]> git.sesse.net Git - nageru/blob - mixer.cpp
Make the internal frame queue multiframe.
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30
31 #include "bmusb/bmusb.h"
32 #include "context.h"
33 #include "decklink_capture.h"
34 #include "defs.h"
35 #include "flags.h"
36 #include "h264encode.h"
37 #include "pbo_frame_allocator.h"
38 #include "ref_counted_gl_sync.h"
39 #include "timebase.h"
40
41 class QOpenGLContext;
42
43 using namespace movit;
44 using namespace std;
45 using namespace std::placeholders;
46
47 Mixer *global_mixer = nullptr;
48
49 namespace {
50
51 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
52 {
53         assert(in_channels >= out_channels);
54         for (size_t i = 0; i < num_samples; ++i) {
55                 for (size_t j = 0; j < out_channels; ++j) {
56                         uint32_t s1 = *src++;
57                         uint32_t s2 = *src++;
58                         uint32_t s3 = *src++;
59                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
60                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
61                 }
62                 src += 3 * (in_channels - out_channels);
63         }
64 }
65
66 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
67 {
68         assert(in_channels >= out_channels);
69         for (size_t i = 0; i < num_samples; ++i) {
70                 for (size_t j = 0; j < out_channels; ++j) {
71                         // Note: Assumes little-endian.
72                         int32_t s = *(int32_t *)src;
73                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
74                         src += 4;
75                 }
76                 src += 4 * (in_channels - out_channels);
77         }
78 }
79
80 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
81 {
82         if (interlaced) {
83                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
84                         input_state->buffered_frames[card_index][frame_num] =
85                                 input_state->buffered_frames[card_index][frame_num - 1];
86                 }
87                 input_state->buffered_frames[card_index][0] = { frame, field_num };
88         } else {
89                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
90                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
91                 }
92         }
93 }
94
95 string generate_local_dump_filename(int frame)
96 {
97         time_t now = time(NULL);
98         tm now_tm;
99         localtime_r(&now, &now_tm);
100
101         char timestamp[256];
102         strftime(timestamp, sizeof(timestamp), "%F-%T%z", &now_tm);
103
104         // Use the frame number to disambiguate between two cuts starting
105         // on the same second.
106         char filename[256];
107         snprintf(filename, sizeof(filename), "%s%s-f%02d%s",
108                 LOCAL_DUMP_PREFIX, timestamp, frame % 100, LOCAL_DUMP_SUFFIX);
109         return filename;
110 }
111
112 }  // namespace
113
114 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
115         : httpd(WIDTH, HEIGHT),
116           num_cards(num_cards),
117           mixer_surface(create_surface(format)),
118           h264_encoder_surface(create_surface(format)),
119           correlation(OUTPUT_FREQUENCY),
120           level_compressor(OUTPUT_FREQUENCY),
121           limiter(OUTPUT_FREQUENCY),
122           compressor(OUTPUT_FREQUENCY)
123 {
124         httpd.open_output_file(generate_local_dump_filename(/*frame=*/0).c_str());
125         httpd.start(9095);
126
127         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
128         check_error();
129
130         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
131         // will be halved when sampling them, and we need to compensate here.
132         movit_texel_subpixel_precision /= 2.0;
133
134         resource_pool.reset(new ResourcePool);
135         theme.reset(new Theme("theme.lua", resource_pool.get(), num_cards));
136         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
137                 output_channel[i].parent = this;
138         }
139
140         ImageFormat inout_format;
141         inout_format.color_space = COLORSPACE_sRGB;
142         inout_format.gamma_curve = GAMMA_sRGB;
143
144         // Display chain; shows the live output produced by the main chain (its RGBA version).
145         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
146         check_error();
147         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
148         display_chain->add_input(display_input);
149         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
150         display_chain->set_dither_bits(0);  // Don't bother.
151         display_chain->finalize();
152
153         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
154
155         // First try initializing the PCI devices, then USB, until we have the desired number of cards.
156         unsigned num_pci_devices = 0, num_usb_devices = 0;
157         unsigned card_index = 0;
158
159         IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
160         if (decklink_iterator != nullptr) {
161                 for ( ; card_index < num_cards; ++card_index) {
162                         IDeckLink *decklink;
163                         if (decklink_iterator->Next(&decklink) != S_OK) {
164                                 break;
165                         }
166
167                         configure_card(card_index, format, new DeckLinkCapture(decklink, card_index));
168                         ++num_pci_devices;
169                 }
170                 decklink_iterator->Release();
171                 fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
172         } else {
173                 fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
174         }
175         for ( ; card_index < num_cards; ++card_index) {
176                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices));
177                 ++num_usb_devices;
178         }
179
180         if (num_usb_devices > 0) {
181                 BMUSBCapture::start_bm_thread();
182         }
183
184         for (card_index = 0; card_index < num_cards; ++card_index) {
185                 cards[card_index].capture->start_bm_capture();
186         }
187
188         // Set up stuff for NV12 conversion.
189
190         // Cb/Cr shader.
191         string cbcr_vert_shader =
192                 "#version 130 \n"
193                 " \n"
194                 "in vec2 position; \n"
195                 "in vec2 texcoord; \n"
196                 "out vec2 tc0; \n"
197                 "uniform vec2 foo_chroma_offset_0; \n"
198                 " \n"
199                 "void main() \n"
200                 "{ \n"
201                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
202                 "    // \n"
203                 "    //   2.000  0.000  0.000 -1.000 \n"
204                 "    //   0.000  2.000  0.000 -1.000 \n"
205                 "    //   0.000  0.000 -2.000 -1.000 \n"
206                 "    //   0.000  0.000  0.000  1.000 \n"
207                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
208                 "    vec2 flipped_tc = texcoord; \n"
209                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
210                 "} \n";
211         string cbcr_frag_shader =
212                 "#version 130 \n"
213                 "in vec2 tc0; \n"
214                 "uniform sampler2D cbcr_tex; \n"
215                 "out vec4 FragColor; \n"
216                 "void main() { \n"
217                 "    FragColor = texture(cbcr_tex, tc0); \n"
218                 "} \n";
219         vector<string> frag_shader_outputs;
220         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
221
222         float vertices[] = {
223                 0.0f, 2.0f,
224                 0.0f, 0.0f,
225                 2.0f, 0.0f
226         };
227         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
228         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
229         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
230
231         r128.init(2, OUTPUT_FREQUENCY);
232         r128.integr_start();
233
234         locut.init(FILTER_HPF, 2);
235
236         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
237         // and there's a limit to how important the peak meter is.
238         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
239
240         alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
241 }
242
243 Mixer::~Mixer()
244 {
245         resource_pool->release_glsl_program(cbcr_program_num);
246         glDeleteBuffers(1, &cbcr_vbo);
247         BMUSBCapture::stop_bm_thread();
248
249         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
250                 {
251                         unique_lock<mutex> lock(bmusb_mutex);
252                         cards[card_index].should_quit = true;  // Unblock thread.
253                         cards[card_index].new_frames_changed.notify_all();
254                 }
255                 cards[card_index].capture->stop_dequeue_thread();
256         }
257
258         h264_encoder.reset(nullptr);
259 }
260
261 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
262 {
263         printf("Configuring card %d...\n", card_index);
264
265         CaptureCard *card = &cards[card_index];
266         card->capture = capture;
267         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
268         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
269         card->capture->set_video_frame_allocator(card->frame_allocator.get());
270         card->surface = create_surface(format);
271         card->capture->set_dequeue_thread_callbacks(
272                 [card]{
273                         eglBindAPI(EGL_OPENGL_API);
274                         card->context = create_context(card->surface);
275                         if (!make_current(card->context, card->surface)) {
276                                 printf("failed to create bmusb context\n");
277                                 exit(1);
278                         }
279                 },
280                 [this]{
281                         resource_pool->clean_context();
282                 });
283         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
284         card->capture->configure_card();
285 }
286
287
288 namespace {
289
290 int unwrap_timecode(uint16_t current_wrapped, int last)
291 {
292         uint16_t last_wrapped = last & 0xffff;
293         if (current_wrapped > last_wrapped) {
294                 return (last & ~0xffff) | current_wrapped;
295         } else {
296                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
297         }
298 }
299
300 float find_peak(const float *samples, size_t num_samples)
301 {
302         float m = fabs(samples[0]);
303         for (size_t i = 1; i < num_samples; ++i) {
304                 m = max(m, fabs(samples[i]));
305         }
306         return m;
307 }
308
309 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
310 {
311         size_t num_samples = in.size() / 2;
312         out_l->resize(num_samples);
313         out_r->resize(num_samples);
314
315         const float *inptr = in.data();
316         float *lptr = &(*out_l)[0];
317         float *rptr = &(*out_r)[0];
318         for (size_t i = 0; i < num_samples; ++i) {
319                 *lptr++ = *inptr++;
320                 *rptr++ = *inptr++;
321         }
322 }
323
324 }  // namespace
325
326 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
327                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
328                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
329 {
330         CaptureCard *card = &cards[card_index];
331
332         if (is_mode_scanning[card_index]) {
333                 if (video_format.has_signal) {
334                         // Found a stable signal, so stop scanning.
335                         is_mode_scanning[card_index] = false;
336                 } else {
337                         static constexpr double switch_time_s = 0.5;  // Should be enough time for the signal to stabilize.
338                         timespec now;
339                         clock_gettime(CLOCK_MONOTONIC, &now);
340                         double sec_since_last_switch = (now.tv_sec - last_mode_scan_change[card_index].tv_sec) +
341                                 1e-9 * (now.tv_nsec - last_mode_scan_change[card_index].tv_nsec);
342                         if (sec_since_last_switch > switch_time_s) {
343                                 // It isn't this mode; try the next one.
344                                 mode_scanlist_index[card_index]++;
345                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
346                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
347                                 last_mode_scan_change[card_index] = now;
348                         }
349                 }
350         }
351
352         int64_t frame_length = int64_t(TIMEBASE * video_format.frame_rate_den) / video_format.frame_rate_nom;
353
354         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
355         if (num_samples > OUTPUT_FREQUENCY / 10) {
356                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
357                         card_index, int(audio_frame.len), int(audio_offset),
358                         timecode, int(video_frame.len), int(video_offset), video_format.id);
359                 if (video_frame.owner) {
360                         video_frame.owner->release_frame(video_frame);
361                 }
362                 if (audio_frame.owner) {
363                         audio_frame.owner->release_frame(audio_frame);
364                 }
365                 return;
366         }
367
368         int64_t local_pts = card->next_local_pts;
369         int dropped_frames = 0;
370         if (card->last_timecode != -1) {
371                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
372         }
373
374         // Convert the audio to stereo fp32 and add it.
375         vector<float> audio;
376         audio.resize(num_samples * 2);
377         switch (audio_format.bits_per_sample) {
378         case 0:
379                 assert(num_samples == 0);
380                 break;
381         case 24:
382                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
383                 break;
384         case 32:
385                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
386                 break;
387         default:
388                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
389                 assert(false);
390         }
391
392         // Add the audio.
393         {
394                 unique_lock<mutex> lock(card->audio_mutex);
395
396                 // Number of samples per frame if we need to insert silence.
397                 // (Could be nonintegral, but resampling will save us then.)
398                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
399
400                 if (dropped_frames > MAX_FPS * 2) {
401                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
402                                 card_index, card->last_timecode, timecode);
403                         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
404                         dropped_frames = 0;
405                 } else if (dropped_frames > 0) {
406                         // Insert silence as needed.
407                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
408                                 card_index, dropped_frames, timecode);
409                         vector<float> silence(silence_samples * 2, 0.0f);
410                         for (int i = 0; i < dropped_frames; ++i) {
411                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
412                                 // Note that if the format changed in the meantime, we have
413                                 // no way of detecting that; we just have to assume the frame length
414                                 // is always the same.
415                                 local_pts += frame_length;
416                         }
417                 }
418                 if (num_samples == 0) {
419                         audio.resize(silence_samples * 2);
420                         num_samples = silence_samples;
421                 }
422                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
423                 card->next_local_pts = local_pts + frame_length;
424         }
425
426         card->last_timecode = timecode;
427
428         // Done with the audio, so release it.
429         if (audio_frame.owner) {
430                 audio_frame.owner->release_frame(audio_frame);
431         }
432
433         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
434         if (video_frame.len - video_offset == 0 ||
435             video_frame.len - video_offset != expected_length) {
436                 if (video_frame.len != 0) {
437                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
438                                 card_index, video_frame.len - video_offset, expected_length);
439                 }
440                 if (video_frame.owner) {
441                         video_frame.owner->release_frame(video_frame);
442                 }
443
444                 // Still send on the information that we _had_ a frame, even though it's corrupted,
445                 // so that pts can go up accordingly.
446                 {
447                         unique_lock<mutex> lock(bmusb_mutex);
448                         CaptureCard::NewFrame new_frame;
449                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
450                         new_frame.length = frame_length;
451                         new_frame.interlaced = false;
452                         new_frame.ready_fence = nullptr;
453                         new_frame.dropped_frames = dropped_frames;
454                         card->new_frames.push(move(new_frame));
455                         card->new_frames_changed.notify_all();
456                 }
457                 return;
458         }
459
460         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
461
462         unsigned num_fields = video_format.interlaced ? 2 : 1;
463         timespec frame_upload_start;
464         if (video_format.interlaced) {
465                 // Send the two fields along as separate frames; the other side will need to add
466                 // a deinterlacer to actually get this right.
467                 assert(video_format.height % 2 == 0);
468                 video_format.height /= 2;
469                 assert(frame_length % 2 == 0);
470                 frame_length /= 2;
471                 num_fields = 2;
472                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
473         }
474         userdata->last_interlaced = video_format.interlaced;
475         userdata->last_has_signal = video_format.has_signal;
476         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
477         userdata->last_frame_rate_den = video_format.frame_rate_den;
478         RefCountedFrame frame(video_frame);
479
480         // Upload the textures.
481         size_t cbcr_width = video_format.width / 2;
482         size_t cbcr_offset = video_offset / 2;
483         size_t y_offset = video_frame.size / 2 + video_offset / 2;
484
485         for (unsigned field = 0; field < num_fields; ++field) {
486                 unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
487
488                 if (userdata->tex_y[field] == 0 ||
489                     userdata->tex_cbcr[field] == 0 ||
490                     video_format.width != userdata->last_width[field] ||
491                     video_format.height != userdata->last_height[field]) {
492                         // We changed resolution since last use of this texture, so we need to create
493                         // a new object. Note that this each card has its own PBOFrameAllocator,
494                         // we don't need to worry about these flip-flopping between resolutions.
495                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
496                         check_error();
497                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
498                         check_error();
499                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
500                         check_error();
501                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
502                         check_error();
503                         userdata->last_width[field] = video_format.width;
504                         userdata->last_height[field] = video_format.height;
505                 }
506
507                 GLuint pbo = userdata->pbo;
508                 check_error();
509                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
510                 check_error();
511                 glMemoryBarrier(GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT);
512                 check_error();
513
514                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
515                 check_error();
516                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t)));
517                 check_error();
518                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
519                 check_error();
520                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(y_offset + video_format.width * field_start_line));
521                 check_error();
522                 glBindTexture(GL_TEXTURE_2D, 0);
523                 check_error();
524                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
525                 check_error();
526                 GLsync fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
527                 check_error();
528                 assert(fence != nullptr);
529
530                 if (field == 1) {
531                         // Don't upload the second field as fast as we can; wait until
532                         // the field time has approximately passed. (Otherwise, we could
533                         // get timing jitter against the other sources, and possibly also
534                         // against the video display, although the latter is not as critical.)
535                         // This requires our system clock to be reasonably close to the
536                         // video clock, but that's not an unreasonable assumption.
537                         timespec second_field_start;
538                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
539                                 frame_length * 1000000000 / TIMEBASE;
540                         second_field_start.tv_sec = frame_upload_start.tv_sec +
541                                 second_field_start.tv_nsec / 1000000000;
542                         second_field_start.tv_nsec %= 1000000000;
543
544                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
545                                                &second_field_start, nullptr) == -1 &&
546                                errno == EINTR) ;
547                 }
548
549                 {
550                         unique_lock<mutex> lock(bmusb_mutex);
551                         CaptureCard::NewFrame new_frame;
552                         new_frame.frame = frame;
553                         new_frame.length = frame_length;
554                         new_frame.field = field;
555                         new_frame.interlaced = video_format.interlaced;
556                         new_frame.ready_fence = fence;
557                         new_frame.dropped_frames = dropped_frames;
558                         card->new_frames.push(move(new_frame));
559                         card->new_frames_changed.notify_all();
560                 }
561         }
562 }
563
564 void Mixer::thread_func()
565 {
566         eglBindAPI(EGL_OPENGL_API);
567         QOpenGLContext *context = create_context(mixer_surface);
568         if (!make_current(context, mixer_surface)) {
569                 printf("oops\n");
570                 exit(1);
571         }
572
573         struct timespec start, now;
574         clock_gettime(CLOCK_MONOTONIC, &start);
575
576         int frame = 0;
577         int stats_dropped_frames = 0;
578
579         while (!should_quit) {
580                 CaptureCard::NewFrame new_frames[MAX_CARDS];
581                 bool has_new_frame[MAX_CARDS] = { false };
582                 int num_samples[MAX_CARDS] = { 0 };
583
584                 {
585                         unique_lock<mutex> lock(bmusb_mutex);
586
587                         // The first card is the master timer, so wait for it to have a new frame.
588                         // TODO: Make configurable, and with a timeout.
589                         cards[0].new_frames_changed.wait(lock, [this]{ return !cards[0].new_frames.empty(); });
590
591                         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
592                                 CaptureCard *card = &cards[card_index];
593                                 if (card->new_frames.empty()) {
594                                         continue;
595                                 }
596                                 new_frames[card_index] = move(card->new_frames.front());
597                                 has_new_frame[card_index] = true;
598                                 card->new_frames.pop();
599                                 card->new_frames_changed.notify_all();
600
601                                 int num_samples_times_timebase = OUTPUT_FREQUENCY * new_frames[card_index].length + card->fractional_samples;
602                                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
603                                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
604                                 assert(num_samples[card_index] >= 0);
605                         }
606                 }
607
608                 // Resample the audio as needed, including from previously dropped frames.
609                 assert(num_cards > 0);
610                 for (unsigned frame_num = 0; frame_num < new_frames[0].dropped_frames + 1; ++frame_num) {
611                         {
612                                 // Signal to the audio thread to process this frame.
613                                 unique_lock<mutex> lock(audio_mutex);
614                                 audio_task_queue.push(AudioTask{pts_int, num_samples[0]});
615                                 audio_task_queue_changed.notify_one();
616                         }
617                         if (frame_num != new_frames[0].dropped_frames) {
618                                 // For dropped frames, increase the pts. Note that if the format changed
619                                 // in the meantime, we have no way of detecting that; we just have to
620                                 // assume the frame length is always the same.
621                                 ++stats_dropped_frames;
622                                 pts_int += new_frames[0].length;
623                         }
624                 }
625
626                 if (audio_level_callback != nullptr) {
627                         unique_lock<mutex> lock(compressor_mutex);
628                         double loudness_s = r128.loudness_S();
629                         double loudness_i = r128.integrated();
630                         double loudness_range_low = r128.range_min();
631                         double loudness_range_high = r128.range_max();
632
633                         audio_level_callback(loudness_s, 20.0 * log10(peak),
634                                              loudness_i, loudness_range_low, loudness_range_high,
635                                              gain_staging_db, 20.0 * log10(final_makeup_gain),
636                                              correlation.get_correlation());
637                 }
638
639                 for (unsigned card_index = 1; card_index < num_cards; ++card_index) {
640                         if (!has_new_frame[card_index]) {
641                                 continue;
642                         }
643                         if (new_frames[card_index].frame->len == 0) {
644                                 ++new_frames[card_index].dropped_frames;
645                         }
646                         if (new_frames[card_index].dropped_frames > 0) {
647                                 printf("Card %u dropped %d frames before this\n",
648                                         card_index, int(new_frames[card_index].dropped_frames));
649                         }
650                 }
651
652                 // If the first card is reporting a corrupted or otherwise dropped frame,
653                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
654                 if (new_frames[0].frame->len == 0) {
655                         ++stats_dropped_frames;
656                         pts_int += new_frames[0].length;
657                         continue;
658                 }
659
660                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
661                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
662                                 continue;
663
664                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
665                         assert(new_frame->frame != nullptr);
666                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
667                         check_error();
668
669                         // The new texture might still be uploaded,
670                         // tell the GPU to wait until it's there.
671                         if (new_frame->ready_fence) {
672                                 glWaitSync(new_frame->ready_fence, /*flags=*/0, GL_TIMEOUT_IGNORED);
673                                 check_error();
674                                 glDeleteSync(new_frame->ready_fence);
675                                 check_error();
676                         }
677                 }
678
679                 // Get the main chain from the theme, and set its state immediately.
680                 Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
681                 EffectChain *chain = theme_main_chain.chain;
682                 theme_main_chain.setup_chain();
683                 //theme_main_chain.chain->enable_phase_timing(true);
684
685                 GLuint y_tex, cbcr_tex;
686                 bool got_frame = h264_encoder->begin_frame(&y_tex, &cbcr_tex);
687                 assert(got_frame);
688
689                 // Render main chain.
690                 GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
691                 GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
692                 GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
693                 check_error();
694                 chain->render_to_fbo(fbo, WIDTH, HEIGHT);
695                 resource_pool->release_fbo(fbo);
696
697                 subsample_chroma(cbcr_full_tex, cbcr_tex);
698                 resource_pool->release_2d_texture(cbcr_full_tex);
699
700                 // Set the right state for rgba_tex.
701                 glBindFramebuffer(GL_FRAMEBUFFER, 0);
702                 glBindTexture(GL_TEXTURE_2D, rgba_tex);
703                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
704                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
705                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
706
707                 RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
708                 check_error();
709
710                 const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
711                 h264_encoder->end_frame(fence, pts_int + av_delay, theme_main_chain.input_frames);
712                 ++frame;
713                 pts_int += new_frames[0].length;
714
715                 // The live frame just shows the RGBA texture we just rendered.
716                 // It owns rgba_tex now.
717                 DisplayFrame live_frame;
718                 live_frame.chain = display_chain.get();
719                 live_frame.setup_chain = [this, rgba_tex]{
720                         display_input->set_texture_num(rgba_tex);
721                 };
722                 live_frame.ready_fence = fence;
723                 live_frame.input_frames = {};
724                 live_frame.temp_textures = { rgba_tex };
725                 output_channel[OUTPUT_LIVE].output_frame(live_frame);
726
727                 // Set up preview and any additional channels.
728                 for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
729                         DisplayFrame display_frame;
730                         Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
731                         display_frame.chain = chain.chain;
732                         display_frame.setup_chain = chain.setup_chain;
733                         display_frame.ready_fence = fence;
734                         display_frame.input_frames = chain.input_frames;
735                         display_frame.temp_textures = {};
736                         output_channel[i].output_frame(display_frame);
737                 }
738
739                 clock_gettime(CLOCK_MONOTONIC, &now);
740                 double elapsed = now.tv_sec - start.tv_sec +
741                         1e-9 * (now.tv_nsec - start.tv_nsec);
742                 if (frame % 100 == 0) {
743                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
744                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
745                                 1e3 * elapsed / frame);
746                 //      chain->print_phase_timing();
747                 }
748
749                 if (should_cut.exchange(false)) {  // Test and clear.
750                         string filename = generate_local_dump_filename(frame);
751                         printf("Starting new recording: %s\n", filename.c_str());
752                         h264_encoder->shutdown();
753                         httpd.close_output_file();
754                         httpd.open_output_file(filename.c_str());
755                         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
756                 }
757
758 #if 0
759                 // Reset every 100 frames, so that local variations in frame times
760                 // (especially for the first few frames, when the shaders are
761                 // compiled etc.) don't make it hard to measure for the entire
762                 // remaining duration of the program.
763                 if (frame == 10000) {
764                         frame = 0;
765                         start = now;
766                 }
767 #endif
768                 check_error();
769         }
770
771         resource_pool->clean_context();
772 }
773
774 void Mixer::audio_thread_func()
775 {
776         while (!should_quit) {
777                 AudioTask task;
778
779                 {
780                         unique_lock<mutex> lock(audio_mutex);
781                         audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
782                         task = audio_task_queue.front();
783                         audio_task_queue.pop();
784                 }
785
786                 process_audio_one_frame(task.pts_int, task.num_samples);
787         }
788 }
789
790 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
791 {
792         vector<float> samples_card;
793         vector<float> samples_out;
794
795         // TODO: Allow mixing audio from several sources.
796         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
797         assert(selected_audio_card < num_cards);
798
799         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
800                 samples_card.resize(num_samples * 2);
801                 {
802                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
803                         if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
804                                 printf("Card %d reported previous underrun.\n", card_index);
805                         }
806                 }
807                 if (card_index == selected_audio_card) {
808                         samples_out = move(samples_card);
809                 }
810         }
811
812         // Cut away everything under 120 Hz (or whatever the cutoff is);
813         // we don't need it for voice, and it will reduce headroom
814         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
815         // should be dampened.)
816         if (locut_enabled) {
817                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
818         }
819
820         // Apply a level compressor to get the general level right.
821         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
822         // (or more precisely, near it, since we don't use infinite ratio),
823         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
824         // entirely arbitrary, but from practical tests with speech, it seems to
825         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
826         {
827                 unique_lock<mutex> lock(compressor_mutex);
828                 if (level_compressor_enabled) {
829                         float threshold = 0.01f;   // -40 dBFS.
830                         float ratio = 20.0f;
831                         float attack_time = 0.5f;
832                         float release_time = 20.0f;
833                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
834                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
835                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
836                 } else {
837                         // Just apply the gain we already had.
838                         float g = pow(10.0f, gain_staging_db / 20.0f);
839                         for (size_t i = 0; i < samples_out.size(); ++i) {
840                                 samples_out[i] *= g;
841                         }
842                 }
843         }
844
845 #if 0
846         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
847                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
848                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
849                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
850 #endif
851
852 //      float limiter_att, compressor_att;
853
854         // The real compressor.
855         if (compressor_enabled) {
856                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
857                 float ratio = 20.0f;
858                 float attack_time = 0.005f;
859                 float release_time = 0.040f;
860                 float makeup_gain = 2.0f;  // +6 dB.
861                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
862 //              compressor_att = compressor.get_attenuation();
863         }
864
865         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
866         // Note that since ratio is not infinite, we could go slightly higher than this.
867         if (limiter_enabled) {
868                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
869                 float ratio = 30.0f;
870                 float attack_time = 0.0f;  // Instant.
871                 float release_time = 0.020f;
872                 float makeup_gain = 1.0f;  // 0 dB.
873                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
874 //              limiter_att = limiter.get_attenuation();
875         }
876
877 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
878
879         // Upsample 4x to find interpolated peak.
880         peak_resampler.inp_data = samples_out.data();
881         peak_resampler.inp_count = samples_out.size() / 2;
882
883         vector<float> interpolated_samples_out;
884         interpolated_samples_out.resize(samples_out.size());
885         while (peak_resampler.inp_count > 0) {  // About four iterations.
886                 peak_resampler.out_data = &interpolated_samples_out[0];
887                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
888                 peak_resampler.process();
889                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
890                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
891                 peak_resampler.out_data = nullptr;
892         }
893
894         // At this point, we are most likely close to +0 LU, but all of our
895         // measurements have been on raw sample values, not R128 values.
896         // So we have a final makeup gain to get us to +0 LU; the gain
897         // adjustments required should be relatively small, and also, the
898         // offset shouldn't change much (only if the type of audio changes
899         // significantly). Thus, we shoot for updating this value basically
900         // “whenever we process buffers”, since the R128 calculation isn't exactly
901         // something we get out per-sample.
902         //
903         // Note that there's a feedback loop here, so we choose a very slow filter
904         // (half-time of 100 seconds).
905         double target_loudness_factor, alpha;
906         {
907                 unique_lock<mutex> lock(compressor_mutex);
908                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
909                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
910                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
911
912                 // If we're outside +/- 5 LU uncorrected, we don't count it as
913                 // a normal signal (probably silence) and don't change the
914                 // correction factor; just apply what we already have.
915                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
916                         alpha = 0.0;
917                 } else {
918                         // Formula adapted from
919                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
920                         const double half_time_s = 100.0;
921                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
922                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
923                 }
924
925                 double m = final_makeup_gain;
926                 for (size_t i = 0; i < samples_out.size(); i += 2) {
927                         samples_out[i + 0] *= m;
928                         samples_out[i + 1] *= m;
929                         m += (target_loudness_factor - m) * alpha;
930                 }
931                 final_makeup_gain = m;
932         }
933
934         // Find R128 levels and L/R correlation.
935         vector<float> left, right;
936         deinterleave_samples(samples_out, &left, &right);
937         float *ptrs[] = { left.data(), right.data() };
938         {
939                 unique_lock<mutex> lock(compressor_mutex);
940                 r128.process(left.size(), ptrs);
941                 correlation.process_samples(samples_out);
942         }
943
944         // Send the samples to the sound card.
945         if (alsa) {
946                 alsa->write(samples_out);
947         }
948
949         // And finally add them to the output.
950         h264_encoder->add_audio(frame_pts_int, move(samples_out));
951 }
952
953 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
954 {
955         GLuint vao;
956         glGenVertexArrays(1, &vao);
957         check_error();
958
959         glBindVertexArray(vao);
960         check_error();
961
962         // Extract Cb/Cr.
963         GLuint fbo = resource_pool->create_fbo(dst_tex);
964         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
965         glViewport(0, 0, WIDTH/2, HEIGHT/2);
966         check_error();
967
968         glUseProgram(cbcr_program_num);
969         check_error();
970
971         glActiveTexture(GL_TEXTURE0);
972         check_error();
973         glBindTexture(GL_TEXTURE_2D, src_tex);
974         check_error();
975         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
976         check_error();
977         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
978         check_error();
979         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
980         check_error();
981
982         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
983         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
984
985         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
986         check_error();
987
988         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
989                 glEnableVertexAttribArray(attr_index);
990                 check_error();
991                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
992                 check_error();
993         }
994
995         glDrawArrays(GL_TRIANGLES, 0, 3);
996         check_error();
997
998         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
999                 glDisableVertexAttribArray(attr_index);
1000                 check_error();
1001         }
1002
1003         glUseProgram(0);
1004         check_error();
1005         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1006         check_error();
1007
1008         resource_pool->release_fbo(fbo);
1009         glDeleteVertexArrays(1, &vao);
1010 }
1011
1012 void Mixer::release_display_frame(DisplayFrame *frame)
1013 {
1014         for (GLuint texnum : frame->temp_textures) {
1015                 resource_pool->release_2d_texture(texnum);
1016         }
1017         frame->temp_textures.clear();
1018         frame->ready_fence.reset();
1019         frame->input_frames.clear();
1020 }
1021
1022 void Mixer::start()
1023 {
1024         mixer_thread = thread(&Mixer::thread_func, this);
1025         audio_thread = thread(&Mixer::audio_thread_func, this);
1026 }
1027
1028 void Mixer::quit()
1029 {
1030         should_quit = true;
1031         mixer_thread.join();
1032         audio_thread.join();
1033 }
1034
1035 void Mixer::transition_clicked(int transition_num)
1036 {
1037         theme->transition_clicked(transition_num, pts());
1038 }
1039
1040 void Mixer::channel_clicked(int preview_num)
1041 {
1042         theme->channel_clicked(preview_num);
1043 }
1044
1045 void Mixer::reset_meters()
1046 {
1047         peak_resampler.reset();
1048         peak = 0.0f;
1049         r128.reset();
1050         r128.integr_start();
1051         correlation.reset();
1052 }
1053
1054 void Mixer::start_mode_scanning(unsigned card_index)
1055 {
1056         assert(card_index < num_cards);
1057         if (is_mode_scanning[card_index]) {
1058                 return;
1059         }
1060         is_mode_scanning[card_index] = true;
1061         mode_scanlist[card_index].clear();
1062         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
1063                 mode_scanlist[card_index].push_back(mode.first);
1064         }
1065         assert(!mode_scanlist[card_index].empty());
1066         mode_scanlist_index[card_index] = 0;
1067         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
1068         clock_gettime(CLOCK_MONOTONIC, &last_mode_scan_change[card_index]);
1069 }
1070
1071 Mixer::OutputChannel::~OutputChannel()
1072 {
1073         if (has_current_frame) {
1074                 parent->release_display_frame(&current_frame);
1075         }
1076         if (has_ready_frame) {
1077                 parent->release_display_frame(&ready_frame);
1078         }
1079 }
1080
1081 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1082 {
1083         // Store this frame for display. Remove the ready frame if any
1084         // (it was seemingly never used).
1085         {
1086                 unique_lock<mutex> lock(frame_mutex);
1087                 if (has_ready_frame) {
1088                         parent->release_display_frame(&ready_frame);
1089                 }
1090                 ready_frame = frame;
1091                 has_ready_frame = true;
1092         }
1093
1094         if (has_new_frame_ready_callback) {
1095                 new_frame_ready_callback();
1096         }
1097 }
1098
1099 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1100 {
1101         unique_lock<mutex> lock(frame_mutex);
1102         if (!has_current_frame && !has_ready_frame) {
1103                 return false;
1104         }
1105
1106         if (has_current_frame && has_ready_frame) {
1107                 // We have a new ready frame. Toss the current one.
1108                 parent->release_display_frame(&current_frame);
1109                 has_current_frame = false;
1110         }
1111         if (has_ready_frame) {
1112                 assert(!has_current_frame);
1113                 current_frame = ready_frame;
1114                 ready_frame.ready_fence.reset();  // Drop the refcount.
1115                 ready_frame.input_frames.clear();  // Drop the refcounts.
1116                 has_current_frame = true;
1117                 has_ready_frame = false;
1118         }
1119
1120         *frame = current_frame;
1121         return true;
1122 }
1123
1124 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1125 {
1126         new_frame_ready_callback = callback;
1127         has_new_frame_ready_callback = true;
1128 }