]> git.sesse.net Git - nageru/blob - mixer.cpp
Add an option to not flush PBOs explicitly; causes apitrace not to store the data...
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30
31 #include "bmusb/bmusb.h"
32 #include "context.h"
33 #include "decklink_capture.h"
34 #include "defs.h"
35 #include "flags.h"
36 #include "h264encode.h"
37 #include "pbo_frame_allocator.h"
38 #include "ref_counted_gl_sync.h"
39 #include "timebase.h"
40
41 class QOpenGLContext;
42
43 using namespace movit;
44 using namespace std;
45 using namespace std::placeholders;
46
47 Mixer *global_mixer = nullptr;
48
49 namespace {
50
51 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
52 {
53         assert(in_channels >= out_channels);
54         for (size_t i = 0; i < num_samples; ++i) {
55                 for (size_t j = 0; j < out_channels; ++j) {
56                         uint32_t s1 = *src++;
57                         uint32_t s2 = *src++;
58                         uint32_t s3 = *src++;
59                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
60                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
61                 }
62                 src += 3 * (in_channels - out_channels);
63         }
64 }
65
66 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
67 {
68         assert(in_channels >= out_channels);
69         for (size_t i = 0; i < num_samples; ++i) {
70                 for (size_t j = 0; j < out_channels; ++j) {
71                         // Note: Assumes little-endian.
72                         int32_t s = *(int32_t *)src;
73                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
74                         src += 4;
75                 }
76                 src += 4 * (in_channels - out_channels);
77         }
78 }
79
80 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
81 {
82         if (interlaced) {
83                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
84                         input_state->buffered_frames[card_index][frame_num] =
85                                 input_state->buffered_frames[card_index][frame_num - 1];
86                 }
87                 input_state->buffered_frames[card_index][0] = { frame, field_num };
88         } else {
89                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
90                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
91                 }
92         }
93 }
94
95 string generate_local_dump_filename(int frame)
96 {
97         time_t now = time(NULL);
98         tm now_tm;
99         localtime_r(&now, &now_tm);
100
101         char timestamp[256];
102         strftime(timestamp, sizeof(timestamp), "%F-%T%z", &now_tm);
103
104         // Use the frame number to disambiguate between two cuts starting
105         // on the same second.
106         char filename[256];
107         snprintf(filename, sizeof(filename), "%s%s-f%02d%s",
108                 LOCAL_DUMP_PREFIX, timestamp, frame % 100, LOCAL_DUMP_SUFFIX);
109         return filename;
110 }
111
112 }  // namespace
113
114 void QueueLengthPolicy::update_policy(int queue_length)
115 {
116         if (queue_length < 0) {  // Starvation.
117                 if (been_at_safe_point_since_last_starvation && safe_queue_length < 5) {
118                         ++safe_queue_length;
119                         fprintf(stderr, "Card %u: Starvation, increasing safe limit to %u frames\n",
120                                 card_index, safe_queue_length);
121                 }
122                 frames_with_at_least_one = 0;
123                 been_at_safe_point_since_last_starvation = false;
124                 return;
125         }
126         if (queue_length > 0) {
127                 if (queue_length >= int(safe_queue_length)) {
128                         been_at_safe_point_since_last_starvation = true;
129                 }
130                 if (++frames_with_at_least_one >= 50 && safe_queue_length > 0) {
131                         --safe_queue_length;
132                         fprintf(stderr, "Card %u: Spare frames for more than 50 frames, reducing safe limit to %u frames\n",
133                                 card_index, safe_queue_length);
134                         frames_with_at_least_one = 0;
135                 }
136         } else {
137                 frames_with_at_least_one = 0;
138         }
139 }
140
141 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
142         : httpd(WIDTH, HEIGHT),
143           num_cards(num_cards),
144           mixer_surface(create_surface(format)),
145           h264_encoder_surface(create_surface(format)),
146           correlation(OUTPUT_FREQUENCY),
147           level_compressor(OUTPUT_FREQUENCY),
148           limiter(OUTPUT_FREQUENCY),
149           compressor(OUTPUT_FREQUENCY)
150 {
151         httpd.open_output_file(generate_local_dump_filename(/*frame=*/0).c_str());
152         httpd.start(9095);
153
154         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
155         check_error();
156
157         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
158         // will be halved when sampling them, and we need to compensate here.
159         movit_texel_subpixel_precision /= 2.0;
160
161         resource_pool.reset(new ResourcePool);
162         theme.reset(new Theme(global_flags.theme_filename.c_str(), resource_pool.get(), num_cards));
163         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
164                 output_channel[i].parent = this;
165         }
166
167         ImageFormat inout_format;
168         inout_format.color_space = COLORSPACE_sRGB;
169         inout_format.gamma_curve = GAMMA_sRGB;
170
171         // Display chain; shows the live output produced by the main chain (its RGBA version).
172         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
173         check_error();
174         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
175         display_chain->add_input(display_input);
176         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
177         display_chain->set_dither_bits(0);  // Don't bother.
178         display_chain->finalize();
179
180         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
181
182         // First try initializing the PCI devices, then USB, until we have the desired number of cards.
183         unsigned num_pci_devices = 0, num_usb_devices = 0;
184         unsigned card_index = 0;
185
186         IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
187         if (decklink_iterator != nullptr) {
188                 for ( ; card_index < num_cards; ++card_index) {
189                         IDeckLink *decklink;
190                         if (decklink_iterator->Next(&decklink) != S_OK) {
191                                 break;
192                         }
193
194                         configure_card(card_index, format, new DeckLinkCapture(decklink, card_index));
195                         ++num_pci_devices;
196                 }
197                 decklink_iterator->Release();
198                 fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
199         } else {
200                 fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
201         }
202         for ( ; card_index < num_cards; ++card_index) {
203                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices));
204                 ++num_usb_devices;
205         }
206
207         if (num_usb_devices > 0) {
208                 BMUSBCapture::start_bm_thread();
209         }
210
211         for (card_index = 0; card_index < num_cards; ++card_index) {
212                 cards[card_index].queue_length_policy.reset(card_index);
213                 cards[card_index].capture->start_bm_capture();
214         }
215
216         // Set up stuff for NV12 conversion.
217
218         // Cb/Cr shader.
219         string cbcr_vert_shader =
220                 "#version 130 \n"
221                 " \n"
222                 "in vec2 position; \n"
223                 "in vec2 texcoord; \n"
224                 "out vec2 tc0; \n"
225                 "uniform vec2 foo_chroma_offset_0; \n"
226                 " \n"
227                 "void main() \n"
228                 "{ \n"
229                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
230                 "    // \n"
231                 "    //   2.000  0.000  0.000 -1.000 \n"
232                 "    //   0.000  2.000  0.000 -1.000 \n"
233                 "    //   0.000  0.000 -2.000 -1.000 \n"
234                 "    //   0.000  0.000  0.000  1.000 \n"
235                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
236                 "    vec2 flipped_tc = texcoord; \n"
237                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
238                 "} \n";
239         string cbcr_frag_shader =
240                 "#version 130 \n"
241                 "in vec2 tc0; \n"
242                 "uniform sampler2D cbcr_tex; \n"
243                 "out vec4 FragColor; \n"
244                 "void main() { \n"
245                 "    FragColor = texture(cbcr_tex, tc0); \n"
246                 "} \n";
247         vector<string> frag_shader_outputs;
248         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
249
250         float vertices[] = {
251                 0.0f, 2.0f,
252                 0.0f, 0.0f,
253                 2.0f, 0.0f
254         };
255         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
256         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
257         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
258
259         r128.init(2, OUTPUT_FREQUENCY);
260         r128.integr_start();
261
262         locut.init(FILTER_HPF, 2);
263
264         // If --flat-audio is given, turn off everything that messes with the sound,
265         // except the final makeup gain.
266         if (global_flags.flat_audio) {
267                 set_locut_enabled(false);
268                 set_limiter_enabled(false);
269                 set_compressor_enabled(false);
270         }
271
272         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
273         // and there's a limit to how important the peak meter is.
274         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
275
276         alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
277 }
278
279 Mixer::~Mixer()
280 {
281         resource_pool->release_glsl_program(cbcr_program_num);
282         glDeleteBuffers(1, &cbcr_vbo);
283         BMUSBCapture::stop_bm_thread();
284
285         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
286                 {
287                         unique_lock<mutex> lock(bmusb_mutex);
288                         cards[card_index].should_quit = true;  // Unblock thread.
289                         cards[card_index].new_frames_changed.notify_all();
290                 }
291                 cards[card_index].capture->stop_dequeue_thread();
292         }
293
294         h264_encoder.reset(nullptr);
295 }
296
297 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
298 {
299         printf("Configuring card %d...\n", card_index);
300
301         CaptureCard *card = &cards[card_index];
302         card->capture = capture;
303         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
304         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
305         card->capture->set_video_frame_allocator(card->frame_allocator.get());
306         card->surface = create_surface(format);
307         card->capture->set_dequeue_thread_callbacks(
308                 [card]{
309                         eglBindAPI(EGL_OPENGL_API);
310                         card->context = create_context(card->surface);
311                         if (!make_current(card->context, card->surface)) {
312                                 printf("failed to create bmusb context\n");
313                                 exit(1);
314                         }
315                 },
316                 [this]{
317                         resource_pool->clean_context();
318                 });
319         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
320         card->capture->configure_card();
321 }
322
323
324 namespace {
325
326 int unwrap_timecode(uint16_t current_wrapped, int last)
327 {
328         uint16_t last_wrapped = last & 0xffff;
329         if (current_wrapped > last_wrapped) {
330                 return (last & ~0xffff) | current_wrapped;
331         } else {
332                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
333         }
334 }
335
336 float find_peak(const float *samples, size_t num_samples)
337 {
338         float m = fabs(samples[0]);
339         for (size_t i = 1; i < num_samples; ++i) {
340                 m = max(m, fabs(samples[i]));
341         }
342         return m;
343 }
344
345 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
346 {
347         size_t num_samples = in.size() / 2;
348         out_l->resize(num_samples);
349         out_r->resize(num_samples);
350
351         const float *inptr = in.data();
352         float *lptr = &(*out_l)[0];
353         float *rptr = &(*out_r)[0];
354         for (size_t i = 0; i < num_samples; ++i) {
355                 *lptr++ = *inptr++;
356                 *rptr++ = *inptr++;
357         }
358 }
359
360 }  // namespace
361
362 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
363                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
364                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
365 {
366         CaptureCard *card = &cards[card_index];
367
368         if (is_mode_scanning[card_index]) {
369                 if (video_format.has_signal) {
370                         // Found a stable signal, so stop scanning.
371                         is_mode_scanning[card_index] = false;
372                 } else {
373                         static constexpr double switch_time_s = 0.5;  // Should be enough time for the signal to stabilize.
374                         timespec now;
375                         clock_gettime(CLOCK_MONOTONIC, &now);
376                         double sec_since_last_switch = (now.tv_sec - last_mode_scan_change[card_index].tv_sec) +
377                                 1e-9 * (now.tv_nsec - last_mode_scan_change[card_index].tv_nsec);
378                         if (sec_since_last_switch > switch_time_s) {
379                                 // It isn't this mode; try the next one.
380                                 mode_scanlist_index[card_index]++;
381                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
382                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
383                                 last_mode_scan_change[card_index] = now;
384                         }
385                 }
386         }
387
388         int64_t frame_length = int64_t(TIMEBASE * video_format.frame_rate_den) / video_format.frame_rate_nom;
389
390         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
391         if (num_samples > OUTPUT_FREQUENCY / 10) {
392                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
393                         card_index, int(audio_frame.len), int(audio_offset),
394                         timecode, int(video_frame.len), int(video_offset), video_format.id);
395                 if (video_frame.owner) {
396                         video_frame.owner->release_frame(video_frame);
397                 }
398                 if (audio_frame.owner) {
399                         audio_frame.owner->release_frame(audio_frame);
400                 }
401                 return;
402         }
403
404         int64_t local_pts = card->next_local_pts;
405         int dropped_frames = 0;
406         if (card->last_timecode != -1) {
407                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
408         }
409
410         // Convert the audio to stereo fp32 and add it.
411         vector<float> audio;
412         audio.resize(num_samples * 2);
413         switch (audio_format.bits_per_sample) {
414         case 0:
415                 assert(num_samples == 0);
416                 break;
417         case 24:
418                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
419                 break;
420         case 32:
421                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
422                 break;
423         default:
424                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
425                 assert(false);
426         }
427
428         // Add the audio.
429         {
430                 unique_lock<mutex> lock(card->audio_mutex);
431
432                 // Number of samples per frame if we need to insert silence.
433                 // (Could be nonintegral, but resampling will save us then.)
434                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
435
436                 if (dropped_frames > MAX_FPS * 2) {
437                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
438                                 card_index, card->last_timecode, timecode);
439                         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
440                         dropped_frames = 0;
441                 } else if (dropped_frames > 0) {
442                         // Insert silence as needed.
443                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
444                                 card_index, dropped_frames, timecode);
445                         vector<float> silence(silence_samples * 2, 0.0f);
446                         for (int i = 0; i < dropped_frames; ++i) {
447                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
448                                 // Note that if the format changed in the meantime, we have
449                                 // no way of detecting that; we just have to assume the frame length
450                                 // is always the same.
451                                 local_pts += frame_length;
452                         }
453                 }
454                 if (num_samples == 0) {
455                         audio.resize(silence_samples * 2);
456                         num_samples = silence_samples;
457                 }
458                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
459                 card->next_local_pts = local_pts + frame_length;
460         }
461
462         card->last_timecode = timecode;
463
464         // Done with the audio, so release it.
465         if (audio_frame.owner) {
466                 audio_frame.owner->release_frame(audio_frame);
467         }
468
469         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
470         if (video_frame.len - video_offset == 0 ||
471             video_frame.len - video_offset != expected_length) {
472                 if (video_frame.len != 0) {
473                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
474                                 card_index, video_frame.len - video_offset, expected_length);
475                 }
476                 if (video_frame.owner) {
477                         video_frame.owner->release_frame(video_frame);
478                 }
479
480                 // Still send on the information that we _had_ a frame, even though it's corrupted,
481                 // so that pts can go up accordingly.
482                 {
483                         unique_lock<mutex> lock(bmusb_mutex);
484                         CaptureCard::NewFrame new_frame;
485                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
486                         new_frame.length = frame_length;
487                         new_frame.interlaced = false;
488                         new_frame.dropped_frames = dropped_frames;
489                         card->new_frames.push(move(new_frame));
490                         card->new_frames_changed.notify_all();
491                 }
492                 return;
493         }
494
495         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
496
497         unsigned num_fields = video_format.interlaced ? 2 : 1;
498         timespec frame_upload_start;
499         if (video_format.interlaced) {
500                 // Send the two fields along as separate frames; the other side will need to add
501                 // a deinterlacer to actually get this right.
502                 assert(video_format.height % 2 == 0);
503                 video_format.height /= 2;
504                 assert(frame_length % 2 == 0);
505                 frame_length /= 2;
506                 num_fields = 2;
507                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
508         }
509         userdata->last_interlaced = video_format.interlaced;
510         userdata->last_has_signal = video_format.has_signal;
511         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
512         userdata->last_frame_rate_den = video_format.frame_rate_den;
513         RefCountedFrame frame(video_frame);
514
515         // Upload the textures.
516         size_t cbcr_width = video_format.width / 2;
517         size_t cbcr_offset = video_offset / 2;
518         size_t y_offset = video_frame.size / 2 + video_offset / 2;
519
520         for (unsigned field = 0; field < num_fields; ++field) {
521                 unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
522
523                 if (userdata->tex_y[field] == 0 ||
524                     userdata->tex_cbcr[field] == 0 ||
525                     video_format.width != userdata->last_width[field] ||
526                     video_format.height != userdata->last_height[field]) {
527                         // We changed resolution since last use of this texture, so we need to create
528                         // a new object. Note that this each card has its own PBOFrameAllocator,
529                         // we don't need to worry about these flip-flopping between resolutions.
530                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
531                         check_error();
532                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
533                         check_error();
534                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
535                         check_error();
536                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
537                         check_error();
538                         userdata->last_width[field] = video_format.width;
539                         userdata->last_height[field] = video_format.height;
540                 }
541
542                 GLuint pbo = userdata->pbo;
543                 check_error();
544                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
545                 check_error();
546                 if (global_flags.flush_pbos) {
547                         glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, 0, video_frame.size);
548                         check_error();
549                 }
550
551                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
552                 check_error();
553                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t)));
554                 check_error();
555                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
556                 check_error();
557                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(y_offset + video_format.width * field_start_line));
558                 check_error();
559                 glBindTexture(GL_TEXTURE_2D, 0);
560                 check_error();
561                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
562                 check_error();
563                 RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
564                 check_error();
565                 assert(fence.get() != nullptr);
566
567                 if (field == 1) {
568                         // Don't upload the second field as fast as we can; wait until
569                         // the field time has approximately passed. (Otherwise, we could
570                         // get timing jitter against the other sources, and possibly also
571                         // against the video display, although the latter is not as critical.)
572                         // This requires our system clock to be reasonably close to the
573                         // video clock, but that's not an unreasonable assumption.
574                         timespec second_field_start;
575                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
576                                 frame_length * 1000000000 / TIMEBASE;
577                         second_field_start.tv_sec = frame_upload_start.tv_sec +
578                                 second_field_start.tv_nsec / 1000000000;
579                         second_field_start.tv_nsec %= 1000000000;
580
581                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
582                                                &second_field_start, nullptr) == -1 &&
583                                errno == EINTR) ;
584                 }
585
586                 {
587                         unique_lock<mutex> lock(bmusb_mutex);
588                         CaptureCard::NewFrame new_frame;
589                         new_frame.frame = frame;
590                         new_frame.length = frame_length;
591                         new_frame.field = field;
592                         new_frame.interlaced = video_format.interlaced;
593                         new_frame.ready_fence = fence;
594                         new_frame.dropped_frames = dropped_frames;
595                         card->new_frames.push(move(new_frame));
596                         card->new_frames_changed.notify_all();
597                 }
598         }
599 }
600
601 void Mixer::thread_func()
602 {
603         eglBindAPI(EGL_OPENGL_API);
604         QOpenGLContext *context = create_context(mixer_surface);
605         if (!make_current(context, mixer_surface)) {
606                 printf("oops\n");
607                 exit(1);
608         }
609
610         struct timespec start, now;
611         clock_gettime(CLOCK_MONOTONIC, &start);
612
613         int frame = 0;
614         int stats_dropped_frames = 0;
615
616         while (!should_quit) {
617                 CaptureCard::NewFrame new_frames[MAX_CARDS];
618                 bool has_new_frame[MAX_CARDS] = { false };
619                 int num_samples[MAX_CARDS] = { 0 };
620
621                 // TODO: Add a timeout.
622                 unsigned master_card_index = theme->map_signal(master_clock_channel);
623                 assert(master_card_index < num_cards);
624
625                 get_one_frame_from_each_card(master_card_index, new_frames, has_new_frame, num_samples);
626                 schedule_audio_resampling_tasks(new_frames[master_card_index].dropped_frames, num_samples[master_card_index], new_frames[master_card_index].length);
627                 stats_dropped_frames += new_frames[master_card_index].dropped_frames;
628                 send_audio_level_callback();
629
630                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
631                         if (card_index == master_card_index || !has_new_frame[card_index]) {
632                                 continue;
633                         }
634                         if (new_frames[card_index].frame->len == 0) {
635                                 ++new_frames[card_index].dropped_frames;
636                         }
637                         if (new_frames[card_index].dropped_frames > 0) {
638                                 printf("Card %u dropped %d frames before this\n",
639                                         card_index, int(new_frames[card_index].dropped_frames));
640                         }
641                 }
642
643                 // If the first card is reporting a corrupted or otherwise dropped frame,
644                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
645                 if (new_frames[master_card_index].frame->len == 0) {
646                         ++stats_dropped_frames;
647                         pts_int += new_frames[master_card_index].length;
648                         continue;
649                 }
650
651                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
652                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
653                                 continue;
654
655                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
656                         assert(new_frame->frame != nullptr);
657                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
658                         check_error();
659
660                         // The new texture might still be uploaded,
661                         // tell the GPU to wait until it's there.
662                         if (new_frame->ready_fence) {
663                                 glWaitSync(new_frame->ready_fence.get(), /*flags=*/0, GL_TIMEOUT_IGNORED);
664                                 check_error();
665                                 new_frame->ready_fence.reset();
666                                 check_error();
667                         }
668                 }
669
670                 render_one_frame();
671                 ++frame;
672                 pts_int += new_frames[master_card_index].length;
673
674                 clock_gettime(CLOCK_MONOTONIC, &now);
675                 double elapsed = now.tv_sec - start.tv_sec +
676                         1e-9 * (now.tv_nsec - start.tv_nsec);
677                 if (frame % 100 == 0) {
678                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
679                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
680                                 1e3 * elapsed / frame);
681                 //      chain->print_phase_timing();
682                 }
683
684                 if (should_cut.exchange(false)) {  // Test and clear.
685                         string filename = generate_local_dump_filename(frame);
686                         printf("Starting new recording: %s\n", filename.c_str());
687                         h264_encoder->shutdown();
688                         httpd.close_output_file();
689                         httpd.open_output_file(filename.c_str());
690                         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
691                 }
692
693 #if 0
694                 // Reset every 100 frames, so that local variations in frame times
695                 // (especially for the first few frames, when the shaders are
696                 // compiled etc.) don't make it hard to measure for the entire
697                 // remaining duration of the program.
698                 if (frame == 10000) {
699                         frame = 0;
700                         start = now;
701                 }
702 #endif
703                 check_error();
704         }
705
706         resource_pool->clean_context();
707 }
708
709 void Mixer::get_one_frame_from_each_card(unsigned master_card_index, CaptureCard::NewFrame new_frames[MAX_CARDS], bool has_new_frame[MAX_CARDS], int num_samples[MAX_CARDS])
710 {
711         // The first card is the master timer, so wait for it to have a new frame.
712         unique_lock<mutex> lock(bmusb_mutex);
713         cards[master_card_index].new_frames_changed.wait(lock, [this, master_card_index]{ return !cards[master_card_index].new_frames.empty(); });
714
715         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
716                 CaptureCard *card = &cards[card_index];
717                 if (card->new_frames.empty()) {
718                         assert(card_index != master_card_index);
719                         card->queue_length_policy.update_policy(-1);
720                         continue;
721                 }
722                 new_frames[card_index] = move(card->new_frames.front());
723                 has_new_frame[card_index] = true;
724                 card->new_frames.pop();
725                 card->new_frames_changed.notify_all();
726
727                 int num_samples_times_timebase = OUTPUT_FREQUENCY * new_frames[card_index].length + card->fractional_samples;
728                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
729                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
730                 assert(num_samples[card_index] >= 0);
731
732                 if (card_index == master_card_index) {
733                         // We don't use the queue length policy for the master card,
734                         // but we will if it stops being the master. Thus, clear out
735                         // the policy in case we switch in the future.
736                         card->queue_length_policy.reset(card_index);
737                 } else {
738                         // If we have excess frames compared to the policy for this card,
739                         // drop frames from the head.
740                         card->queue_length_policy.update_policy(card->new_frames.size());
741                         while (card->new_frames.size() > card->queue_length_policy.get_safe_queue_length()) {
742                                 card->new_frames.pop();
743                         }
744                 }
745         }
746 }
747
748 void Mixer::schedule_audio_resampling_tasks(unsigned dropped_frames, int num_samples_per_frame, int length_per_frame)
749 {
750         // Resample the audio as needed, including from previously dropped frames.
751         assert(num_cards > 0);
752         for (unsigned frame_num = 0; frame_num < dropped_frames + 1; ++frame_num) {
753                 {
754                         // Signal to the audio thread to process this frame.
755                         unique_lock<mutex> lock(audio_mutex);
756                         audio_task_queue.push(AudioTask{pts_int, num_samples_per_frame});
757                         audio_task_queue_changed.notify_one();
758                 }
759                 if (frame_num != dropped_frames) {
760                         // For dropped frames, increase the pts. Note that if the format changed
761                         // in the meantime, we have no way of detecting that; we just have to
762                         // assume the frame length is always the same.
763                         pts_int += length_per_frame;
764                 }
765         }
766 }
767
768 void Mixer::render_one_frame()
769 {
770         // Get the main chain from the theme, and set its state immediately.
771         Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
772         EffectChain *chain = theme_main_chain.chain;
773         theme_main_chain.setup_chain();
774         //theme_main_chain.chain->enable_phase_timing(true);
775
776         GLuint y_tex, cbcr_tex;
777         bool got_frame = h264_encoder->begin_frame(&y_tex, &cbcr_tex);
778         assert(got_frame);
779
780         // Render main chain.
781         GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
782         GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
783         GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
784         check_error();
785         chain->render_to_fbo(fbo, WIDTH, HEIGHT);
786         resource_pool->release_fbo(fbo);
787
788         subsample_chroma(cbcr_full_tex, cbcr_tex);
789         resource_pool->release_2d_texture(cbcr_full_tex);
790
791         // Set the right state for rgba_tex.
792         glBindFramebuffer(GL_FRAMEBUFFER, 0);
793         glBindTexture(GL_TEXTURE_2D, rgba_tex);
794         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
795         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
796         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
797
798         RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
799         check_error();
800
801         const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
802         h264_encoder->end_frame(fence, pts_int + av_delay, theme_main_chain.input_frames);
803
804         // The live frame just shows the RGBA texture we just rendered.
805         // It owns rgba_tex now.
806         DisplayFrame live_frame;
807         live_frame.chain = display_chain.get();
808         live_frame.setup_chain = [this, rgba_tex]{
809                 display_input->set_texture_num(rgba_tex);
810         };
811         live_frame.ready_fence = fence;
812         live_frame.input_frames = {};
813         live_frame.temp_textures = { rgba_tex };
814         output_channel[OUTPUT_LIVE].output_frame(live_frame);
815
816         // Set up preview and any additional channels.
817         for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
818                 DisplayFrame display_frame;
819                 Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
820                 display_frame.chain = chain.chain;
821                 display_frame.setup_chain = chain.setup_chain;
822                 display_frame.ready_fence = fence;
823                 display_frame.input_frames = chain.input_frames;
824                 display_frame.temp_textures = {};
825                 output_channel[i].output_frame(display_frame);
826         }
827 }
828
829 void Mixer::send_audio_level_callback()
830 {
831         if (audio_level_callback == nullptr) {
832                 return;
833         }
834
835         unique_lock<mutex> lock(compressor_mutex);
836         double loudness_s = r128.loudness_S();
837         double loudness_i = r128.integrated();
838         double loudness_range_low = r128.range_min();
839         double loudness_range_high = r128.range_max();
840
841         audio_level_callback(loudness_s, 20.0 * log10(peak),
842                 loudness_i, loudness_range_low, loudness_range_high,
843                 gain_staging_db, 20.0 * log10(final_makeup_gain),
844                 correlation.get_correlation());
845 }
846
847 void Mixer::audio_thread_func()
848 {
849         while (!should_quit) {
850                 AudioTask task;
851
852                 {
853                         unique_lock<mutex> lock(audio_mutex);
854                         audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
855                         task = audio_task_queue.front();
856                         audio_task_queue.pop();
857                 }
858
859                 process_audio_one_frame(task.pts_int, task.num_samples);
860         }
861 }
862
863 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
864 {
865         vector<float> samples_card;
866         vector<float> samples_out;
867
868         // TODO: Allow mixing audio from several sources.
869         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
870         assert(selected_audio_card < num_cards);
871
872         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
873                 samples_card.resize(num_samples * 2);
874                 {
875                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
876                         if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
877                                 printf("Card %d reported previous underrun.\n", card_index);
878                         }
879                 }
880                 if (card_index == selected_audio_card) {
881                         samples_out = move(samples_card);
882                 }
883         }
884
885         // Cut away everything under 120 Hz (or whatever the cutoff is);
886         // we don't need it for voice, and it will reduce headroom
887         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
888         // should be dampened.)
889         if (locut_enabled) {
890                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
891         }
892
893         // Apply a level compressor to get the general level right.
894         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
895         // (or more precisely, near it, since we don't use infinite ratio),
896         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
897         // entirely arbitrary, but from practical tests with speech, it seems to
898         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
899         {
900                 unique_lock<mutex> lock(compressor_mutex);
901                 if (level_compressor_enabled) {
902                         float threshold = 0.01f;   // -40 dBFS.
903                         float ratio = 20.0f;
904                         float attack_time = 0.5f;
905                         float release_time = 20.0f;
906                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
907                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
908                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
909                 } else {
910                         // Just apply the gain we already had.
911                         float g = pow(10.0f, gain_staging_db / 20.0f);
912                         for (size_t i = 0; i < samples_out.size(); ++i) {
913                                 samples_out[i] *= g;
914                         }
915                 }
916         }
917
918 #if 0
919         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
920                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
921                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
922                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
923 #endif
924
925 //      float limiter_att, compressor_att;
926
927         // The real compressor.
928         if (compressor_enabled) {
929                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
930                 float ratio = 20.0f;
931                 float attack_time = 0.005f;
932                 float release_time = 0.040f;
933                 float makeup_gain = 2.0f;  // +6 dB.
934                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
935 //              compressor_att = compressor.get_attenuation();
936         }
937
938         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
939         // Note that since ratio is not infinite, we could go slightly higher than this.
940         if (limiter_enabled) {
941                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
942                 float ratio = 30.0f;
943                 float attack_time = 0.0f;  // Instant.
944                 float release_time = 0.020f;
945                 float makeup_gain = 1.0f;  // 0 dB.
946                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
947 //              limiter_att = limiter.get_attenuation();
948         }
949
950 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
951
952         // Upsample 4x to find interpolated peak.
953         peak_resampler.inp_data = samples_out.data();
954         peak_resampler.inp_count = samples_out.size() / 2;
955
956         vector<float> interpolated_samples_out;
957         interpolated_samples_out.resize(samples_out.size());
958         while (peak_resampler.inp_count > 0) {  // About four iterations.
959                 peak_resampler.out_data = &interpolated_samples_out[0];
960                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
961                 peak_resampler.process();
962                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
963                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
964                 peak_resampler.out_data = nullptr;
965         }
966
967         // At this point, we are most likely close to +0 LU, but all of our
968         // measurements have been on raw sample values, not R128 values.
969         // So we have a final makeup gain to get us to +0 LU; the gain
970         // adjustments required should be relatively small, and also, the
971         // offset shouldn't change much (only if the type of audio changes
972         // significantly). Thus, we shoot for updating this value basically
973         // “whenever we process buffers”, since the R128 calculation isn't exactly
974         // something we get out per-sample.
975         //
976         // Note that there's a feedback loop here, so we choose a very slow filter
977         // (half-time of 100 seconds).
978         double target_loudness_factor, alpha;
979         {
980                 unique_lock<mutex> lock(compressor_mutex);
981                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
982                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
983                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
984
985                 // If we're outside +/- 5 LU uncorrected, we don't count it as
986                 // a normal signal (probably silence) and don't change the
987                 // correction factor; just apply what we already have.
988                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
989                         alpha = 0.0;
990                 } else {
991                         // Formula adapted from
992                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
993                         const double half_time_s = 100.0;
994                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
995                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
996                 }
997
998                 double m = final_makeup_gain;
999                 for (size_t i = 0; i < samples_out.size(); i += 2) {
1000                         samples_out[i + 0] *= m;
1001                         samples_out[i + 1] *= m;
1002                         m += (target_loudness_factor - m) * alpha;
1003                 }
1004                 final_makeup_gain = m;
1005         }
1006
1007         // Find R128 levels and L/R correlation.
1008         vector<float> left, right;
1009         deinterleave_samples(samples_out, &left, &right);
1010         float *ptrs[] = { left.data(), right.data() };
1011         {
1012                 unique_lock<mutex> lock(compressor_mutex);
1013                 r128.process(left.size(), ptrs);
1014                 correlation.process_samples(samples_out);
1015         }
1016
1017         // Send the samples to the sound card.
1018         if (alsa) {
1019                 alsa->write(samples_out);
1020         }
1021
1022         // And finally add them to the output.
1023         h264_encoder->add_audio(frame_pts_int, move(samples_out));
1024 }
1025
1026 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
1027 {
1028         GLuint vao;
1029         glGenVertexArrays(1, &vao);
1030         check_error();
1031
1032         glBindVertexArray(vao);
1033         check_error();
1034
1035         // Extract Cb/Cr.
1036         GLuint fbo = resource_pool->create_fbo(dst_tex);
1037         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1038         glViewport(0, 0, WIDTH/2, HEIGHT/2);
1039         check_error();
1040
1041         glUseProgram(cbcr_program_num);
1042         check_error();
1043
1044         glActiveTexture(GL_TEXTURE0);
1045         check_error();
1046         glBindTexture(GL_TEXTURE_2D, src_tex);
1047         check_error();
1048         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1049         check_error();
1050         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1051         check_error();
1052         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1053         check_error();
1054
1055         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
1056         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
1057
1058         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
1059         check_error();
1060
1061         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1062                 glEnableVertexAttribArray(attr_index);
1063                 check_error();
1064                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1065                 check_error();
1066         }
1067
1068         glDrawArrays(GL_TRIANGLES, 0, 3);
1069         check_error();
1070
1071         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1072                 glDisableVertexAttribArray(attr_index);
1073                 check_error();
1074         }
1075
1076         glUseProgram(0);
1077         check_error();
1078         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1079         check_error();
1080
1081         resource_pool->release_fbo(fbo);
1082         glDeleteVertexArrays(1, &vao);
1083 }
1084
1085 void Mixer::release_display_frame(DisplayFrame *frame)
1086 {
1087         for (GLuint texnum : frame->temp_textures) {
1088                 resource_pool->release_2d_texture(texnum);
1089         }
1090         frame->temp_textures.clear();
1091         frame->ready_fence.reset();
1092         frame->input_frames.clear();
1093 }
1094
1095 void Mixer::start()
1096 {
1097         mixer_thread = thread(&Mixer::thread_func, this);
1098         audio_thread = thread(&Mixer::audio_thread_func, this);
1099 }
1100
1101 void Mixer::quit()
1102 {
1103         should_quit = true;
1104         mixer_thread.join();
1105         audio_thread.join();
1106 }
1107
1108 void Mixer::transition_clicked(int transition_num)
1109 {
1110         theme->transition_clicked(transition_num, pts());
1111 }
1112
1113 void Mixer::channel_clicked(int preview_num)
1114 {
1115         theme->channel_clicked(preview_num);
1116 }
1117
1118 void Mixer::reset_meters()
1119 {
1120         peak_resampler.reset();
1121         peak = 0.0f;
1122         r128.reset();
1123         r128.integr_start();
1124         correlation.reset();
1125 }
1126
1127 void Mixer::start_mode_scanning(unsigned card_index)
1128 {
1129         assert(card_index < num_cards);
1130         if (is_mode_scanning[card_index]) {
1131                 return;
1132         }
1133         is_mode_scanning[card_index] = true;
1134         mode_scanlist[card_index].clear();
1135         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
1136                 mode_scanlist[card_index].push_back(mode.first);
1137         }
1138         assert(!mode_scanlist[card_index].empty());
1139         mode_scanlist_index[card_index] = 0;
1140         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
1141         clock_gettime(CLOCK_MONOTONIC, &last_mode_scan_change[card_index]);
1142 }
1143
1144 Mixer::OutputChannel::~OutputChannel()
1145 {
1146         if (has_current_frame) {
1147                 parent->release_display_frame(&current_frame);
1148         }
1149         if (has_ready_frame) {
1150                 parent->release_display_frame(&ready_frame);
1151         }
1152 }
1153
1154 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1155 {
1156         // Store this frame for display. Remove the ready frame if any
1157         // (it was seemingly never used).
1158         {
1159                 unique_lock<mutex> lock(frame_mutex);
1160                 if (has_ready_frame) {
1161                         parent->release_display_frame(&ready_frame);
1162                 }
1163                 ready_frame = frame;
1164                 has_ready_frame = true;
1165         }
1166
1167         if (has_new_frame_ready_callback) {
1168                 new_frame_ready_callback();
1169         }
1170 }
1171
1172 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1173 {
1174         unique_lock<mutex> lock(frame_mutex);
1175         if (!has_current_frame && !has_ready_frame) {
1176                 return false;
1177         }
1178
1179         if (has_current_frame && has_ready_frame) {
1180                 // We have a new ready frame. Toss the current one.
1181                 parent->release_display_frame(&current_frame);
1182                 has_current_frame = false;
1183         }
1184         if (has_ready_frame) {
1185                 assert(!has_current_frame);
1186                 current_frame = ready_frame;
1187                 ready_frame.ready_fence.reset();  // Drop the refcount.
1188                 ready_frame.input_frames.clear();  // Drop the refcounts.
1189                 has_current_frame = true;
1190                 has_ready_frame = false;
1191         }
1192
1193         *frame = current_frame;
1194         return true;
1195 }
1196
1197 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1198 {
1199         new_frame_ready_callback = callback;
1200         has_new_frame_ready_callback = true;
1201 }