]> git.sesse.net Git - nageru/blob - mixer.cpp
Add support for opening VA-API via DRM instead of X11.
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29
30 #include "bmusb/bmusb.h"
31 #include "context.h"
32 #include "defs.h"
33 #include "flags.h"
34 #include "h264encode.h"
35 #include "pbo_frame_allocator.h"
36 #include "ref_counted_gl_sync.h"
37 #include "timebase.h"
38
39 class QOpenGLContext;
40
41 using namespace movit;
42 using namespace std;
43 using namespace std::placeholders;
44
45 Mixer *global_mixer = nullptr;
46
47 namespace {
48
49 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
50 {
51         for (size_t i = 0; i < num_samples; ++i) {
52                 for (size_t j = 0; j < out_channels; ++j) {
53                         uint32_t s1 = *src++;
54                         uint32_t s2 = *src++;
55                         uint32_t s3 = *src++;
56                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
57                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
58                 }
59                 src += 3 * (in_channels - out_channels);
60         }
61 }
62
63 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
64 {
65         if (interlaced) {
66                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
67                         input_state->buffered_frames[card_index][frame_num] =
68                                 input_state->buffered_frames[card_index][frame_num - 1];
69                 }
70                 input_state->buffered_frames[card_index][0] = { frame, field_num };
71         } else {
72                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
73                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
74                 }
75         }
76 }
77
78 string generate_local_dump_filename(int frame)
79 {
80         time_t now = time(NULL);
81         tm now_tm;
82         localtime_r(&now, &now_tm);
83
84         char timestamp[256];
85         strftime(timestamp, sizeof(timestamp), "%F-%T%z", &now_tm);
86
87         // Use the frame number to disambiguate between two cuts starting
88         // on the same second.
89         char filename[256];
90         snprintf(filename, sizeof(filename), "%s%s-f%02d%s",
91                 LOCAL_DUMP_PREFIX, timestamp, frame % 100, LOCAL_DUMP_SUFFIX);
92         return filename;
93 }
94
95 }  // namespace
96
97 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
98         : httpd(WIDTH, HEIGHT),
99           num_cards(num_cards),
100           mixer_surface(create_surface(format)),
101           h264_encoder_surface(create_surface(format)),
102           correlation(OUTPUT_FREQUENCY),
103           level_compressor(OUTPUT_FREQUENCY),
104           limiter(OUTPUT_FREQUENCY),
105           compressor(OUTPUT_FREQUENCY)
106 {
107         httpd.open_output_file(generate_local_dump_filename(/*frame=*/0).c_str());
108         httpd.start(9095);
109
110         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
111         check_error();
112
113         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
114         // will be halved when sampling them, and we need to compensate here.
115         movit_texel_subpixel_precision /= 2.0;
116
117         resource_pool.reset(new ResourcePool);
118         theme.reset(new Theme("theme.lua", resource_pool.get(), num_cards));
119         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
120                 output_channel[i].parent = this;
121         }
122
123         ImageFormat inout_format;
124         inout_format.color_space = COLORSPACE_sRGB;
125         inout_format.gamma_curve = GAMMA_sRGB;
126
127         // Display chain; shows the live output produced by the main chain (its RGBA version).
128         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
129         check_error();
130         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
131         display_chain->add_input(display_input);
132         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
133         display_chain->set_dither_bits(0);  // Don't bother.
134         display_chain->finalize();
135
136         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
137
138         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
139                 printf("Configuring card %d...\n", card_index);
140                 CaptureCard *card = &cards[card_index];
141                 card->usb = new BMUSBCapture(card_index);
142                 card->usb->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
143                 card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
144                 card->usb->set_video_frame_allocator(card->frame_allocator.get());
145                 card->surface = create_surface(format);
146                 card->usb->set_dequeue_thread_callbacks(
147                         [card]{
148                                 eglBindAPI(EGL_OPENGL_API);
149                                 card->context = create_context(card->surface);
150                                 if (!make_current(card->context, card->surface)) {
151                                         printf("failed to create bmusb context\n");
152                                         exit(1);
153                                 }
154                         },
155                         [this]{
156                                 resource_pool->clean_context();
157                         });
158                 card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
159                 card->usb->configure_card();
160         }
161
162         BMUSBCapture::start_bm_thread();
163
164         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
165                 cards[card_index].usb->start_bm_capture();
166         }
167
168         // Set up stuff for NV12 conversion.
169
170         // Cb/Cr shader.
171         string cbcr_vert_shader =
172                 "#version 130 \n"
173                 " \n"
174                 "in vec2 position; \n"
175                 "in vec2 texcoord; \n"
176                 "out vec2 tc0; \n"
177                 "uniform vec2 foo_chroma_offset_0; \n"
178                 " \n"
179                 "void main() \n"
180                 "{ \n"
181                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
182                 "    // \n"
183                 "    //   2.000  0.000  0.000 -1.000 \n"
184                 "    //   0.000  2.000  0.000 -1.000 \n"
185                 "    //   0.000  0.000 -2.000 -1.000 \n"
186                 "    //   0.000  0.000  0.000  1.000 \n"
187                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
188                 "    vec2 flipped_tc = texcoord; \n"
189                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
190                 "} \n";
191         string cbcr_frag_shader =
192                 "#version 130 \n"
193                 "in vec2 tc0; \n"
194                 "uniform sampler2D cbcr_tex; \n"
195                 "out vec4 FragColor; \n"
196                 "void main() { \n"
197                 "    FragColor = texture(cbcr_tex, tc0); \n"
198                 "} \n";
199         vector<string> frag_shader_outputs;
200         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
201
202         r128.init(2, OUTPUT_FREQUENCY);
203         r128.integr_start();
204
205         locut.init(FILTER_HPF, 2);
206
207         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
208         // and there's a limit to how important the peak meter is.
209         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
210
211         alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
212 }
213
214 Mixer::~Mixer()
215 {
216         resource_pool->release_glsl_program(cbcr_program_num);
217         BMUSBCapture::stop_bm_thread();
218
219         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
220                 {
221                         unique_lock<mutex> lock(bmusb_mutex);
222                         cards[card_index].should_quit = true;  // Unblock thread.
223                         cards[card_index].new_data_ready_changed.notify_all();
224                 }
225                 cards[card_index].usb->stop_dequeue_thread();
226         }
227
228         h264_encoder.reset(nullptr);
229 }
230
231 namespace {
232
233 int unwrap_timecode(uint16_t current_wrapped, int last)
234 {
235         uint16_t last_wrapped = last & 0xffff;
236         if (current_wrapped > last_wrapped) {
237                 return (last & ~0xffff) | current_wrapped;
238         } else {
239                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
240         }
241 }
242
243 float find_peak(const float *samples, size_t num_samples)
244 {
245         float m = fabs(samples[0]);
246         for (size_t i = 1; i < num_samples; ++i) {
247                 m = max(m, fabs(samples[i]));
248         }
249         return m;
250 }
251
252 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
253 {
254         size_t num_samples = in.size() / 2;
255         out_l->resize(num_samples);
256         out_r->resize(num_samples);
257
258         const float *inptr = in.data();
259         float *lptr = &(*out_l)[0];
260         float *rptr = &(*out_r)[0];
261         for (size_t i = 0; i < num_samples; ++i) {
262                 *lptr++ = *inptr++;
263                 *rptr++ = *inptr++;
264         }
265 }
266
267 }  // namespace
268
269 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
270                      FrameAllocator::Frame video_frame, size_t video_offset, uint16_t video_format,
271                      FrameAllocator::Frame audio_frame, size_t audio_offset, uint16_t audio_format)
272 {
273         CaptureCard *card = &cards[card_index];
274
275         unsigned width, height, second_field_start, frame_rate_nom, frame_rate_den, extra_lines_top, extra_lines_bottom;
276         bool interlaced;
277
278         decode_video_format(video_format, &width, &height, &second_field_start, &extra_lines_top, &extra_lines_bottom,
279                             &frame_rate_nom, &frame_rate_den, &interlaced);  // Ignore return value for now.
280         int64_t frame_length = int64_t(TIMEBASE * frame_rate_den) / frame_rate_nom;
281
282         size_t num_samples = (audio_frame.len >= audio_offset) ? (audio_frame.len - audio_offset) / 8 / 3 : 0;
283         if (num_samples > OUTPUT_FREQUENCY / 10) {
284                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
285                         card_index, int(audio_frame.len), int(audio_offset),
286                         timecode, int(video_frame.len), int(video_offset), video_format);
287                 if (video_frame.owner) {
288                         video_frame.owner->release_frame(video_frame);
289                 }
290                 if (audio_frame.owner) {
291                         audio_frame.owner->release_frame(audio_frame);
292                 }
293                 return;
294         }
295
296         int64_t local_pts = card->next_local_pts;
297         int dropped_frames = 0;
298         if (card->last_timecode != -1) {
299                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
300         }
301
302         // Convert the audio to stereo fp32 and add it.
303         vector<float> audio;
304         audio.resize(num_samples * 2);
305         convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, 8, num_samples);
306
307         // Add the audio.
308         {
309                 unique_lock<mutex> lock(card->audio_mutex);
310
311                 // Number of samples per frame if we need to insert silence.
312                 // (Could be nonintegral, but resampling will save us then.)
313                 int silence_samples = OUTPUT_FREQUENCY * frame_rate_den / frame_rate_nom;
314
315                 if (dropped_frames > MAX_FPS * 2) {
316                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
317                                 card_index, card->last_timecode, timecode);
318                         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
319                         dropped_frames = 0;
320                 } else if (dropped_frames > 0) {
321                         // Insert silence as needed.
322                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
323                                 card_index, dropped_frames, timecode);
324                         vector<float> silence(silence_samples * 2, 0.0f);
325                         for (int i = 0; i < dropped_frames; ++i) {
326                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
327                                 // Note that if the format changed in the meantime, we have
328                                 // no way of detecting that; we just have to assume the frame length
329                                 // is always the same.
330                                 local_pts += frame_length;
331                         }
332                 }
333                 if (num_samples == 0) {
334                         audio.resize(silence_samples * 2);
335                         num_samples = silence_samples;
336                 }
337                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
338                 card->next_local_pts = local_pts + frame_length;
339         }
340
341         card->last_timecode = timecode;
342
343         // Done with the audio, so release it.
344         if (audio_frame.owner) {
345                 audio_frame.owner->release_frame(audio_frame);
346         }
347
348         {
349                 // Wait until the previous frame was consumed.
350                 unique_lock<mutex> lock(bmusb_mutex);
351                 card->new_data_ready_changed.wait(lock, [card]{ return !card->new_data_ready || card->should_quit; });
352                 if (card->should_quit) return;
353         }
354
355         size_t expected_length = width * (height + extra_lines_top + extra_lines_bottom) * 2;
356         if (video_frame.len - video_offset == 0 ||
357             video_frame.len - video_offset != expected_length) {
358                 if (video_frame.len != 0) {
359                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
360                                 card_index, video_frame.len - video_offset, expected_length);
361                 }
362                 if (video_frame.owner) {
363                         video_frame.owner->release_frame(video_frame);
364                 }
365
366                 // Still send on the information that we _had_ a frame, even though it's corrupted,
367                 // so that pts can go up accordingly.
368                 {
369                         unique_lock<mutex> lock(bmusb_mutex);
370                         card->new_data_ready = true;
371                         card->new_frame = RefCountedFrame(FrameAllocator::Frame());
372                         card->new_frame_length = frame_length;
373                         card->new_frame_interlaced = false;
374                         card->new_data_ready_fence = nullptr;
375                         card->dropped_frames = dropped_frames;
376                         card->new_data_ready_changed.notify_all();
377                 }
378                 return;
379         }
380
381         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
382
383         unsigned num_fields = interlaced ? 2 : 1;
384         timespec frame_upload_start;
385         if (interlaced) {
386                 // Send the two fields along as separate frames; the other side will need to add
387                 // a deinterlacer to actually get this right.
388                 assert(height % 2 == 0);
389                 height /= 2;
390                 assert(frame_length % 2 == 0);
391                 frame_length /= 2;
392                 num_fields = 2;
393                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
394         }
395         userdata->last_interlaced = interlaced;
396         userdata->last_frame_rate_nom = frame_rate_nom;
397         userdata->last_frame_rate_den = frame_rate_den;
398         RefCountedFrame new_frame(video_frame);
399
400         // Upload the textures.
401         size_t cbcr_width = width / 2;
402         size_t cbcr_offset = video_offset / 2;
403         size_t y_offset = video_frame.size / 2 + video_offset / 2;
404
405         for (unsigned field = 0; field < num_fields; ++field) {
406                 unsigned field_start_line = (field == 1) ? second_field_start : extra_lines_top + field * (height + 22);
407
408                 if (userdata->tex_y[field] == 0 ||
409                     userdata->tex_cbcr[field] == 0 ||
410                     width != userdata->last_width[field] ||
411                     height != userdata->last_height[field]) {
412                         // We changed resolution since last use of this texture, so we need to create
413                         // a new object. Note that this each card has its own PBOFrameAllocator,
414                         // we don't need to worry about these flip-flopping between resolutions.
415                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
416                         check_error();
417                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
418                         check_error();
419                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
420                         check_error();
421                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, width, height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
422                         check_error();
423                         userdata->last_width[field] = width;
424                         userdata->last_height[field] = height;
425                 }
426
427                 GLuint pbo = userdata->pbo;
428                 check_error();
429                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
430                 check_error();
431                 glMemoryBarrier(GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT);
432                 check_error();
433
434                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
435                 check_error();
436                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t)));
437                 check_error();
438                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
439                 check_error();
440                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(y_offset + width * field_start_line));
441                 check_error();
442                 glBindTexture(GL_TEXTURE_2D, 0);
443                 check_error();
444                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
445                 check_error();
446                 GLsync fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
447                 check_error();
448                 assert(fence != nullptr);
449
450                 if (field == 1) {
451                         // Don't upload the second field as fast as we can; wait until
452                         // the field time has approximately passed. (Otherwise, we could
453                         // get timing jitter against the other sources, and possibly also
454                         // against the video display, although the latter is not as critical.)
455                         // This requires our system clock to be reasonably close to the
456                         // video clock, but that's not an unreasonable assumption.
457                         timespec second_field_start;
458                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
459                                 frame_length * 1000000000 / TIMEBASE;
460                         second_field_start.tv_sec = frame_upload_start.tv_sec +
461                                 second_field_start.tv_nsec / 1000000000;
462                         second_field_start.tv_nsec %= 1000000000;
463
464                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
465                                                &second_field_start, nullptr) == -1 &&
466                                errno == EINTR) ;
467                 }
468
469                 {
470                         unique_lock<mutex> lock(bmusb_mutex);
471                         card->new_data_ready = true;
472                         card->new_frame = new_frame;
473                         card->new_frame_length = frame_length;
474                         card->new_frame_field = field;
475                         card->new_frame_interlaced = interlaced;
476                         card->new_data_ready_fence = fence;
477                         card->dropped_frames = dropped_frames;
478                         card->new_data_ready_changed.notify_all();
479
480                         if (field != num_fields - 1) {
481                                 // Wait until the previous frame was consumed.
482                                 card->new_data_ready_changed.wait(lock, [card]{ return !card->new_data_ready || card->should_quit; });
483                                 if (card->should_quit) return;
484                         }
485                 }
486         }
487 }
488
489 void Mixer::thread_func()
490 {
491         eglBindAPI(EGL_OPENGL_API);
492         QOpenGLContext *context = create_context(mixer_surface);
493         if (!make_current(context, mixer_surface)) {
494                 printf("oops\n");
495                 exit(1);
496         }
497
498         struct timespec start, now;
499         clock_gettime(CLOCK_MONOTONIC, &start);
500
501         int frame = 0;
502         int stats_dropped_frames = 0;
503
504         while (!should_quit) {
505                 CaptureCard card_copy[MAX_CARDS];
506                 int num_samples[MAX_CARDS];
507
508                 {
509                         unique_lock<mutex> lock(bmusb_mutex);
510
511                         // The first card is the master timer, so wait for it to have a new frame.
512                         // TODO: Make configurable, and with a timeout.
513                         cards[0].new_data_ready_changed.wait(lock, [this]{ return cards[0].new_data_ready; });
514
515                         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
516                                 CaptureCard *card = &cards[card_index];
517                                 card_copy[card_index].usb = card->usb;
518                                 card_copy[card_index].new_data_ready = card->new_data_ready;
519                                 card_copy[card_index].new_frame = card->new_frame;
520                                 card_copy[card_index].new_frame_length = card->new_frame_length;
521                                 card_copy[card_index].new_frame_field = card->new_frame_field;
522                                 card_copy[card_index].new_frame_interlaced = card->new_frame_interlaced;
523                                 card_copy[card_index].new_data_ready_fence = card->new_data_ready_fence;
524                                 card_copy[card_index].dropped_frames = card->dropped_frames;
525                                 card->new_data_ready = false;
526                                 card->new_data_ready_changed.notify_all();
527
528                                 int num_samples_times_timebase = OUTPUT_FREQUENCY * card->new_frame_length + card->fractional_samples;
529                                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
530                                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
531                                 assert(num_samples[card_index] >= 0);
532                         }
533                 }
534
535                 // Resample the audio as needed, including from previously dropped frames.
536                 assert(num_cards > 0);
537                 for (unsigned frame_num = 0; frame_num < card_copy[0].dropped_frames + 1; ++frame_num) {
538                         {
539                                 // Signal to the audio thread to process this frame.
540                                 unique_lock<mutex> lock(audio_mutex);
541                                 audio_task_queue.push(AudioTask{pts_int, num_samples[0]});
542                                 audio_task_queue_changed.notify_one();
543                         }
544                         if (frame_num != card_copy[0].dropped_frames) {
545                                 // For dropped frames, increase the pts. Note that if the format changed
546                                 // in the meantime, we have no way of detecting that; we just have to
547                                 // assume the frame length is always the same.
548                                 ++stats_dropped_frames;
549                                 pts_int += card_copy[0].new_frame_length;
550                         }
551                 }
552
553                 if (audio_level_callback != nullptr) {
554                         unique_lock<mutex> lock(compressor_mutex);
555                         double loudness_s = r128.loudness_S();
556                         double loudness_i = r128.integrated();
557                         double loudness_range_low = r128.range_min();
558                         double loudness_range_high = r128.range_max();
559
560                         audio_level_callback(loudness_s, 20.0 * log10(peak),
561                                              loudness_i, loudness_range_low, loudness_range_high,
562                                              gain_staging_db, 20.0 * log10(final_makeup_gain),
563                                              correlation.get_correlation());
564                 }
565
566                 for (unsigned card_index = 1; card_index < num_cards; ++card_index) {
567                         if (card_copy[card_index].new_data_ready && card_copy[card_index].new_frame->len == 0) {
568                                 ++card_copy[card_index].dropped_frames;
569                         }
570                         if (card_copy[card_index].dropped_frames > 0) {
571                                 printf("Card %u dropped %d frames before this\n",
572                                         card_index, int(card_copy[card_index].dropped_frames));
573                         }
574                 }
575
576                 // If the first card is reporting a corrupted or otherwise dropped frame,
577                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
578                 if (card_copy[0].new_frame->len == 0) {
579                         ++stats_dropped_frames;
580                         pts_int += card_copy[0].new_frame_length;
581                         continue;
582                 }
583
584                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
585                         CaptureCard *card = &card_copy[card_index];
586                         if (!card->new_data_ready || card->new_frame->len == 0)
587                                 continue;
588
589                         assert(card->new_frame != nullptr);
590                         insert_new_frame(card->new_frame, card->new_frame_field, card->new_frame_interlaced, card_index, &input_state);
591                         check_error();
592
593                         // The new texture might still be uploaded,
594                         // tell the GPU to wait until it's there.
595                         if (card->new_data_ready_fence) {
596                                 glWaitSync(card->new_data_ready_fence, /*flags=*/0, GL_TIMEOUT_IGNORED);
597                                 check_error();
598                                 glDeleteSync(card->new_data_ready_fence);
599                                 check_error();
600                         }
601                 }
602
603                 // Get the main chain from the theme, and set its state immediately.
604                 Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
605                 EffectChain *chain = theme_main_chain.chain;
606                 theme_main_chain.setup_chain();
607                 //theme_main_chain.chain->enable_phase_timing(true);
608
609                 GLuint y_tex, cbcr_tex;
610                 bool got_frame = h264_encoder->begin_frame(&y_tex, &cbcr_tex);
611                 assert(got_frame);
612
613                 // Render main chain.
614                 GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
615                 GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
616                 GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
617                 check_error();
618                 chain->render_to_fbo(fbo, WIDTH, HEIGHT);
619                 resource_pool->release_fbo(fbo);
620
621                 subsample_chroma(cbcr_full_tex, cbcr_tex);
622                 resource_pool->release_2d_texture(cbcr_full_tex);
623
624                 // Set the right state for rgba_tex.
625                 glBindFramebuffer(GL_FRAMEBUFFER, 0);
626                 glBindTexture(GL_TEXTURE_2D, rgba_tex);
627                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
628                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
629                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
630
631                 RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
632                 check_error();
633
634                 const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
635                 h264_encoder->end_frame(fence, pts_int + av_delay, theme_main_chain.input_frames);
636                 ++frame;
637                 pts_int += card_copy[0].new_frame_length;
638
639                 // The live frame just shows the RGBA texture we just rendered.
640                 // It owns rgba_tex now.
641                 DisplayFrame live_frame;
642                 live_frame.chain = display_chain.get();
643                 live_frame.setup_chain = [this, rgba_tex]{
644                         display_input->set_texture_num(rgba_tex);
645                 };
646                 live_frame.ready_fence = fence;
647                 live_frame.input_frames = {};
648                 live_frame.temp_textures = { rgba_tex };
649                 output_channel[OUTPUT_LIVE].output_frame(live_frame);
650
651                 // Set up preview and any additional channels.
652                 for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
653                         DisplayFrame display_frame;
654                         Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
655                         display_frame.chain = chain.chain;
656                         display_frame.setup_chain = chain.setup_chain;
657                         display_frame.ready_fence = fence;
658                         display_frame.input_frames = chain.input_frames;
659                         display_frame.temp_textures = {};
660                         output_channel[i].output_frame(display_frame);
661                 }
662
663                 clock_gettime(CLOCK_MONOTONIC, &now);
664                 double elapsed = now.tv_sec - start.tv_sec +
665                         1e-9 * (now.tv_nsec - start.tv_nsec);
666                 if (frame % 100 == 0) {
667                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
668                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
669                                 1e3 * elapsed / frame);
670                 //      chain->print_phase_timing();
671                 }
672
673                 if (should_cut.exchange(false)) {  // Test and clear.
674                         string filename = generate_local_dump_filename(frame);
675                         printf("Starting new recording: %s\n", filename.c_str());
676                         h264_encoder->shutdown();
677                         httpd.close_output_file();
678                         httpd.open_output_file(filename.c_str());
679                         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
680                 }
681
682 #if 0
683                 // Reset every 100 frames, so that local variations in frame times
684                 // (especially for the first few frames, when the shaders are
685                 // compiled etc.) don't make it hard to measure for the entire
686                 // remaining duration of the program.
687                 if (frame == 10000) {
688                         frame = 0;
689                         start = now;
690                 }
691 #endif
692                 check_error();
693         }
694
695         resource_pool->clean_context();
696 }
697
698 void Mixer::audio_thread_func()
699 {
700         while (!should_quit) {
701                 AudioTask task;
702
703                 {
704                         unique_lock<mutex> lock(audio_mutex);
705                         audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
706                         task = audio_task_queue.front();
707                         audio_task_queue.pop();
708                 }
709
710                 process_audio_one_frame(task.pts_int, task.num_samples);
711         }
712 }
713
714 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
715 {
716         vector<float> samples_card;
717         vector<float> samples_out;
718
719         // TODO: Allow mixing audio from several sources.
720         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
721         assert(selected_audio_card < num_cards);
722
723         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
724                 samples_card.resize(num_samples * 2);
725                 {
726                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
727                         if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
728                                 printf("Card %d reported previous underrun.\n", card_index);
729                         }
730                 }
731                 if (card_index == selected_audio_card) {
732                         samples_out = move(samples_card);
733                 }
734         }
735
736         // Cut away everything under 120 Hz (or whatever the cutoff is);
737         // we don't need it for voice, and it will reduce headroom
738         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
739         // should be dampened.)
740         if (locut_enabled) {
741                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
742         }
743
744         // Apply a level compressor to get the general level right.
745         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
746         // (or more precisely, near it, since we don't use infinite ratio),
747         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
748         // entirely arbitrary, but from practical tests with speech, it seems to
749         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
750         {
751                 unique_lock<mutex> lock(compressor_mutex);
752                 if (level_compressor_enabled) {
753                         float threshold = 0.01f;   // -40 dBFS.
754                         float ratio = 20.0f;
755                         float attack_time = 0.5f;
756                         float release_time = 20.0f;
757                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
758                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
759                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
760                 } else {
761                         // Just apply the gain we already had.
762                         float g = pow(10.0f, gain_staging_db / 20.0f);
763                         for (size_t i = 0; i < samples_out.size(); ++i) {
764                                 samples_out[i] *= g;
765                         }
766                 }
767         }
768
769 #if 0
770         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
771                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
772                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
773                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
774 #endif
775
776 //      float limiter_att, compressor_att;
777
778         // The real compressor.
779         if (compressor_enabled) {
780                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
781                 float ratio = 20.0f;
782                 float attack_time = 0.005f;
783                 float release_time = 0.040f;
784                 float makeup_gain = 2.0f;  // +6 dB.
785                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
786 //              compressor_att = compressor.get_attenuation();
787         }
788
789         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
790         // Note that since ratio is not infinite, we could go slightly higher than this.
791         if (limiter_enabled) {
792                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
793                 float ratio = 30.0f;
794                 float attack_time = 0.0f;  // Instant.
795                 float release_time = 0.020f;
796                 float makeup_gain = 1.0f;  // 0 dB.
797                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
798 //              limiter_att = limiter.get_attenuation();
799         }
800
801 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
802
803         // Upsample 4x to find interpolated peak.
804         peak_resampler.inp_data = samples_out.data();
805         peak_resampler.inp_count = samples_out.size() / 2;
806
807         vector<float> interpolated_samples_out;
808         interpolated_samples_out.resize(samples_out.size());
809         while (peak_resampler.inp_count > 0) {  // About four iterations.
810                 peak_resampler.out_data = &interpolated_samples_out[0];
811                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
812                 peak_resampler.process();
813                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
814                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
815                 peak_resampler.out_data = nullptr;
816         }
817
818         // At this point, we are most likely close to +0 LU, but all of our
819         // measurements have been on raw sample values, not R128 values.
820         // So we have a final makeup gain to get us to +0 LU; the gain
821         // adjustments required should be relatively small, and also, the
822         // offset shouldn't change much (only if the type of audio changes
823         // significantly). Thus, we shoot for updating this value basically
824         // “whenever we process buffers”, since the R128 calculation isn't exactly
825         // something we get out per-sample.
826         //
827         // Note that there's a feedback loop here, so we choose a very slow filter
828         // (half-time of 100 seconds).
829         double target_loudness_factor, alpha;
830         {
831                 unique_lock<mutex> lock(compressor_mutex);
832                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
833                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
834                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
835
836                 // If we're outside +/- 5 LU uncorrected, we don't count it as
837                 // a normal signal (probably silence) and don't change the
838                 // correction factor; just apply what we already have.
839                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
840                         alpha = 0.0;
841                 } else {
842                         // Formula adapted from
843                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
844                         const double half_time_s = 100.0;
845                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
846                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
847                 }
848
849                 double m = final_makeup_gain;
850                 for (size_t i = 0; i < samples_out.size(); i += 2) {
851                         samples_out[i + 0] *= m;
852                         samples_out[i + 1] *= m;
853                         m += (target_loudness_factor - m) * alpha;
854                 }
855                 final_makeup_gain = m;
856         }
857
858         // Find R128 levels and L/R correlation.
859         vector<float> left, right;
860         deinterleave_samples(samples_out, &left, &right);
861         float *ptrs[] = { left.data(), right.data() };
862         {
863                 unique_lock<mutex> lock(compressor_mutex);
864                 r128.process(left.size(), ptrs);
865                 correlation.process_samples(samples_out);
866         }
867
868         // Send the samples to the sound card.
869         if (alsa) {
870                 alsa->write(samples_out);
871         }
872
873         // And finally add them to the output.
874         h264_encoder->add_audio(frame_pts_int, move(samples_out));
875 }
876
877 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
878 {
879         GLuint vao;
880         glGenVertexArrays(1, &vao);
881         check_error();
882
883         float vertices[] = {
884                 0.0f, 2.0f,
885                 0.0f, 0.0f,
886                 2.0f, 0.0f
887         };
888
889         glBindVertexArray(vao);
890         check_error();
891
892         // Extract Cb/Cr.
893         GLuint fbo = resource_pool->create_fbo(dst_tex);
894         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
895         glViewport(0, 0, WIDTH/2, HEIGHT/2);
896         check_error();
897
898         glUseProgram(cbcr_program_num);
899         check_error();
900
901         glActiveTexture(GL_TEXTURE0);
902         check_error();
903         glBindTexture(GL_TEXTURE_2D, src_tex);
904         check_error();
905         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
906         check_error();
907         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
908         check_error();
909         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
910         check_error();
911
912         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
913         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
914
915         GLuint position_vbo = fill_vertex_attribute(cbcr_program_num, "position", 2, GL_FLOAT, sizeof(vertices), vertices);
916         GLuint texcoord_vbo = fill_vertex_attribute(cbcr_program_num, "texcoord", 2, GL_FLOAT, sizeof(vertices), vertices);  // Same as vertices.
917
918         glDrawArrays(GL_TRIANGLES, 0, 3);
919         check_error();
920
921         cleanup_vertex_attribute(cbcr_program_num, "position", position_vbo);
922         cleanup_vertex_attribute(cbcr_program_num, "texcoord", texcoord_vbo);
923
924         glUseProgram(0);
925         check_error();
926
927         resource_pool->release_fbo(fbo);
928         glDeleteVertexArrays(1, &vao);
929 }
930
931 void Mixer::release_display_frame(DisplayFrame *frame)
932 {
933         for (GLuint texnum : frame->temp_textures) {
934                 resource_pool->release_2d_texture(texnum);
935         }
936         frame->temp_textures.clear();
937         frame->ready_fence.reset();
938         frame->input_frames.clear();
939 }
940
941 void Mixer::start()
942 {
943         mixer_thread = thread(&Mixer::thread_func, this);
944         audio_thread = thread(&Mixer::audio_thread_func, this);
945 }
946
947 void Mixer::quit()
948 {
949         should_quit = true;
950         mixer_thread.join();
951         audio_thread.join();
952 }
953
954 void Mixer::transition_clicked(int transition_num)
955 {
956         theme->transition_clicked(transition_num, pts());
957 }
958
959 void Mixer::channel_clicked(int preview_num)
960 {
961         theme->channel_clicked(preview_num);
962 }
963
964 void Mixer::reset_meters()
965 {
966         peak_resampler.reset();
967         peak = 0.0f;
968         r128.reset();
969         r128.integr_start();
970         correlation.reset();
971 }
972
973 Mixer::OutputChannel::~OutputChannel()
974 {
975         if (has_current_frame) {
976                 parent->release_display_frame(&current_frame);
977         }
978         if (has_ready_frame) {
979                 parent->release_display_frame(&ready_frame);
980         }
981 }
982
983 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
984 {
985         // Store this frame for display. Remove the ready frame if any
986         // (it was seemingly never used).
987         {
988                 unique_lock<mutex> lock(frame_mutex);
989                 if (has_ready_frame) {
990                         parent->release_display_frame(&ready_frame);
991                 }
992                 ready_frame = frame;
993                 has_ready_frame = true;
994         }
995
996         if (has_new_frame_ready_callback) {
997                 new_frame_ready_callback();
998         }
999 }
1000
1001 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1002 {
1003         unique_lock<mutex> lock(frame_mutex);
1004         if (!has_current_frame && !has_ready_frame) {
1005                 return false;
1006         }
1007
1008         if (has_current_frame && has_ready_frame) {
1009                 // We have a new ready frame. Toss the current one.
1010                 parent->release_display_frame(&current_frame);
1011                 has_current_frame = false;
1012         }
1013         if (has_ready_frame) {
1014                 assert(!has_current_frame);
1015                 current_frame = ready_frame;
1016                 ready_frame.ready_fence.reset();  // Drop the refcount.
1017                 ready_frame.input_frames.clear();  // Drop the refcounts.
1018                 has_current_frame = true;
1019                 has_ready_frame = false;
1020         }
1021
1022         *frame = current_frame;
1023         return true;
1024 }
1025
1026 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1027 {
1028         new_frame_ready_callback = callback;
1029         has_new_frame_ready_callback = true;
1030 }