]> git.sesse.net Git - nageru/blob - mixer.cpp
Add an option to add fake capture cards, for easier standalone theme testing.
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30
31 #include "bmusb/bmusb.h"
32 #include "context.h"
33 #include "decklink_capture.h"
34 #include "defs.h"
35 #include "fake_capture.h"
36 #include "flags.h"
37 #include "video_encoder.h"
38 #include "pbo_frame_allocator.h"
39 #include "ref_counted_gl_sync.h"
40 #include "timebase.h"
41
42 class QOpenGLContext;
43
44 using namespace movit;
45 using namespace std;
46 using namespace std::placeholders;
47
48 Mixer *global_mixer = nullptr;
49
50 namespace {
51
52 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
53 {
54         assert(in_channels >= out_channels);
55         for (size_t i = 0; i < num_samples; ++i) {
56                 for (size_t j = 0; j < out_channels; ++j) {
57                         uint32_t s1 = *src++;
58                         uint32_t s2 = *src++;
59                         uint32_t s3 = *src++;
60                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
61                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
62                 }
63                 src += 3 * (in_channels - out_channels);
64         }
65 }
66
67 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
68 {
69         assert(in_channels >= out_channels);
70         for (size_t i = 0; i < num_samples; ++i) {
71                 for (size_t j = 0; j < out_channels; ++j) {
72                         // Note: Assumes little-endian.
73                         int32_t s = *(int32_t *)src;
74                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
75                         src += 4;
76                 }
77                 src += 4 * (in_channels - out_channels);
78         }
79 }
80
81 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
82 {
83         if (interlaced) {
84                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
85                         input_state->buffered_frames[card_index][frame_num] =
86                                 input_state->buffered_frames[card_index][frame_num - 1];
87                 }
88                 input_state->buffered_frames[card_index][0] = { frame, field_num };
89         } else {
90                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
91                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
92                 }
93         }
94 }
95
96 }  // namespace
97
98 void QueueLengthPolicy::update_policy(int queue_length)
99 {
100         if (queue_length < 0) {  // Starvation.
101                 if (been_at_safe_point_since_last_starvation && safe_queue_length < 5) {
102                         ++safe_queue_length;
103                         fprintf(stderr, "Card %u: Starvation, increasing safe limit to %u frames\n",
104                                 card_index, safe_queue_length);
105                 }
106                 frames_with_at_least_one = 0;
107                 been_at_safe_point_since_last_starvation = false;
108                 return;
109         }
110         if (queue_length > 0) {
111                 if (queue_length >= int(safe_queue_length)) {
112                         been_at_safe_point_since_last_starvation = true;
113                 }
114                 if (++frames_with_at_least_one >= 1000 && safe_queue_length > 0) {
115                         --safe_queue_length;
116                         fprintf(stderr, "Card %u: Spare frames for more than 1000 frames, reducing safe limit to %u frames\n",
117                                 card_index, safe_queue_length);
118                         frames_with_at_least_one = 0;
119                 }
120         } else {
121                 frames_with_at_least_one = 0;
122         }
123 }
124
125 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
126         : httpd(),
127           num_cards(num_cards),
128           mixer_surface(create_surface(format)),
129           h264_encoder_surface(create_surface(format)),
130           correlation(OUTPUT_FREQUENCY),
131           level_compressor(OUTPUT_FREQUENCY),
132           limiter(OUTPUT_FREQUENCY),
133           compressor(OUTPUT_FREQUENCY)
134 {
135         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
136         check_error();
137
138         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
139         // will be halved when sampling them, and we need to compensate here.
140         movit_texel_subpixel_precision /= 2.0;
141
142         resource_pool.reset(new ResourcePool);
143         theme.reset(new Theme(global_flags.theme_filename.c_str(), resource_pool.get(), num_cards));
144         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
145                 output_channel[i].parent = this;
146                 output_channel[i].channel = i;
147         }
148
149         ImageFormat inout_format;
150         inout_format.color_space = COLORSPACE_sRGB;
151         inout_format.gamma_curve = GAMMA_sRGB;
152
153         // Display chain; shows the live output produced by the main chain (its RGBA version).
154         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
155         check_error();
156         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
157         display_chain->add_input(display_input);
158         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
159         display_chain->set_dither_bits(0);  // Don't bother.
160         display_chain->finalize();
161
162         video_encoder.reset(new VideoEncoder(resource_pool.get(), h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
163
164         // Start listening for clients only once VideoEncoder has written its header, if any.
165         httpd.start(9095);
166
167         // First try initializing the fake devices, then PCI devices, then USB,
168         // until we have the desired number of cards.
169         unsigned num_pci_devices = 0, num_usb_devices = 0;
170         unsigned card_index = 0;
171
172         assert(global_flags.num_fake_cards >= 0);  // Enforced in flags.cpp.
173         unsigned num_fake_cards = global_flags.num_fake_cards;
174
175         assert(num_fake_cards <= num_cards);  // Enforced in flags.cpp.
176         for ( ; card_index < num_fake_cards; ++card_index) {
177                 configure_card(card_index, format, new FakeCapture(card_index));
178         }
179
180         if (global_flags.num_fake_cards > 0) {
181                 fprintf(stderr, "Initialized %d fake cards.\n", global_flags.num_fake_cards);
182         }
183
184         if (card_index < num_cards) {
185                 IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
186                 if (decklink_iterator != nullptr) {
187                         for ( ; card_index < num_cards; ++card_index) {
188                                 IDeckLink *decklink;
189                                 if (decklink_iterator->Next(&decklink) != S_OK) {
190                                         break;
191                                 }
192
193                                 configure_card(card_index, format, new DeckLinkCapture(decklink, card_index - num_fake_cards));
194                                 ++num_pci_devices;
195                         }
196                         decklink_iterator->Release();
197                         fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
198                 } else {
199                         fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
200                 }
201         }
202         for ( ; card_index < num_cards; ++card_index) {
203                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices - num_fake_cards));
204                 ++num_usb_devices;
205         }
206
207         if (num_usb_devices > 0) {
208                 BMUSBCapture::start_bm_thread();
209         }
210
211         for (card_index = 0; card_index < num_cards; ++card_index) {
212                 cards[card_index].queue_length_policy.reset(card_index);
213                 cards[card_index].capture->start_bm_capture();
214         }
215
216         // Set up stuff for NV12 conversion.
217
218         // Cb/Cr shader.
219         string cbcr_vert_shader =
220                 "#version 130 \n"
221                 " \n"
222                 "in vec2 position; \n"
223                 "in vec2 texcoord; \n"
224                 "out vec2 tc0; \n"
225                 "uniform vec2 foo_chroma_offset_0; \n"
226                 " \n"
227                 "void main() \n"
228                 "{ \n"
229                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
230                 "    // \n"
231                 "    //   2.000  0.000  0.000 -1.000 \n"
232                 "    //   0.000  2.000  0.000 -1.000 \n"
233                 "    //   0.000  0.000 -2.000 -1.000 \n"
234                 "    //   0.000  0.000  0.000  1.000 \n"
235                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
236                 "    vec2 flipped_tc = texcoord; \n"
237                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
238                 "} \n";
239         string cbcr_frag_shader =
240                 "#version 130 \n"
241                 "in vec2 tc0; \n"
242                 "uniform sampler2D cbcr_tex; \n"
243                 "out vec4 FragColor; \n"
244                 "void main() { \n"
245                 "    FragColor = texture(cbcr_tex, tc0); \n"
246                 "} \n";
247         vector<string> frag_shader_outputs;
248         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
249
250         float vertices[] = {
251                 0.0f, 2.0f,
252                 0.0f, 0.0f,
253                 2.0f, 0.0f
254         };
255         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
256         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
257         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
258
259         r128.init(2, OUTPUT_FREQUENCY);
260         r128.integr_start();
261
262         locut.init(FILTER_HPF, 2);
263
264         // If --flat-audio is given, turn off everything that messes with the sound,
265         // except the final makeup gain.
266         if (global_flags.flat_audio) {
267                 set_locut_enabled(false);
268                 set_gain_staging_auto(false);
269                 set_limiter_enabled(false);
270                 set_compressor_enabled(false);
271         }
272
273         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
274         // and there's a limit to how important the peak meter is.
275         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
276
277         if (global_flags.enable_alsa_output) {
278                 alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
279         }
280 }
281
282 Mixer::~Mixer()
283 {
284         resource_pool->release_glsl_program(cbcr_program_num);
285         glDeleteBuffers(1, &cbcr_vbo);
286         BMUSBCapture::stop_bm_thread();
287
288         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
289                 {
290                         unique_lock<mutex> lock(bmusb_mutex);
291                         cards[card_index].should_quit = true;  // Unblock thread.
292                         cards[card_index].new_frames_changed.notify_all();
293                 }
294                 cards[card_index].capture->stop_dequeue_thread();
295         }
296
297         video_encoder.reset(nullptr);
298 }
299
300 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
301 {
302         printf("Configuring card %d...\n", card_index);
303
304         CaptureCard *card = &cards[card_index];
305         card->capture = capture;
306         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
307         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
308         card->capture->set_video_frame_allocator(card->frame_allocator.get());
309         card->surface = create_surface(format);
310         card->resampling_queue.reset(new ResamplingQueue(card_index, OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
311         card->capture->configure_card();
312 }
313
314
315 namespace {
316
317 int unwrap_timecode(uint16_t current_wrapped, int last)
318 {
319         uint16_t last_wrapped = last & 0xffff;
320         if (current_wrapped > last_wrapped) {
321                 return (last & ~0xffff) | current_wrapped;
322         } else {
323                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
324         }
325 }
326
327 float find_peak(const float *samples, size_t num_samples)
328 {
329         float m = fabs(samples[0]);
330         for (size_t i = 1; i < num_samples; ++i) {
331                 m = max(m, fabs(samples[i]));
332         }
333         return m;
334 }
335
336 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
337 {
338         size_t num_samples = in.size() / 2;
339         out_l->resize(num_samples);
340         out_r->resize(num_samples);
341
342         const float *inptr = in.data();
343         float *lptr = &(*out_l)[0];
344         float *rptr = &(*out_r)[0];
345         for (size_t i = 0; i < num_samples; ++i) {
346                 *lptr++ = *inptr++;
347                 *rptr++ = *inptr++;
348         }
349 }
350
351 }  // namespace
352
353 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
354                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
355                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
356 {
357         CaptureCard *card = &cards[card_index];
358
359         if (is_mode_scanning[card_index]) {
360                 if (video_format.has_signal) {
361                         // Found a stable signal, so stop scanning.
362                         is_mode_scanning[card_index] = false;
363                 } else {
364                         static constexpr double switch_time_s = 0.5;  // Should be enough time for the signal to stabilize.
365                         timespec now;
366                         clock_gettime(CLOCK_MONOTONIC, &now);
367                         double sec_since_last_switch = (now.tv_sec - last_mode_scan_change[card_index].tv_sec) +
368                                 1e-9 * (now.tv_nsec - last_mode_scan_change[card_index].tv_nsec);
369                         if (sec_since_last_switch > switch_time_s) {
370                                 // It isn't this mode; try the next one.
371                                 mode_scanlist_index[card_index]++;
372                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
373                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
374                                 last_mode_scan_change[card_index] = now;
375                         }
376                 }
377         }
378
379         int64_t frame_length = int64_t(TIMEBASE) * video_format.frame_rate_den / video_format.frame_rate_nom;
380         assert(frame_length > 0);
381
382         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
383         if (num_samples > OUTPUT_FREQUENCY / 10) {
384                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
385                         card_index, int(audio_frame.len), int(audio_offset),
386                         timecode, int(video_frame.len), int(video_offset), video_format.id);
387                 if (video_frame.owner) {
388                         video_frame.owner->release_frame(video_frame);
389                 }
390                 if (audio_frame.owner) {
391                         audio_frame.owner->release_frame(audio_frame);
392                 }
393                 return;
394         }
395
396         int64_t local_pts = card->next_local_pts;
397         int dropped_frames = 0;
398         if (card->last_timecode != -1) {
399                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
400         }
401
402         // Convert the audio to stereo fp32 and add it.
403         vector<float> audio;
404         audio.resize(num_samples * 2);
405         switch (audio_format.bits_per_sample) {
406         case 0:
407                 assert(num_samples == 0);
408                 break;
409         case 24:
410                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
411                 break;
412         case 32:
413                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
414                 break;
415         default:
416                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
417                 assert(false);
418         }
419
420         // Add the audio.
421         {
422                 unique_lock<mutex> lock(card->audio_mutex);
423
424                 // Number of samples per frame if we need to insert silence.
425                 // (Could be nonintegral, but resampling will save us then.)
426                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
427
428                 if (dropped_frames > MAX_FPS * 2) {
429                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
430                                 card_index, card->last_timecode, timecode);
431                         card->resampling_queue.reset(new ResamplingQueue(card_index, OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
432                         dropped_frames = 0;
433                 } else if (dropped_frames > 0) {
434                         // Insert silence as needed.
435                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
436                                 card_index, dropped_frames, timecode);
437                         vector<float> silence(silence_samples * 2, 0.0f);
438                         for (int i = 0; i < dropped_frames; ++i) {
439                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
440                                 // Note that if the format changed in the meantime, we have
441                                 // no way of detecting that; we just have to assume the frame length
442                                 // is always the same.
443                                 local_pts += frame_length;
444                         }
445                 }
446                 if (num_samples == 0) {
447                         audio.resize(silence_samples * 2);
448                         num_samples = silence_samples;
449                 }
450                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
451                 card->next_local_pts = local_pts + frame_length;
452         }
453
454         card->last_timecode = timecode;
455
456         // Done with the audio, so release it.
457         if (audio_frame.owner) {
458                 audio_frame.owner->release_frame(audio_frame);
459         }
460
461         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
462         if (video_frame.len - video_offset == 0 ||
463             video_frame.len - video_offset != expected_length) {
464                 if (video_frame.len != 0) {
465                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
466                                 card_index, video_frame.len - video_offset, expected_length);
467                 }
468                 if (video_frame.owner) {
469                         video_frame.owner->release_frame(video_frame);
470                 }
471
472                 // Still send on the information that we _had_ a frame, even though it's corrupted,
473                 // so that pts can go up accordingly.
474                 {
475                         unique_lock<mutex> lock(bmusb_mutex);
476                         CaptureCard::NewFrame new_frame;
477                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
478                         new_frame.length = frame_length;
479                         new_frame.interlaced = false;
480                         new_frame.dropped_frames = dropped_frames;
481                         card->new_frames.push(move(new_frame));
482                         card->new_frames_changed.notify_all();
483                 }
484                 return;
485         }
486
487         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
488
489         unsigned num_fields = video_format.interlaced ? 2 : 1;
490         timespec frame_upload_start;
491         if (video_format.interlaced) {
492                 // Send the two fields along as separate frames; the other side will need to add
493                 // a deinterlacer to actually get this right.
494                 assert(video_format.height % 2 == 0);
495                 video_format.height /= 2;
496                 assert(frame_length % 2 == 0);
497                 frame_length /= 2;
498                 num_fields = 2;
499                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
500         }
501         userdata->last_interlaced = video_format.interlaced;
502         userdata->last_has_signal = video_format.has_signal;
503         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
504         userdata->last_frame_rate_den = video_format.frame_rate_den;
505         RefCountedFrame frame(video_frame);
506
507         // Upload the textures.
508         size_t cbcr_width = video_format.width / 2;
509         size_t cbcr_offset = video_offset / 2;
510         size_t y_offset = video_frame.size / 2 + video_offset / 2;
511
512         for (unsigned field = 0; field < num_fields; ++field) {
513                 // Put the actual texture upload in a lambda that is executed in the main thread.
514                 // It is entirely possible to do this in the same thread (and it might even be
515                 // faster, depending on the GPU and driver), but it appears to be trickling
516                 // driver bugs very easily.
517                 //
518                 // Note that this means we must hold on to the actual frame data in <userdata>
519                 // until the upload command is run, but we hold on to <frame> much longer than that
520                 // (in fact, all the way until we no longer use the texture in rendering).
521                 auto upload_func = [field, video_format, y_offset, cbcr_offset, cbcr_width, userdata]() {
522                         unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
523
524                         if (userdata->tex_y[field] == 0 ||
525                             userdata->tex_cbcr[field] == 0 ||
526                             video_format.width != userdata->last_width[field] ||
527                             video_format.height != userdata->last_height[field]) {
528                                 // We changed resolution since last use of this texture, so we need to create
529                                 // a new object. Note that this each card has its own PBOFrameAllocator,
530                                 // we don't need to worry about these flip-flopping between resolutions.
531                                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
532                                 check_error();
533                                 glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
534                                 check_error();
535                                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
536                                 check_error();
537                                 glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
538                                 check_error();
539                                 userdata->last_width[field] = video_format.width;
540                                 userdata->last_height[field] = video_format.height;
541                         }
542
543                         GLuint pbo = userdata->pbo;
544                         check_error();
545                         glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
546                         check_error();
547
548                         size_t field_y_start = y_offset + video_format.width * field_start_line;
549                         size_t field_cbcr_start = cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t);
550
551                         if (global_flags.flush_pbos) {
552                                 glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_y_start, video_format.width * video_format.height);
553                                 check_error();
554                                 glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_cbcr_start, cbcr_width * video_format.height * sizeof(uint16_t));
555                                 check_error();
556                         }
557
558                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
559                         check_error();
560                         glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_cbcr_start));
561                         check_error();
562                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
563                         check_error();
564                         glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_y_start));
565                         check_error();
566                         glBindTexture(GL_TEXTURE_2D, 0);
567                         check_error();
568                         glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
569                         check_error();
570                 };
571
572                 if (field == 1) {
573                         // Don't upload the second field as fast as we can; wait until
574                         // the field time has approximately passed. (Otherwise, we could
575                         // get timing jitter against the other sources, and possibly also
576                         // against the video display, although the latter is not as critical.)
577                         // This requires our system clock to be reasonably close to the
578                         // video clock, but that's not an unreasonable assumption.
579                         timespec second_field_start;
580                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
581                                 frame_length * 1000000000 / TIMEBASE;
582                         second_field_start.tv_sec = frame_upload_start.tv_sec +
583                                 second_field_start.tv_nsec / 1000000000;
584                         second_field_start.tv_nsec %= 1000000000;
585
586                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
587                                                &second_field_start, nullptr) == -1 &&
588                                errno == EINTR) ;
589                 }
590
591                 {
592                         unique_lock<mutex> lock(bmusb_mutex);
593                         CaptureCard::NewFrame new_frame;
594                         new_frame.frame = frame;
595                         new_frame.length = frame_length;
596                         new_frame.field = field;
597                         new_frame.interlaced = video_format.interlaced;
598                         new_frame.upload_func = upload_func;
599                         new_frame.dropped_frames = dropped_frames;
600                         card->new_frames.push(move(new_frame));
601                         card->new_frames_changed.notify_all();
602                 }
603         }
604 }
605
606 void Mixer::thread_func()
607 {
608         eglBindAPI(EGL_OPENGL_API);
609         QOpenGLContext *context = create_context(mixer_surface);
610         if (!make_current(context, mixer_surface)) {
611                 printf("oops\n");
612                 exit(1);
613         }
614
615         struct timespec start, now;
616         clock_gettime(CLOCK_MONOTONIC, &start);
617
618         int frame = 0;
619         int stats_dropped_frames = 0;
620
621         while (!should_quit) {
622                 CaptureCard::NewFrame new_frames[MAX_CARDS];
623                 bool has_new_frame[MAX_CARDS] = { false };
624                 int num_samples[MAX_CARDS] = { 0 };
625
626                 // TODO: Add a timeout.
627                 unsigned master_card_index = theme->map_signal(master_clock_channel);
628                 assert(master_card_index < num_cards);
629
630                 get_one_frame_from_each_card(master_card_index, new_frames, has_new_frame, num_samples);
631                 schedule_audio_resampling_tasks(new_frames[master_card_index].dropped_frames, num_samples[master_card_index], new_frames[master_card_index].length);
632                 stats_dropped_frames += new_frames[master_card_index].dropped_frames;
633                 send_audio_level_callback();
634
635                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
636                         if (card_index == master_card_index || !has_new_frame[card_index]) {
637                                 continue;
638                         }
639                         if (new_frames[card_index].frame->len == 0) {
640                                 ++new_frames[card_index].dropped_frames;
641                         }
642                         if (new_frames[card_index].dropped_frames > 0) {
643                                 printf("Card %u dropped %d frames before this\n",
644                                         card_index, int(new_frames[card_index].dropped_frames));
645                         }
646                 }
647
648                 // If the first card is reporting a corrupted or otherwise dropped frame,
649                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
650                 if (new_frames[master_card_index].frame->len == 0) {
651                         ++stats_dropped_frames;
652                         pts_int += new_frames[master_card_index].length;
653                         continue;
654                 }
655
656                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
657                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
658                                 continue;
659
660                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
661                         assert(new_frame->frame != nullptr);
662                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
663                         check_error();
664
665                         // The new texture might need uploading before use.
666                         if (new_frame->upload_func) {
667                                 new_frame->upload_func();
668                                 new_frame->upload_func = nullptr;
669                         }
670                 }
671
672                 int64_t duration = new_frames[master_card_index].length;
673                 render_one_frame(duration);
674                 ++frame;
675                 pts_int += duration;
676
677                 clock_gettime(CLOCK_MONOTONIC, &now);
678                 double elapsed = now.tv_sec - start.tv_sec +
679                         1e-9 * (now.tv_nsec - start.tv_nsec);
680                 if (frame % 100 == 0) {
681                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
682                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
683                                 1e3 * elapsed / frame);
684                 //      chain->print_phase_timing();
685                 }
686
687                 if (should_cut.exchange(false)) {  // Test and clear.
688                         video_encoder->do_cut(frame);
689                 }
690
691 #if 0
692                 // Reset every 100 frames, so that local variations in frame times
693                 // (especially for the first few frames, when the shaders are
694                 // compiled etc.) don't make it hard to measure for the entire
695                 // remaining duration of the program.
696                 if (frame == 10000) {
697                         frame = 0;
698                         start = now;
699                 }
700 #endif
701                 check_error();
702         }
703
704         resource_pool->clean_context();
705 }
706
707 void Mixer::get_one_frame_from_each_card(unsigned master_card_index, CaptureCard::NewFrame new_frames[MAX_CARDS], bool has_new_frame[MAX_CARDS], int num_samples[MAX_CARDS])
708 {
709         // The first card is the master timer, so wait for it to have a new frame.
710         unique_lock<mutex> lock(bmusb_mutex);
711         cards[master_card_index].new_frames_changed.wait(lock, [this, master_card_index]{ return !cards[master_card_index].new_frames.empty(); });
712
713         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
714                 CaptureCard *card = &cards[card_index];
715                 if (card->new_frames.empty()) {
716                         assert(card_index != master_card_index);
717                         card->queue_length_policy.update_policy(-1);
718                         continue;
719                 }
720                 new_frames[card_index] = move(card->new_frames.front());
721                 has_new_frame[card_index] = true;
722                 card->new_frames.pop();
723                 card->new_frames_changed.notify_all();
724
725                 int num_samples_times_timebase = OUTPUT_FREQUENCY * new_frames[card_index].length + card->fractional_samples;
726                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
727                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
728                 assert(num_samples[card_index] >= 0);
729
730                 if (card_index == master_card_index) {
731                         // We don't use the queue length policy for the master card,
732                         // but we will if it stops being the master. Thus, clear out
733                         // the policy in case we switch in the future.
734                         card->queue_length_policy.reset(card_index);
735                 } else {
736                         // If we have excess frames compared to the policy for this card,
737                         // drop frames from the head.
738                         card->queue_length_policy.update_policy(card->new_frames.size());
739                         while (card->new_frames.size() > card->queue_length_policy.get_safe_queue_length()) {
740                                 card->new_frames.pop();
741                         }
742                 }
743         }
744 }
745
746 void Mixer::schedule_audio_resampling_tasks(unsigned dropped_frames, int num_samples_per_frame, int length_per_frame)
747 {
748         // Resample the audio as needed, including from previously dropped frames.
749         assert(num_cards > 0);
750         for (unsigned frame_num = 0; frame_num < dropped_frames + 1; ++frame_num) {
751                 {
752                         // Signal to the audio thread to process this frame.
753                         unique_lock<mutex> lock(audio_mutex);
754                         audio_task_queue.push(AudioTask{pts_int, num_samples_per_frame});
755                         audio_task_queue_changed.notify_one();
756                 }
757                 if (frame_num != dropped_frames) {
758                         // For dropped frames, increase the pts. Note that if the format changed
759                         // in the meantime, we have no way of detecting that; we just have to
760                         // assume the frame length is always the same.
761                         pts_int += length_per_frame;
762                 }
763         }
764 }
765
766 void Mixer::render_one_frame(int64_t duration)
767 {
768         // Get the main chain from the theme, and set its state immediately.
769         Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
770         EffectChain *chain = theme_main_chain.chain;
771         theme_main_chain.setup_chain();
772         //theme_main_chain.chain->enable_phase_timing(true);
773
774         GLuint y_tex, cbcr_tex;
775         bool got_frame = video_encoder->begin_frame(&y_tex, &cbcr_tex);
776         assert(got_frame);
777
778         // Render main chain.
779         GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
780         GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
781         GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
782         check_error();
783         chain->render_to_fbo(fbo, WIDTH, HEIGHT);
784         resource_pool->release_fbo(fbo);
785
786         subsample_chroma(cbcr_full_tex, cbcr_tex);
787         resource_pool->release_2d_texture(cbcr_full_tex);
788
789         // Set the right state for rgba_tex.
790         glBindFramebuffer(GL_FRAMEBUFFER, 0);
791         glBindTexture(GL_TEXTURE_2D, rgba_tex);
792         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
793         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
794         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
795
796         const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
797         RefCountedGLsync fence = video_encoder->end_frame(pts_int + av_delay, duration, theme_main_chain.input_frames);
798
799         // The live frame just shows the RGBA texture we just rendered.
800         // It owns rgba_tex now.
801         DisplayFrame live_frame;
802         live_frame.chain = display_chain.get();
803         live_frame.setup_chain = [this, rgba_tex]{
804                 display_input->set_texture_num(rgba_tex);
805         };
806         live_frame.ready_fence = fence;
807         live_frame.input_frames = {};
808         live_frame.temp_textures = { rgba_tex };
809         output_channel[OUTPUT_LIVE].output_frame(live_frame);
810
811         // Set up preview and any additional channels.
812         for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
813                 DisplayFrame display_frame;
814                 Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
815                 display_frame.chain = chain.chain;
816                 display_frame.setup_chain = chain.setup_chain;
817                 display_frame.ready_fence = fence;
818                 display_frame.input_frames = chain.input_frames;
819                 display_frame.temp_textures = {};
820                 output_channel[i].output_frame(display_frame);
821         }
822 }
823
824 void Mixer::send_audio_level_callback()
825 {
826         if (audio_level_callback == nullptr) {
827                 return;
828         }
829
830         unique_lock<mutex> lock(compressor_mutex);
831         double loudness_s = r128.loudness_S();
832         double loudness_i = r128.integrated();
833         double loudness_range_low = r128.range_min();
834         double loudness_range_high = r128.range_max();
835
836         audio_level_callback(loudness_s, 20.0 * log10(peak),
837                 loudness_i, loudness_range_low, loudness_range_high,
838                 gain_staging_db, 20.0 * log10(final_makeup_gain),
839                 correlation.get_correlation());
840 }
841
842 void Mixer::audio_thread_func()
843 {
844         while (!should_quit) {
845                 AudioTask task;
846
847                 {
848                         unique_lock<mutex> lock(audio_mutex);
849                         audio_task_queue_changed.wait(lock, [this]{ return should_quit || !audio_task_queue.empty(); });
850                         if (should_quit) {
851                                 return;
852                         }
853                         task = audio_task_queue.front();
854                         audio_task_queue.pop();
855                 }
856
857                 process_audio_one_frame(task.pts_int, task.num_samples);
858         }
859 }
860
861 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
862 {
863         vector<float> samples_card;
864         vector<float> samples_out;
865
866         // TODO: Allow mixing audio from several sources.
867         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
868         assert(selected_audio_card < num_cards);
869
870         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
871                 samples_card.resize(num_samples * 2);
872                 {
873                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
874                         cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples);
875                 }
876                 if (card_index == selected_audio_card) {
877                         samples_out = move(samples_card);
878                 }
879         }
880
881         // Cut away everything under 120 Hz (or whatever the cutoff is);
882         // we don't need it for voice, and it will reduce headroom
883         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
884         // should be dampened.)
885         if (locut_enabled) {
886                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
887         }
888
889         // Apply a level compressor to get the general level right.
890         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
891         // (or more precisely, near it, since we don't use infinite ratio),
892         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
893         // entirely arbitrary, but from practical tests with speech, it seems to
894         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
895         {
896                 unique_lock<mutex> lock(compressor_mutex);
897                 if (level_compressor_enabled) {
898                         float threshold = 0.01f;   // -40 dBFS.
899                         float ratio = 20.0f;
900                         float attack_time = 0.5f;
901                         float release_time = 20.0f;
902                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
903                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
904                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
905                 } else {
906                         // Just apply the gain we already had.
907                         float g = pow(10.0f, gain_staging_db / 20.0f);
908                         for (size_t i = 0; i < samples_out.size(); ++i) {
909                                 samples_out[i] *= g;
910                         }
911                 }
912         }
913
914 #if 0
915         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
916                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
917                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
918                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
919 #endif
920
921 //      float limiter_att, compressor_att;
922
923         // The real compressor.
924         if (compressor_enabled) {
925                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
926                 float ratio = 20.0f;
927                 float attack_time = 0.005f;
928                 float release_time = 0.040f;
929                 float makeup_gain = 2.0f;  // +6 dB.
930                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
931 //              compressor_att = compressor.get_attenuation();
932         }
933
934         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
935         // Note that since ratio is not infinite, we could go slightly higher than this.
936         if (limiter_enabled) {
937                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
938                 float ratio = 30.0f;
939                 float attack_time = 0.0f;  // Instant.
940                 float release_time = 0.020f;
941                 float makeup_gain = 1.0f;  // 0 dB.
942                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
943 //              limiter_att = limiter.get_attenuation();
944         }
945
946 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
947
948         // Upsample 4x to find interpolated peak.
949         peak_resampler.inp_data = samples_out.data();
950         peak_resampler.inp_count = samples_out.size() / 2;
951
952         vector<float> interpolated_samples_out;
953         interpolated_samples_out.resize(samples_out.size());
954         while (peak_resampler.inp_count > 0) {  // About four iterations.
955                 peak_resampler.out_data = &interpolated_samples_out[0];
956                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
957                 peak_resampler.process();
958                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
959                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
960                 peak_resampler.out_data = nullptr;
961         }
962
963         // At this point, we are most likely close to +0 LU, but all of our
964         // measurements have been on raw sample values, not R128 values.
965         // So we have a final makeup gain to get us to +0 LU; the gain
966         // adjustments required should be relatively small, and also, the
967         // offset shouldn't change much (only if the type of audio changes
968         // significantly). Thus, we shoot for updating this value basically
969         // “whenever we process buffers”, since the R128 calculation isn't exactly
970         // something we get out per-sample.
971         //
972         // Note that there's a feedback loop here, so we choose a very slow filter
973         // (half-time of 100 seconds).
974         double target_loudness_factor, alpha;
975         {
976                 unique_lock<mutex> lock(compressor_mutex);
977                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
978                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
979                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
980
981                 // If we're outside +/- 5 LU uncorrected, we don't count it as
982                 // a normal signal (probably silence) and don't change the
983                 // correction factor; just apply what we already have.
984                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
985                         alpha = 0.0;
986                 } else {
987                         // Formula adapted from
988                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
989                         const double half_time_s = 100.0;
990                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
991                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
992                 }
993
994                 double m = final_makeup_gain;
995                 for (size_t i = 0; i < samples_out.size(); i += 2) {
996                         samples_out[i + 0] *= m;
997                         samples_out[i + 1] *= m;
998                         m += (target_loudness_factor - m) * alpha;
999                 }
1000                 final_makeup_gain = m;
1001         }
1002
1003         // Find R128 levels and L/R correlation.
1004         vector<float> left, right;
1005         deinterleave_samples(samples_out, &left, &right);
1006         float *ptrs[] = { left.data(), right.data() };
1007         {
1008                 unique_lock<mutex> lock(compressor_mutex);
1009                 r128.process(left.size(), ptrs);
1010                 correlation.process_samples(samples_out);
1011         }
1012
1013         // Send the samples to the sound card.
1014         if (alsa) {
1015                 alsa->write(samples_out);
1016         }
1017
1018         // And finally add them to the output.
1019         video_encoder->add_audio(frame_pts_int, move(samples_out));
1020 }
1021
1022 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
1023 {
1024         GLuint vao;
1025         glGenVertexArrays(1, &vao);
1026         check_error();
1027
1028         glBindVertexArray(vao);
1029         check_error();
1030
1031         // Extract Cb/Cr.
1032         GLuint fbo = resource_pool->create_fbo(dst_tex);
1033         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1034         glViewport(0, 0, WIDTH/2, HEIGHT/2);
1035         check_error();
1036
1037         glUseProgram(cbcr_program_num);
1038         check_error();
1039
1040         glActiveTexture(GL_TEXTURE0);
1041         check_error();
1042         glBindTexture(GL_TEXTURE_2D, src_tex);
1043         check_error();
1044         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1045         check_error();
1046         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1047         check_error();
1048         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1049         check_error();
1050
1051         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
1052         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
1053
1054         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
1055         check_error();
1056
1057         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1058                 glEnableVertexAttribArray(attr_index);
1059                 check_error();
1060                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1061                 check_error();
1062         }
1063
1064         glDrawArrays(GL_TRIANGLES, 0, 3);
1065         check_error();
1066
1067         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1068                 glDisableVertexAttribArray(attr_index);
1069                 check_error();
1070         }
1071
1072         glUseProgram(0);
1073         check_error();
1074         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1075         check_error();
1076
1077         resource_pool->release_fbo(fbo);
1078         glDeleteVertexArrays(1, &vao);
1079 }
1080
1081 void Mixer::release_display_frame(DisplayFrame *frame)
1082 {
1083         for (GLuint texnum : frame->temp_textures) {
1084                 resource_pool->release_2d_texture(texnum);
1085         }
1086         frame->temp_textures.clear();
1087         frame->ready_fence.reset();
1088         frame->input_frames.clear();
1089 }
1090
1091 void Mixer::start()
1092 {
1093         mixer_thread = thread(&Mixer::thread_func, this);
1094         audio_thread = thread(&Mixer::audio_thread_func, this);
1095 }
1096
1097 void Mixer::quit()
1098 {
1099         should_quit = true;
1100         audio_task_queue_changed.notify_one();
1101         mixer_thread.join();
1102         audio_thread.join();
1103 }
1104
1105 void Mixer::transition_clicked(int transition_num)
1106 {
1107         theme->transition_clicked(transition_num, pts());
1108 }
1109
1110 void Mixer::channel_clicked(int preview_num)
1111 {
1112         theme->channel_clicked(preview_num);
1113 }
1114
1115 void Mixer::reset_meters()
1116 {
1117         peak_resampler.reset();
1118         peak = 0.0f;
1119         r128.reset();
1120         r128.integr_start();
1121         correlation.reset();
1122 }
1123
1124 void Mixer::start_mode_scanning(unsigned card_index)
1125 {
1126         assert(card_index < num_cards);
1127         if (is_mode_scanning[card_index]) {
1128                 return;
1129         }
1130         is_mode_scanning[card_index] = true;
1131         mode_scanlist[card_index].clear();
1132         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
1133                 mode_scanlist[card_index].push_back(mode.first);
1134         }
1135         assert(!mode_scanlist[card_index].empty());
1136         mode_scanlist_index[card_index] = 0;
1137         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
1138         clock_gettime(CLOCK_MONOTONIC, &last_mode_scan_change[card_index]);
1139 }
1140
1141 Mixer::OutputChannel::~OutputChannel()
1142 {
1143         if (has_current_frame) {
1144                 parent->release_display_frame(&current_frame);
1145         }
1146         if (has_ready_frame) {
1147                 parent->release_display_frame(&ready_frame);
1148         }
1149 }
1150
1151 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1152 {
1153         // Store this frame for display. Remove the ready frame if any
1154         // (it was seemingly never used).
1155         {
1156                 unique_lock<mutex> lock(frame_mutex);
1157                 if (has_ready_frame) {
1158                         parent->release_display_frame(&ready_frame);
1159                 }
1160                 ready_frame = frame;
1161                 has_ready_frame = true;
1162         }
1163
1164         if (new_frame_ready_callback) {
1165                 new_frame_ready_callback();
1166         }
1167
1168         // Reduce the number of callbacks by filtering duplicates. The reason
1169         // why we bother doing this is that Qt seemingly can get into a state
1170         // where its builds up an essentially unbounded queue of signals,
1171         // consuming more and more memory, and there's no good way of collapsing
1172         // user-defined signals or limiting the length of the queue.
1173         if (transition_names_updated_callback) {
1174                 vector<string> transition_names = global_mixer->get_transition_names();
1175                 bool changed = false;
1176                 if (transition_names.size() != last_transition_names.size()) {
1177                         changed = true;
1178                 } else {
1179                         for (unsigned i = 0; i < transition_names.size(); ++i) {
1180                                 if (transition_names[i] != last_transition_names[i]) {
1181                                         changed = true;
1182                                         break;
1183                                 }
1184                         }
1185                 }
1186                 if (changed) {
1187                         transition_names_updated_callback(transition_names);
1188                         last_transition_names = transition_names;
1189                 }
1190         }
1191         if (name_updated_callback) {
1192                 string name = global_mixer->get_channel_name(channel);
1193                 if (name != last_name) {
1194                         name_updated_callback(name);
1195                         last_name = name;
1196                 }
1197         }
1198         if (color_updated_callback) {
1199                 string color = global_mixer->get_channel_color(channel);
1200                 if (color != last_color) {
1201                         color_updated_callback(color);
1202                         last_color = color;
1203                 }
1204         }
1205 }
1206
1207 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1208 {
1209         unique_lock<mutex> lock(frame_mutex);
1210         if (!has_current_frame && !has_ready_frame) {
1211                 return false;
1212         }
1213
1214         if (has_current_frame && has_ready_frame) {
1215                 // We have a new ready frame. Toss the current one.
1216                 parent->release_display_frame(&current_frame);
1217                 has_current_frame = false;
1218         }
1219         if (has_ready_frame) {
1220                 assert(!has_current_frame);
1221                 current_frame = ready_frame;
1222                 ready_frame.ready_fence.reset();  // Drop the refcount.
1223                 ready_frame.input_frames.clear();  // Drop the refcounts.
1224                 has_current_frame = true;
1225                 has_ready_frame = false;
1226         }
1227
1228         *frame = current_frame;
1229         return true;
1230 }
1231
1232 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1233 {
1234         new_frame_ready_callback = callback;
1235 }
1236
1237 void Mixer::OutputChannel::set_transition_names_updated_callback(Mixer::transition_names_updated_callback_t callback)
1238 {
1239         transition_names_updated_callback = callback;
1240 }
1241
1242 void Mixer::OutputChannel::set_name_updated_callback(Mixer::name_updated_callback_t callback)
1243 {
1244         name_updated_callback = callback;
1245 }
1246
1247 void Mixer::OutputChannel::set_color_updated_callback(Mixer::color_updated_callback_t callback)
1248 {
1249         color_updated_callback = callback;
1250 }
1251
1252 mutex RefCountedGLsync::fence_lock;