptrs[] = { left.data(), right.data() };
924         {
925                 unique_lock<mutex> lock(compressor_mutex);
926                 r128.process(left.size(), ptrs);
927                 correlation.process_samples(samples_out);
928         }
929
930         // Send the samples to the sound card.
931         if (alsa) {
932                 alsa->write(samples_out);
933         }
934
935         // And finally add them to the output.
936         h264_encoder->add_audio(frame_pts_int, move(samples_out));
937 }
938
939 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
940 {
941         GLuint vao;
942         glGenVertexArrays(1, &vao);
943         check_error();
944
945         glBindVertexArray(vao);
946         check_error();
947
948         // Extract Cb/Cr.
949         GLuint fbo = resource_pool->create_fbo(dst_tex);
950         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
951         glViewport(0, 0, WIDTH/2, HEIGHT/2);
952         check_error();
953
954         glUseProgram(cbcr_program_num);
955         check_error();
956
957         glActiveTexture(GL_TEXTURE0);
958         check_error();
959         glBindTexture(GL_TEXTURE_2D, src_tex);
960         check_error();
961         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
962         check_error();
963         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
964         check_error();
965         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
966         check_error();
967
968         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
969         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
970
971         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
972         check_error();
973
974         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
975                 glEnableVertexAttribArray(attr_index);
976                 check_error();
977                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
978                 check_error();
979         }
980
981         glDrawArrays(GL_TRIANGLES, 0, 3);
982         check_error();
983
984         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
985                 glDisableVertexAttribArray(attr_index);
986                 check_error();
987         }
988
989         glUseProgram(0);
990         check_error();
991         glBindFramebuffer(GL_FRAMEBUFFER, 0);
992         check_error();
993
994         resource_pool->release_fbo(fbo);
995         glDeleteVertexArrays(1, &vao);
996 }
997
998 void Mixer::release_display_frame(DisplayFrame *frame)
999 {
1000         for (GLuint texnum : frame->temp_textures) {
1001                 resource_pool->release_2d_texture(texnum);
1002         }
1003         frame->temp_textures.clear();
1004         frame->ready_fence.reset();
1005         frame->input_frames.clear();
1006 }
1007
1008 void Mixer::start()
1009 {
1010         mixer_thread = thread(&Mixer::thread_func, this);
1011         audio_thread = thread(&Mixer::audio_thread_func, this);
1012 }
1013
1014 void Mixer::quit()
1015 {
1016         should_quit = true;
1017         mixer_thread.join();
1018         audio_thread.join();
1019 }
1020
1021 void Mixer::transition_clicked(int transition_num)
1022 {
1023         theme->transition_clicked(transition_num, pts());
1024 }
1025
1026 void Mixer::channel_clicked(int preview_num)
1027 {
1028         theme->channel_clicked(preview_num);
1029 }
1030
1031 void Mixer::reset_meters()
1032 {
1033         peak_resampler.reset();
1034         peak = 0.0f;
1035         r128.reset();
1036         r128.integr_start();
1037         correlation.reset();
1038 }
1039
1040 Mixer::OutputChannel::~OutputChannel()
1041 {
1042         if (has_current_frame) {
1043                 parent->release_display_frame(&current_frame);
1044         }
1045         if (has_ready_frame) {
1046                 parent->release_display_frame(&ready_frame);
1047         }
1048 }
1049
1050 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1051 {
1052         // Store this frame for display. Remove the ready frame if any
1053         // (it was seemingly never used).
1054         {
1055                 unique_lock<mutex> lock(frame_mutex);
1056                 if (has_ready_frame) {
1057                         parent->release_display_frame(&ready_frame);
1058                 }
1059                 ready_frame = frame;
1060                 has_ready_frame = true;
1061         }
1062
1063         if (has_new_frame_ready_callback) {
1064                 new_frame_ready_callback();
1065         }
1066 }
1067
1068 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1069 {
1070         unique_lock<mutex> lock(frame_mutex);
1071         if (!has_current_frame && !has_ready_frame) {
1072                 return false;
1073         }
1074
1075         if (has_current_frame && has_ready_frame) {
1076                 // We have a new ready frame. Toss the current one.
1077                 parent->release_display_frame(&current_frame);
1078                 has_current_frame = false;
1079         }
1080         if (has_ready_frame) {
1081                 assert(!has_current_frame);
1082                 current_frame = ready_frame;
1083                 ready_frame.ready_fence.reset();  // Drop the refcount.
1084                 ready_frame.input_frames.clear();  // Drop the refcounts.
1085                 has_current_frame = true;
1086                 has_ready_frame = false;
1087         }
1088
1089         *frame = current_frame;
1090         return true;
1091 }
1092
1093 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1094 {
1095         new_frame_ready_callback = callback;
1096         has_new_frame_ready_callback = true;
1097 }