]> git.sesse.net Git - nageru/blob - mixer.cpp
Let the theme distinguish between fake and real inputs (ie., if there is an actual...
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29 #include <arpa/inet.h>
30 #include <sys/time.h>
31 #include <sys/resource.h>
32
33 #include "bmusb/bmusb.h"
34 #include "context.h"
35 #include "decklink_capture.h"
36 #include "defs.h"
37 #include "fake_capture.h"
38 #include "flags.h"
39 #include "video_encoder.h"
40 #include "pbo_frame_allocator.h"
41 #include "ref_counted_gl_sync.h"
42 #include "timebase.h"
43
44 class QOpenGLContext;
45
46 using namespace movit;
47 using namespace std;
48 using namespace std::placeholders;
49
50 Mixer *global_mixer = nullptr;
51 bool uses_mlock = false;
52
53 namespace {
54
55 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
56 {
57         assert(in_channels >= out_channels);
58         for (size_t i = 0; i < num_samples; ++i) {
59                 for (size_t j = 0; j < out_channels; ++j) {
60                         uint32_t s1 = *src++;
61                         uint32_t s2 = *src++;
62                         uint32_t s3 = *src++;
63                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
64                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
65                 }
66                 src += 3 * (in_channels - out_channels);
67         }
68 }
69
70 void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
71 {
72         assert(in_channels >= out_channels);
73         for (size_t i = 0; i < num_samples; ++i) {
74                 for (size_t j = 0; j < out_channels; ++j) {
75                         // Note: Assumes little-endian.
76                         int32_t s = *(int32_t *)src;
77                         dst[i * out_channels + j] = s * (1.0f / 4294967296.0f);
78                         src += 4;
79                 }
80                 src += 4 * (in_channels - out_channels);
81         }
82 }
83
84 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
85 {
86         if (interlaced) {
87                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
88                         input_state->buffered_frames[card_index][frame_num] =
89                                 input_state->buffered_frames[card_index][frame_num - 1];
90                 }
91                 input_state->buffered_frames[card_index][0] = { frame, field_num };
92         } else {
93                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
94                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
95                 }
96         }
97 }
98
99 }  // namespace
100
101 void QueueLengthPolicy::update_policy(int queue_length)
102 {
103         if (queue_length < 0) {  // Starvation.
104                 if (been_at_safe_point_since_last_starvation && safe_queue_length < 5) {
105                         ++safe_queue_length;
106                         fprintf(stderr, "Card %u: Starvation, increasing safe limit to %u frames\n",
107                                 card_index, safe_queue_length);
108                 }
109                 frames_with_at_least_one = 0;
110                 been_at_safe_point_since_last_starvation = false;
111                 return;
112         }
113         if (queue_length > 0) {
114                 if (queue_length >= int(safe_queue_length)) {
115                         been_at_safe_point_since_last_starvation = true;
116                 }
117                 if (++frames_with_at_least_one >= 1000 && safe_queue_length > 0) {
118                         --safe_queue_length;
119                         fprintf(stderr, "Card %u: Spare frames for more than 1000 frames, reducing safe limit to %u frames\n",
120                                 card_index, safe_queue_length);
121                         frames_with_at_least_one = 0;
122                 }
123         } else {
124                 frames_with_at_least_one = 0;
125         }
126 }
127
128 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
129         : httpd(),
130           num_cards(num_cards),
131           mixer_surface(create_surface(format)),
132           h264_encoder_surface(create_surface(format)),
133           correlation(OUTPUT_FREQUENCY),
134           level_compressor(OUTPUT_FREQUENCY),
135           limiter(OUTPUT_FREQUENCY),
136           compressor(OUTPUT_FREQUENCY)
137 {
138         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
139         check_error();
140
141         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
142         // will be halved when sampling them, and we need to compensate here.
143         movit_texel_subpixel_precision /= 2.0;
144
145         resource_pool.reset(new ResourcePool);
146         theme.reset(new Theme(global_flags.theme_filename.c_str(), resource_pool.get(), num_cards));
147         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
148                 output_channel[i].parent = this;
149                 output_channel[i].channel = i;
150         }
151
152         ImageFormat inout_format;
153         inout_format.color_space = COLORSPACE_sRGB;
154         inout_format.gamma_curve = GAMMA_sRGB;
155
156         // Display chain; shows the live output produced by the main chain (its RGBA version).
157         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
158         check_error();
159         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
160         display_chain->add_input(display_input);
161         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
162         display_chain->set_dither_bits(0);  // Don't bother.
163         display_chain->finalize();
164
165         video_encoder.reset(new VideoEncoder(resource_pool.get(), h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
166
167         // Start listening for clients only once VideoEncoder has written its header, if any.
168         httpd.start(9095);
169
170         // First try initializing the fake devices, then PCI devices, then USB,
171         // until we have the desired number of cards.
172         unsigned num_pci_devices = 0, num_usb_devices = 0;
173         unsigned card_index = 0;
174
175         assert(global_flags.num_fake_cards >= 0);  // Enforced in flags.cpp.
176         unsigned num_fake_cards = global_flags.num_fake_cards;
177
178         assert(num_fake_cards <= num_cards);  // Enforced in flags.cpp.
179         for ( ; card_index < num_fake_cards; ++card_index) {
180                 configure_card(card_index, format, new FakeCapture(card_index));
181         }
182
183         if (global_flags.num_fake_cards > 0) {
184                 fprintf(stderr, "Initialized %d fake cards.\n", global_flags.num_fake_cards);
185         }
186
187         if (card_index < num_cards) {
188                 IDeckLinkIterator *decklink_iterator = CreateDeckLinkIteratorInstance();
189                 if (decklink_iterator != nullptr) {
190                         for ( ; card_index < num_cards; ++card_index) {
191                                 IDeckLink *decklink;
192                                 if (decklink_iterator->Next(&decklink) != S_OK) {
193                                         break;
194                                 }
195
196                                 configure_card(card_index, format, new DeckLinkCapture(decklink, card_index - num_fake_cards));
197                                 ++num_pci_devices;
198                         }
199                         decklink_iterator->Release();
200                         fprintf(stderr, "Found %d DeckLink PCI card(s).\n", num_pci_devices);
201                 } else {
202                         fprintf(stderr, "DeckLink drivers not found. Probing for USB cards only.\n");
203                 }
204         }
205         for ( ; card_index < num_cards; ++card_index) {
206                 configure_card(card_index, format, new BMUSBCapture(card_index - num_pci_devices - num_fake_cards));
207                 ++num_usb_devices;
208         }
209
210         if (num_usb_devices > 0) {
211                 has_bmusb_thread = true;
212                 BMUSBCapture::start_bm_thread();
213         }
214
215         for (card_index = 0; card_index < num_cards; ++card_index) {
216                 cards[card_index].queue_length_policy.reset(card_index);
217                 cards[card_index].capture->start_bm_capture();
218         }
219
220         // Set up stuff for NV12 conversion.
221
222         // Cb/Cr shader.
223         string cbcr_vert_shader =
224                 "#version 130 \n"
225                 " \n"
226                 "in vec2 position; \n"
227                 "in vec2 texcoord; \n"
228                 "out vec2 tc0; \n"
229                 "uniform vec2 foo_chroma_offset_0; \n"
230                 " \n"
231                 "void main() \n"
232                 "{ \n"
233                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
234                 "    // \n"
235                 "    //   2.000  0.000  0.000 -1.000 \n"
236                 "    //   0.000  2.000  0.000 -1.000 \n"
237                 "    //   0.000  0.000 -2.000 -1.000 \n"
238                 "    //   0.000  0.000  0.000  1.000 \n"
239                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
240                 "    vec2 flipped_tc = texcoord; \n"
241                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
242                 "} \n";
243         string cbcr_frag_shader =
244                 "#version 130 \n"
245                 "in vec2 tc0; \n"
246                 "uniform sampler2D cbcr_tex; \n"
247                 "out vec4 FragColor; \n"
248                 "void main() { \n"
249                 "    FragColor = texture(cbcr_tex, tc0); \n"
250                 "} \n";
251         vector<string> frag_shader_outputs;
252         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
253
254         float vertices[] = {
255                 0.0f, 2.0f,
256                 0.0f, 0.0f,
257                 2.0f, 0.0f
258         };
259         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
260         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
261         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
262
263         r128.init(2, OUTPUT_FREQUENCY);
264         r128.integr_start();
265
266         locut.init(FILTER_HPF, 2);
267
268         // If --flat-audio is given, turn off everything that messes with the sound,
269         // except the final makeup gain.
270         if (global_flags.flat_audio) {
271                 set_locut_enabled(false);
272                 set_gain_staging_auto(false);
273                 set_limiter_enabled(false);
274                 set_compressor_enabled(false);
275         }
276
277         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
278         // and there's a limit to how important the peak meter is.
279         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
280
281         if (global_flags.enable_alsa_output) {
282                 alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
283         }
284 }
285
286 Mixer::~Mixer()
287 {
288         resource_pool->release_glsl_program(cbcr_program_num);
289         glDeleteBuffers(1, &cbcr_vbo);
290         if (has_bmusb_thread) {
291                 BMUSBCapture::stop_bm_thread();
292         }
293
294         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
295                 {
296                         unique_lock<mutex> lock(bmusb_mutex);
297                         cards[card_index].should_quit = true;  // Unblock thread.
298                         cards[card_index].new_frames_changed.notify_all();
299                 }
300                 cards[card_index].capture->stop_dequeue_thread();
301         }
302
303         video_encoder.reset(nullptr);
304 }
305
306 void Mixer::configure_card(unsigned card_index, const QSurfaceFormat &format, CaptureInterface *capture)
307 {
308         printf("Configuring card %d...\n", card_index);
309
310         CaptureCard *card = &cards[card_index];
311         card->capture = capture;
312         card->capture->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
313         card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
314         card->capture->set_video_frame_allocator(card->frame_allocator.get());
315         card->surface = create_surface(format);
316         card->resampling_queue.reset(new ResamplingQueue(card_index, OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
317         card->capture->configure_card();
318 }
319
320
321 namespace {
322
323 int unwrap_timecode(uint16_t current_wrapped, int last)
324 {
325         uint16_t last_wrapped = last & 0xffff;
326         if (current_wrapped > last_wrapped) {
327                 return (last & ~0xffff) | current_wrapped;
328         } else {
329                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
330         }
331 }
332
333 float find_peak(const float *samples, size_t num_samples)
334 {
335         float m = fabs(samples[0]);
336         for (size_t i = 1; i < num_samples; ++i) {
337                 m = max(m, fabs(samples[i]));
338         }
339         return m;
340 }
341
342 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
343 {
344         size_t num_samples = in.size() / 2;
345         out_l->resize(num_samples);
346         out_r->resize(num_samples);
347
348         const float *inptr = in.data();
349         float *lptr = &(*out_l)[0];
350         float *rptr = &(*out_r)[0];
351         for (size_t i = 0; i < num_samples; ++i) {
352                 *lptr++ = *inptr++;
353                 *rptr++ = *inptr++;
354         }
355 }
356
357 }  // namespace
358
359 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
360                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
361                      FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
362 {
363         CaptureCard *card = &cards[card_index];
364
365         if (is_mode_scanning[card_index]) {
366                 if (video_format.has_signal) {
367                         // Found a stable signal, so stop scanning.
368                         is_mode_scanning[card_index] = false;
369                 } else {
370                         static constexpr double switch_time_s = 0.5;  // Should be enough time for the signal to stabilize.
371                         timespec now;
372                         clock_gettime(CLOCK_MONOTONIC, &now);
373                         double sec_since_last_switch = (now.tv_sec - last_mode_scan_change[card_index].tv_sec) +
374                                 1e-9 * (now.tv_nsec - last_mode_scan_change[card_index].tv_nsec);
375                         if (sec_since_last_switch > switch_time_s) {
376                                 // It isn't this mode; try the next one.
377                                 mode_scanlist_index[card_index]++;
378                                 mode_scanlist_index[card_index] %= mode_scanlist[card_index].size();
379                                 cards[card_index].capture->set_video_mode(mode_scanlist[card_index][mode_scanlist_index[card_index]]);
380                                 last_mode_scan_change[card_index] = now;
381                         }
382                 }
383         }
384
385         int64_t frame_length = int64_t(TIMEBASE) * video_format.frame_rate_den / video_format.frame_rate_nom;
386         assert(frame_length > 0);
387
388         size_t num_samples = (audio_frame.len > audio_offset) ? (audio_frame.len - audio_offset) / audio_format.num_channels / (audio_format.bits_per_sample / 8) : 0;
389         if (num_samples > OUTPUT_FREQUENCY / 10) {
390                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
391                         card_index, int(audio_frame.len), int(audio_offset),
392                         timecode, int(video_frame.len), int(video_offset), video_format.id);
393                 if (video_frame.owner) {
394                         video_frame.owner->release_frame(video_frame);
395                 }
396                 if (audio_frame.owner) {
397                         audio_frame.owner->release_frame(audio_frame);
398                 }
399                 return;
400         }
401
402         int64_t local_pts = card->next_local_pts;
403         int dropped_frames = 0;
404         if (card->last_timecode != -1) {
405                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
406         }
407
408         // Convert the audio to stereo fp32 and add it.
409         vector<float> audio;
410         audio.resize(num_samples * 2);
411         switch (audio_format.bits_per_sample) {
412         case 0:
413                 assert(num_samples == 0);
414                 break;
415         case 24:
416                 convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
417                 break;
418         case 32:
419                 convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
420                 break;
421         default:
422                 fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
423                 assert(false);
424         }
425
426         // Add the audio.
427         {
428                 unique_lock<mutex> lock(card->audio_mutex);
429
430                 // Number of samples per frame if we need to insert silence.
431                 // (Could be nonintegral, but resampling will save us then.)
432                 int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
433
434                 if (dropped_frames > MAX_FPS * 2) {
435                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
436                                 card_index, card->last_timecode, timecode);
437                         card->resampling_queue.reset(new ResamplingQueue(card_index, OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
438                         dropped_frames = 0;
439                 } else if (dropped_frames > 0) {
440                         // Insert silence as needed.
441                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
442                                 card_index, dropped_frames, timecode);
443                         vector<float> silence(silence_samples * 2, 0.0f);
444                         for (int i = 0; i < dropped_frames; ++i) {
445                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
446                                 // Note that if the format changed in the meantime, we have
447                                 // no way of detecting that; we just have to assume the frame length
448                                 // is always the same.
449                                 local_pts += frame_length;
450                         }
451                 }
452                 if (num_samples == 0) {
453                         audio.resize(silence_samples * 2);
454                         num_samples = silence_samples;
455                 }
456                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
457                 card->next_local_pts = local_pts + frame_length;
458         }
459
460         card->last_timecode = timecode;
461
462         // Done with the audio, so release it.
463         if (audio_frame.owner) {
464                 audio_frame.owner->release_frame(audio_frame);
465         }
466
467         size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
468         if (video_frame.len - video_offset == 0 ||
469             video_frame.len - video_offset != expected_length) {
470                 if (video_frame.len != 0) {
471                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
472                                 card_index, video_frame.len - video_offset, expected_length);
473                 }
474                 if (video_frame.owner) {
475                         video_frame.owner->release_frame(video_frame);
476                 }
477
478                 // Still send on the information that we _had_ a frame, even though it's corrupted,
479                 // so that pts can go up accordingly.
480                 {
481                         unique_lock<mutex> lock(bmusb_mutex);
482                         CaptureCard::NewFrame new_frame;
483                         new_frame.frame = RefCountedFrame(FrameAllocator::Frame());
484                         new_frame.length = frame_length;
485                         new_frame.interlaced = false;
486                         new_frame.dropped_frames = dropped_frames;
487                         card->new_frames.push(move(new_frame));
488                         card->new_frames_changed.notify_all();
489                 }
490                 return;
491         }
492
493         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
494
495         unsigned num_fields = video_format.interlaced ? 2 : 1;
496         timespec frame_upload_start;
497         if (video_format.interlaced) {
498                 // Send the two fields along as separate frames; the other side will need to add
499                 // a deinterlacer to actually get this right.
500                 assert(video_format.height % 2 == 0);
501                 video_format.height /= 2;
502                 assert(frame_length % 2 == 0);
503                 frame_length /= 2;
504                 num_fields = 2;
505                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
506         }
507         userdata->last_interlaced = video_format.interlaced;
508         userdata->last_has_signal = video_format.has_signal;
509         userdata->last_is_connected = video_format.is_connected;
510         userdata->last_frame_rate_nom = video_format.frame_rate_nom;
511         userdata->last_frame_rate_den = video_format.frame_rate_den;
512         RefCountedFrame frame(video_frame);
513
514         // Upload the textures.
515         size_t cbcr_width = video_format.width / 2;
516         size_t cbcr_offset = video_offset / 2;
517         size_t y_offset = video_frame.size / 2 + video_offset / 2;
518
519         for (unsigned field = 0; field < num_fields; ++field) {
520                 // Put the actual texture upload in a lambda that is executed in the main thread.
521                 // It is entirely possible to do this in the same thread (and it might even be
522                 // faster, depending on the GPU and driver), but it appears to be trickling
523                 // driver bugs very easily.
524                 //
525                 // Note that this means we must hold on to the actual frame data in <userdata>
526                 // until the upload command is run, but we hold on to <frame> much longer than that
527                 // (in fact, all the way until we no longer use the texture in rendering).
528                 auto upload_func = [field, video_format, y_offset, cbcr_offset, cbcr_width, userdata]() {
529                         unsigned field_start_line = (field == 1) ? video_format.second_field_start : video_format.extra_lines_top + field * (video_format.height + 22);
530
531                         if (userdata->tex_y[field] == 0 ||
532                             userdata->tex_cbcr[field] == 0 ||
533                             video_format.width != userdata->last_width[field] ||
534                             video_format.height != userdata->last_height[field]) {
535                                 // We changed resolution since last use of this texture, so we need to create
536                                 // a new object. Note that this each card has its own PBOFrameAllocator,
537                                 // we don't need to worry about these flip-flopping between resolutions.
538                                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
539                                 check_error();
540                                 glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, video_format.height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
541                                 check_error();
542                                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
543                                 check_error();
544                                 glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, video_format.width, video_format.height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
545                                 check_error();
546                                 userdata->last_width[field] = video_format.width;
547                                 userdata->last_height[field] = video_format.height;
548                         }
549
550                         GLuint pbo = userdata->pbo;
551                         check_error();
552                         glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
553                         check_error();
554
555                         size_t field_y_start = y_offset + video_format.width * field_start_line;
556                         size_t field_cbcr_start = cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t);
557
558                         if (global_flags.flush_pbos) {
559                                 glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_y_start, video_format.width * video_format.height);
560                                 check_error();
561                                 glFlushMappedBufferRange(GL_PIXEL_UNPACK_BUFFER, field_cbcr_start, cbcr_width * video_format.height * sizeof(uint16_t));
562                                 check_error();
563                         }
564
565                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
566                         check_error();
567                         glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, video_format.height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_cbcr_start));
568                         check_error();
569                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
570                         check_error();
571                         glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, video_format.width, video_format.height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(field_y_start));
572                         check_error();
573                         glBindTexture(GL_TEXTURE_2D, 0);
574                         check_error();
575                         glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
576                         check_error();
577                 };
578
579                 if (field == 1) {
580                         // Don't upload the second field as fast as we can; wait until
581                         // the field time has approximately passed. (Otherwise, we could
582                         // get timing jitter against the other sources, and possibly also
583                         // against the video display, although the latter is not as critical.)
584                         // This requires our system clock to be reasonably close to the
585                         // video clock, but that's not an unreasonable assumption.
586                         timespec second_field_start;
587                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
588                                 frame_length * 1000000000 / TIMEBASE;
589                         second_field_start.tv_sec = frame_upload_start.tv_sec +
590                                 second_field_start.tv_nsec / 1000000000;
591                         second_field_start.tv_nsec %= 1000000000;
592
593                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
594                                                &second_field_start, nullptr) == -1 &&
595                                errno == EINTR) ;
596                 }
597
598                 {
599                         unique_lock<mutex> lock(bmusb_mutex);
600                         CaptureCard::NewFrame new_frame;
601                         new_frame.frame = frame;
602                         new_frame.length = frame_length;
603                         new_frame.field = field;
604                         new_frame.interlaced = video_format.interlaced;
605                         new_frame.upload_func = upload_func;
606                         new_frame.dropped_frames = dropped_frames;
607                         card->new_frames.push(move(new_frame));
608                         card->new_frames_changed.notify_all();
609                 }
610         }
611 }
612
613 void Mixer::thread_func()
614 {
615         eglBindAPI(EGL_OPENGL_API);
616         QOpenGLContext *context = create_context(mixer_surface);
617         if (!make_current(context, mixer_surface)) {
618                 printf("oops\n");
619                 exit(1);
620         }
621
622         struct timespec start, now;
623         clock_gettime(CLOCK_MONOTONIC, &start);
624
625         int frame = 0;
626         int stats_dropped_frames = 0;
627
628         while (!should_quit) {
629                 CaptureCard::NewFrame new_frames[MAX_CARDS];
630                 bool has_new_frame[MAX_CARDS] = { false };
631                 int num_samples[MAX_CARDS] = { 0 };
632
633                 // TODO: Add a timeout.
634                 unsigned master_card_index = theme->map_signal(master_clock_channel);
635                 assert(master_card_index < num_cards);
636
637                 get_one_frame_from_each_card(master_card_index, new_frames, has_new_frame, num_samples);
638                 schedule_audio_resampling_tasks(new_frames[master_card_index].dropped_frames, num_samples[master_card_index], new_frames[master_card_index].length);
639                 stats_dropped_frames += new_frames[master_card_index].dropped_frames;
640                 send_audio_level_callback();
641
642                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
643                         if (card_index == master_card_index || !has_new_frame[card_index]) {
644                                 continue;
645                         }
646                         if (new_frames[card_index].frame->len == 0) {
647                                 ++new_frames[card_index].dropped_frames;
648                         }
649                         if (new_frames[card_index].dropped_frames > 0) {
650                                 printf("Card %u dropped %d frames before this\n",
651                                         card_index, int(new_frames[card_index].dropped_frames));
652                         }
653                 }
654
655                 // If the first card is reporting a corrupted or otherwise dropped frame,
656                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
657                 if (new_frames[master_card_index].frame->len == 0) {
658                         ++stats_dropped_frames;
659                         pts_int += new_frames[master_card_index].length;
660                         continue;
661                 }
662
663                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
664                         if (!has_new_frame[card_index] || new_frames[card_index].frame->len == 0)
665                                 continue;
666
667                         CaptureCard::NewFrame *new_frame = &new_frames[card_index];
668                         assert(new_frame->frame != nullptr);
669                         insert_new_frame(new_frame->frame, new_frame->field, new_frame->interlaced, card_index, &input_state);
670                         check_error();
671
672                         // The new texture might need uploading before use.
673                         if (new_frame->upload_func) {
674                                 new_frame->upload_func();
675                                 new_frame->upload_func = nullptr;
676                         }
677                 }
678
679                 int64_t duration = new_frames[master_card_index].length;
680                 render_one_frame(duration);
681                 ++frame;
682                 pts_int += duration;
683
684                 clock_gettime(CLOCK_MONOTONIC, &now);
685                 double elapsed = now.tv_sec - start.tv_sec +
686                         1e-9 * (now.tv_nsec - start.tv_nsec);
687                 if (frame % 100 == 0) {
688                 // check our memory usage, to see if we are close to our mlockall()
689                 // limit (if at all set).
690                 rusage used;
691                 if (getrusage(RUSAGE_SELF, &used) == -1) {
692                         perror("getrusage(RUSAGE_SELF)");
693                         assert(false);
694                 }
695
696                 rlimit limit;
697                 if (getrlimit(RLIMIT_MEMLOCK, &limit) == -1) {
698                         perror("getrlimit(RLIMIT_MEMLOCK)");
699                         assert(false);
700                 }
701
702                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)",
703                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
704                                 1e3 * elapsed / frame);
705                 //      chain->print_phase_timing();
706
707                         if (uses_mlock) {
708                                 // Check our memory usage, to see if we are close to our mlockall()
709                                 // limit (if at all set).
710                                 rusage used;
711                                 if (getrusage(RUSAGE_SELF, &used) == -1) {
712                                         perror("getrusage(RUSAGE_SELF)");
713                                         assert(false);
714                                 }
715
716                                 rlimit limit;
717                                 if (getrlimit(RLIMIT_MEMLOCK, &limit) == -1) {
718                                         perror("getrlimit(RLIMIT_MEMLOCK)");
719                                         assert(false);
720                                 }
721
722                                 printf(", using %ld / %ld MB lockable memory (%.1f%%)",
723                                         long(used.ru_maxrss / 1024),
724                                         long(limit.rlim_cur / 1048576),
725                                         float(100.0 * (used.ru_maxrss * 1024.0) / limit.rlim_cur));
726                         }
727
728                         printf("\n");
729                 }
730
731
732                 if (should_cut.exchange(false)) {  // Test and clear.
733                         video_encoder->do_cut(frame);
734                 }
735
736 #if 0
737                 // Reset every 100 frames, so that local variations in frame times
738                 // (especially for the first few frames, when the shaders are
739                 // compiled etc.) don't make it hard to measure for the entire
740                 // remaining duration of the program.
741                 if (frame == 10000) {
742                         frame = 0;
743                         start = now;
744                 }
745 #endif
746                 check_error();
747         }
748
749         resource_pool->clean_context();
750 }
751
752 void Mixer::get_one_frame_from_each_card(unsigned master_card_index, CaptureCard::NewFrame new_frames[MAX_CARDS], bool has_new_frame[MAX_CARDS], int num_samples[MAX_CARDS])
753 {
754         // The first card is the master timer, so wait for it to have a new frame.
755         unique_lock<mutex> lock(bmusb_mutex);
756         cards[master_card_index].new_frames_changed.wait(lock, [this, master_card_index]{ return !cards[master_card_index].new_frames.empty(); });
757
758         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
759                 CaptureCard *card = &cards[card_index];
760                 if (card->new_frames.empty()) {
761                         assert(card_index != master_card_index);
762                         card->queue_length_policy.update_policy(-1);
763                         continue;
764                 }
765                 new_frames[card_index] = move(card->new_frames.front());
766                 has_new_frame[card_index] = true;
767                 card->new_frames.pop();
768                 card->new_frames_changed.notify_all();
769
770                 int num_samples_times_timebase = OUTPUT_FREQUENCY * new_frames[card_index].length + card->fractional_samples;
771                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
772                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
773                 assert(num_samples[card_index] >= 0);
774
775                 if (card_index == master_card_index) {
776                         // We don't use the queue length policy for the master card,
777                         // but we will if it stops being the master. Thus, clear out
778                         // the policy in case we switch in the future.
779                         card->queue_length_policy.reset(card_index);
780                 } else {
781                         // If we have excess frames compared to the policy for this card,
782                         // drop frames from the head.
783                         card->queue_length_policy.update_policy(card->new_frames.size());
784                         while (card->new_frames.size() > card->queue_length_policy.get_safe_queue_length()) {
785                                 card->new_frames.pop();
786                         }
787                 }
788         }
789 }
790
791 void Mixer::schedule_audio_resampling_tasks(unsigned dropped_frames, int num_samples_per_frame, int length_per_frame)
792 {
793         // Resample the audio as needed, including from previously dropped frames.
794         assert(num_cards > 0);
795         for (unsigned frame_num = 0; frame_num < dropped_frames + 1; ++frame_num) {
796                 {
797                         // Signal to the audio thread to process this frame.
798                         unique_lock<mutex> lock(audio_mutex);
799                         audio_task_queue.push(AudioTask{pts_int, num_samples_per_frame});
800                         audio_task_queue_changed.notify_one();
801                 }
802                 if (frame_num != dropped_frames) {
803                         // For dropped frames, increase the pts. Note that if the format changed
804                         // in the meantime, we have no way of detecting that; we just have to
805                         // assume the frame length is always the same.
806                         pts_int += length_per_frame;
807                 }
808         }
809 }
810
811 void Mixer::render_one_frame(int64_t duration)
812 {
813         // Get the main chain from the theme, and set its state immediately.
814         Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
815         EffectChain *chain = theme_main_chain.chain;
816         theme_main_chain.setup_chain();
817         //theme_main_chain.chain->enable_phase_timing(true);
818
819         GLuint y_tex, cbcr_tex;
820         bool got_frame = video_encoder->begin_frame(&y_tex, &cbcr_tex);
821         assert(got_frame);
822
823         // Render main chain.
824         GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
825         GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
826         GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
827         check_error();
828         chain->render_to_fbo(fbo, WIDTH, HEIGHT);
829         resource_pool->release_fbo(fbo);
830
831         subsample_chroma(cbcr_full_tex, cbcr_tex);
832         resource_pool->release_2d_texture(cbcr_full_tex);
833
834         // Set the right state for rgba_tex.
835         glBindFramebuffer(GL_FRAMEBUFFER, 0);
836         glBindTexture(GL_TEXTURE_2D, rgba_tex);
837         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
838         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
839         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
840
841         const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
842         RefCountedGLsync fence = video_encoder->end_frame(pts_int + av_delay, duration, theme_main_chain.input_frames);
843
844         // The live frame just shows the RGBA texture we just rendered.
845         // It owns rgba_tex now.
846         DisplayFrame live_frame;
847         live_frame.chain = display_chain.get();
848         live_frame.setup_chain = [this, rgba_tex]{
849                 display_input->set_texture_num(rgba_tex);
850         };
851         live_frame.ready_fence = fence;
852         live_frame.input_frames = {};
853         live_frame.temp_textures = { rgba_tex };
854         output_channel[OUTPUT_LIVE].output_frame(live_frame);
855
856         // Set up preview and any additional channels.
857         for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
858                 DisplayFrame display_frame;
859                 Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
860                 display_frame.chain = chain.chain;
861                 display_frame.setup_chain = chain.setup_chain;
862                 display_frame.ready_fence = fence;
863                 display_frame.input_frames = chain.input_frames;
864                 display_frame.temp_textures = {};
865                 output_channel[i].output_frame(display_frame);
866         }
867 }
868
869 void Mixer::send_audio_level_callback()
870 {
871         if (audio_level_callback == nullptr) {
872                 return;
873         }
874
875         unique_lock<mutex> lock(compressor_mutex);
876         double loudness_s = r128.loudness_S();
877         double loudness_i = r128.integrated();
878         double loudness_range_low = r128.range_min();
879         double loudness_range_high = r128.range_max();
880
881         audio_level_callback(loudness_s, 20.0 * log10(peak),
882                 loudness_i, loudness_range_low, loudness_range_high,
883                 gain_staging_db, 20.0 * log10(final_makeup_gain),
884                 correlation.get_correlation());
885 }
886
887 void Mixer::audio_thread_func()
888 {
889         while (!should_quit) {
890                 AudioTask task;
891
892                 {
893                         unique_lock<mutex> lock(audio_mutex);
894                         audio_task_queue_changed.wait(lock, [this]{ return should_quit || !audio_task_queue.empty(); });
895                         if (should_quit) {
896                                 return;
897                         }
898                         task = audio_task_queue.front();
899                         audio_task_queue.pop();
900                 }
901
902                 process_audio_one_frame(task.pts_int, task.num_samples);
903         }
904 }
905
906 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
907 {
908         vector<float> samples_card;
909         vector<float> samples_out;
910
911         // TODO: Allow mixing audio from several sources.
912         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
913         assert(selected_audio_card < num_cards);
914
915         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
916                 samples_card.resize(num_samples * 2);
917                 {
918                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
919                         cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples);
920                 }
921                 if (card_index == selected_audio_card) {
922                         samples_out = move(samples_card);
923                 }
924         }
925
926         // Cut away everything under 120 Hz (or whatever the cutoff is);
927         // we don't need it for voice, and it will reduce headroom
928         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
929         // should be dampened.)
930         if (locut_enabled) {
931                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
932         }
933
934         // Apply a level compressor to get the general level right.
935         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
936         // (or more precisely, near it, since we don't use infinite ratio),
937         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
938         // entirely arbitrary, but from practical tests with speech, it seems to
939         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
940         {
941                 unique_lock<mutex> lock(compressor_mutex);
942                 if (level_compressor_enabled) {
943                         float threshold = 0.01f;   // -40 dBFS.
944                         float ratio = 20.0f;
945                         float attack_time = 0.5f;
946                         float release_time = 20.0f;
947                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
948                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
949                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
950                 } else {
951                         // Just apply the gain we already had.
952                         float g = pow(10.0f, gain_staging_db / 20.0f);
953                         for (size_t i = 0; i < samples_out.size(); ++i) {
954                                 samples_out[i] *= g;
955                         }
956                 }
957         }
958
959 #if 0
960         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
961                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
962                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
963                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
964 #endif
965
966 //      float limiter_att, compressor_att;
967
968         // The real compressor.
969         if (compressor_enabled) {
970                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
971                 float ratio = 20.0f;
972                 float attack_time = 0.005f;
973                 float release_time = 0.040f;
974                 float makeup_gain = 2.0f;  // +6 dB.
975                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
976 //              compressor_att = compressor.get_attenuation();
977         }
978
979         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
980         // Note that since ratio is not infinite, we could go slightly higher than this.
981         if (limiter_enabled) {
982                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
983                 float ratio = 30.0f;
984                 float attack_time = 0.0f;  // Instant.
985                 float release_time = 0.020f;
986                 float makeup_gain = 1.0f;  // 0 dB.
987                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
988 //              limiter_att = limiter.get_attenuation();
989         }
990
991 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
992
993         // Upsample 4x to find interpolated peak.
994         peak_resampler.inp_data = samples_out.data();
995         peak_resampler.inp_count = samples_out.size() / 2;
996
997         vector<float> interpolated_samples_out;
998         interpolated_samples_out.resize(samples_out.size());
999         while (peak_resampler.inp_count > 0) {  // About four iterations.
1000                 peak_resampler.out_data = &interpolated_samples_out[0];
1001                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
1002                 peak_resampler.process();
1003                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
1004                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
1005                 peak_resampler.out_data = nullptr;
1006         }
1007
1008         // At this point, we are most likely close to +0 LU, but all of our
1009         // measurements have been on raw sample values, not R128 values.
1010         // So we have a final makeup gain to get us to +0 LU; the gain
1011         // adjustments required should be relatively small, and also, the
1012         // offset shouldn't change much (only if the type of audio changes
1013         // significantly). Thus, we shoot for updating this value basically
1014         // “whenever we process buffers”, since the R128 calculation isn't exactly
1015         // something we get out per-sample.
1016         //
1017         // Note that there's a feedback loop here, so we choose a very slow filter
1018         // (half-time of 100 seconds).
1019         double target_loudness_factor, alpha;
1020         {
1021                 unique_lock<mutex> lock(compressor_mutex);
1022                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
1023                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
1024                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
1025
1026                 // If we're outside +/- 5 LU uncorrected, we don't count it as
1027                 // a normal signal (probably silence) and don't change the
1028                 // correction factor; just apply what we already have.
1029                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
1030                         alpha = 0.0;
1031                 } else {
1032                         // Formula adapted from
1033                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
1034                         const double half_time_s = 100.0;
1035                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
1036                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
1037                 }
1038
1039                 double m = final_makeup_gain;
1040                 for (size_t i = 0; i < samples_out.size(); i += 2) {
1041                         samples_out[i + 0] *= m;
1042                         samples_out[i + 1] *= m;
1043                         m += (target_loudness_factor - m) * alpha;
1044                 }
1045                 final_makeup_gain = m;
1046         }
1047
1048         // Find R128 levels and L/R correlation.
1049         vector<float> left, right;
1050         deinterleave_samples(samples_out, &left, &right);
1051         float *ptrs[] = { left.data(), right.data() };
1052         {
1053                 unique_lock<mutex> lock(compressor_mutex);
1054                 r128.process(left.size(), ptrs);
1055                 correlation.process_samples(samples_out);
1056         }
1057
1058         // Send the samples to the sound card.
1059         if (alsa) {
1060                 alsa->write(samples_out);
1061         }
1062
1063         // And finally add them to the output.
1064         video_encoder->add_audio(frame_pts_int, move(samples_out));
1065 }
1066
1067 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
1068 {
1069         GLuint vao;
1070         glGenVertexArrays(1, &vao);
1071         check_error();
1072
1073         glBindVertexArray(vao);
1074         check_error();
1075
1076         // Extract Cb/Cr.
1077         GLuint fbo = resource_pool->create_fbo(dst_tex);
1078         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1079         glViewport(0, 0, WIDTH/2, HEIGHT/2);
1080         check_error();
1081
1082         glUseProgram(cbcr_program_num);
1083         check_error();
1084
1085         glActiveTexture(GL_TEXTURE0);
1086         check_error();
1087         glBindTexture(GL_TEXTURE_2D, src_tex);
1088         check_error();
1089         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1090         check_error();
1091         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1092         check_error();
1093         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1094         check_error();
1095
1096         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
1097         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
1098
1099         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
1100         check_error();
1101
1102         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1103                 glEnableVertexAttribArray(attr_index);
1104                 check_error();
1105                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
1106                 check_error();
1107         }
1108
1109         glDrawArrays(GL_TRIANGLES, 0, 3);
1110         check_error();
1111
1112         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
1113                 glDisableVertexAttribArray(attr_index);
1114                 check_error();
1115         }
1116
1117         glUseProgram(0);
1118         check_error();
1119         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1120         check_error();
1121
1122         resource_pool->release_fbo(fbo);
1123         glDeleteVertexArrays(1, &vao);
1124 }
1125
1126 void Mixer::release_display_frame(DisplayFrame *frame)
1127 {
1128         for (GLuint texnum : frame->temp_textures) {
1129                 resource_pool->release_2d_texture(texnum);
1130         }
1131         frame->temp_textures.clear();
1132         frame->ready_fence.reset();
1133         frame->input_frames.clear();
1134 }
1135
1136 void Mixer::start()
1137 {
1138         mixer_thread = thread(&Mixer::thread_func, this);
1139         audio_thread = thread(&Mixer::audio_thread_func, this);
1140 }
1141
1142 void Mixer::quit()
1143 {
1144         should_quit = true;
1145         audio_task_queue_changed.notify_one();
1146         mixer_thread.join();
1147         audio_thread.join();
1148 }
1149
1150 void Mixer::transition_clicked(int transition_num)
1151 {
1152         theme->transition_clicked(transition_num, pts());
1153 }
1154
1155 void Mixer::channel_clicked(int preview_num)
1156 {
1157         theme->channel_clicked(preview_num);
1158 }
1159
1160 void Mixer::reset_meters()
1161 {
1162         peak_resampler.reset();
1163         peak = 0.0f;
1164         r128.reset();
1165         r128.integr_start();
1166         correlation.reset();
1167 }
1168
1169 void Mixer::start_mode_scanning(unsigned card_index)
1170 {
1171         assert(card_index < num_cards);
1172         if (is_mode_scanning[card_index]) {
1173                 return;
1174         }
1175         is_mode_scanning[card_index] = true;
1176         mode_scanlist[card_index].clear();
1177         for (const auto &mode : cards[card_index].capture->get_available_video_modes()) {
1178                 mode_scanlist[card_index].push_back(mode.first);
1179         }
1180         assert(!mode_scanlist[card_index].empty());
1181         mode_scanlist_index[card_index] = 0;
1182         cards[card_index].capture->set_video_mode(mode_scanlist[card_index][0]);
1183         clock_gettime(CLOCK_MONOTONIC, &last_mode_scan_change[card_index]);
1184 }
1185
1186 Mixer::OutputChannel::~OutputChannel()
1187 {
1188         if (has_current_frame) {
1189                 parent->release_display_frame(&current_frame);
1190         }
1191         if (has_ready_frame) {
1192                 parent->release_display_frame(&ready_frame);
1193         }
1194 }
1195
1196 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
1197 {
1198         // Store this frame for display. Remove the ready frame if any
1199         // (it was seemingly never used).
1200         {
1201                 unique_lock<mutex> lock(frame_mutex);
1202                 if (has_ready_frame) {
1203                         parent->release_display_frame(&ready_frame);
1204                 }
1205                 ready_frame = frame;
1206                 has_ready_frame = true;
1207         }
1208
1209         if (new_frame_ready_callback) {
1210                 new_frame_ready_callback();
1211         }
1212
1213         // Reduce the number of callbacks by filtering duplicates. The reason
1214         // why we bother doing this is that Qt seemingly can get into a state
1215         // where its builds up an essentially unbounded queue of signals,
1216         // consuming more and more memory, and there's no good way of collapsing
1217         // user-defined signals or limiting the length of the queue.
1218         if (transition_names_updated_callback) {
1219                 vector<string> transition_names = global_mixer->get_transition_names();
1220                 bool changed = false;
1221                 if (transition_names.size() != last_transition_names.size()) {
1222                         changed = true;
1223                 } else {
1224                         for (unsigned i = 0; i < transition_names.size(); ++i) {
1225                                 if (transition_names[i] != last_transition_names[i]) {
1226                                         changed = true;
1227                                         break;
1228                                 }
1229                         }
1230                 }
1231                 if (changed) {
1232                         transition_names_updated_callback(transition_names);
1233                         last_transition_names = transition_names;
1234                 }
1235         }
1236         if (name_updated_callback) {
1237                 string name = global_mixer->get_channel_name(channel);
1238                 if (name != last_name) {
1239                         name_updated_callback(name);
1240                         last_name = name;
1241                 }
1242         }
1243         if (color_updated_callback) {
1244                 string color = global_mixer->get_channel_color(channel);
1245                 if (color != last_color) {
1246                         color_updated_callback(color);
1247                         last_color = color;
1248                 }
1249         }
1250 }
1251
1252 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1253 {
1254         unique_lock<mutex> lock(frame_mutex);
1255         if (!has_current_frame && !has_ready_frame) {
1256                 return false;
1257         }
1258
1259         if (has_current_frame && has_ready_frame) {
1260                 // We have a new ready frame. Toss the current one.
1261                 parent->release_display_frame(&current_frame);
1262                 has_current_frame = false;
1263         }
1264         if (has_ready_frame) {
1265                 assert(!has_current_frame);
1266                 current_frame = ready_frame;
1267                 ready_frame.ready_fence.reset();  // Drop the refcount.
1268                 ready_frame.input_frames.clear();  // Drop the refcounts.
1269                 has_current_frame = true;
1270                 has_ready_frame = false;
1271         }
1272
1273         *frame = current_frame;
1274         return true;
1275 }
1276
1277 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1278 {
1279         new_frame_ready_callback = callback;
1280 }
1281
1282 void Mixer::OutputChannel::set_transition_names_updated_callback(Mixer::transition_names_updated_callback_t callback)
1283 {
1284         transition_names_updated_callback = callback;
1285 }
1286
1287 void Mixer::OutputChannel::set_name_updated_callback(Mixer::name_updated_callback_t callback)
1288 {
1289         name_updated_callback = callback;
1290 }
1291
1292 void Mixer::OutputChannel::set_color_updated_callback(Mixer::color_updated_callback_t callback)
1293 {
1294         color_updated_callback = callback;
1295 }
1296
1297 mutex RefCountedGLsync::fence_lock;