]> git.sesse.net Git - nageru/blob - mixer.cpp
Make CbCr subsampling VBO permanent, mostly to reduce the amount of debugging spew...
[nageru] / mixer.cpp
1 #undef Success
2
3 #include "mixer.h"
4
5 #include <assert.h>
6 #include <epoxy/egl.h>
7 #include <movit/effect_chain.h>
8 #include <movit/effect_util.h>
9 #include <movit/flat_input.h>
10 #include <movit/image_format.h>
11 #include <movit/init.h>
12 #include <movit/resource_pool.h>
13 #include <movit/util.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <sys/time.h>
18 #include <time.h>
19 #include <algorithm>
20 #include <cmath>
21 #include <condition_variable>
22 #include <cstddef>
23 #include <memory>
24 #include <mutex>
25 #include <string>
26 #include <thread>
27 #include <utility>
28 #include <vector>
29
30 #include "bmusb/bmusb.h"
31 #include "context.h"
32 #include "defs.h"
33 #include "flags.h"
34 #include "h264encode.h"
35 #include "pbo_frame_allocator.h"
36 #include "ref_counted_gl_sync.h"
37 #include "timebase.h"
38
39 class QOpenGLContext;
40
41 using namespace movit;
42 using namespace std;
43 using namespace std::placeholders;
44
45 Mixer *global_mixer = nullptr;
46
47 namespace {
48
49 void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
50 {
51         for (size_t i = 0; i < num_samples; ++i) {
52                 for (size_t j = 0; j < out_channels; ++j) {
53                         uint32_t s1 = *src++;
54                         uint32_t s2 = *src++;
55                         uint32_t s3 = *src++;
56                         uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
57                         dst[i * out_channels + j] = int(s) * (1.0f / 4294967296.0f);
58                 }
59                 src += 3 * (in_channels - out_channels);
60         }
61 }
62
63 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
64 {
65         if (interlaced) {
66                 for (unsigned frame_num = FRAME_HISTORY_LENGTH; frame_num --> 1; ) {  // :-)
67                         input_state->buffered_frames[card_index][frame_num] =
68                                 input_state->buffered_frames[card_index][frame_num - 1];
69                 }
70                 input_state->buffered_frames[card_index][0] = { frame, field_num };
71         } else {
72                 for (unsigned frame_num = 0; frame_num < FRAME_HISTORY_LENGTH; ++frame_num) {
73                         input_state->buffered_frames[card_index][frame_num] = { frame, field_num };
74                 }
75         }
76 }
77
78 string generate_local_dump_filename(int frame)
79 {
80         time_t now = time(NULL);
81         tm now_tm;
82         localtime_r(&now, &now_tm);
83
84         char timestamp[256];
85         strftime(timestamp, sizeof(timestamp), "%F-%T%z", &now_tm);
86
87         // Use the frame number to disambiguate between two cuts starting
88         // on the same second.
89         char filename[256];
90         snprintf(filename, sizeof(filename), "%s%s-f%02d%s",
91                 LOCAL_DUMP_PREFIX, timestamp, frame % 100, LOCAL_DUMP_SUFFIX);
92         return filename;
93 }
94
95 }  // namespace
96
97 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
98         : httpd(WIDTH, HEIGHT),
99           num_cards(num_cards),
100           mixer_surface(create_surface(format)),
101           h264_encoder_surface(create_surface(format)),
102           correlation(OUTPUT_FREQUENCY),
103           level_compressor(OUTPUT_FREQUENCY),
104           limiter(OUTPUT_FREQUENCY),
105           compressor(OUTPUT_FREQUENCY)
106 {
107         httpd.open_output_file(generate_local_dump_filename(/*frame=*/0).c_str());
108         httpd.start(9095);
109
110         CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
111         check_error();
112
113         // Since we allow non-bouncing 4:2:2 YCbCrInputs, effective subpixel precision
114         // will be halved when sampling them, and we need to compensate here.
115         movit_texel_subpixel_precision /= 2.0;
116
117         resource_pool.reset(new ResourcePool);
118         theme.reset(new Theme("theme.lua", resource_pool.get(), num_cards));
119         for (unsigned i = 0; i < NUM_OUTPUTS; ++i) {
120                 output_channel[i].parent = this;
121         }
122
123         ImageFormat inout_format;
124         inout_format.color_space = COLORSPACE_sRGB;
125         inout_format.gamma_curve = GAMMA_sRGB;
126
127         // Display chain; shows the live output produced by the main chain (its RGBA version).
128         display_chain.reset(new EffectChain(WIDTH, HEIGHT, resource_pool.get()));
129         check_error();
130         display_input = new FlatInput(inout_format, FORMAT_RGB, GL_UNSIGNED_BYTE, WIDTH, HEIGHT);  // FIXME: GL_UNSIGNED_BYTE is really wrong.
131         display_chain->add_input(display_input);
132         display_chain->add_output(inout_format, OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED);
133         display_chain->set_dither_bits(0);  // Don't bother.
134         display_chain->finalize();
135
136         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
137
138         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
139                 printf("Configuring card %d...\n", card_index);
140                 CaptureCard *card = &cards[card_index];
141                 card->usb = new BMUSBCapture(card_index);
142                 card->usb->set_frame_callback(bind(&Mixer::bm_frame, this, card_index, _1, _2, _3, _4, _5, _6, _7));
143                 card->frame_allocator.reset(new PBOFrameAllocator(8 << 20, WIDTH, HEIGHT));  // 8 MB.
144                 card->usb->set_video_frame_allocator(card->frame_allocator.get());
145                 card->surface = create_surface(format);
146                 card->usb->set_dequeue_thread_callbacks(
147                         [card]{
148                                 eglBindAPI(EGL_OPENGL_API);
149                                 card->context = create_context(card->surface);
150                                 if (!make_current(card->context, card->surface)) {
151                                         printf("failed to create bmusb context\n");
152                                         exit(1);
153                                 }
154                         },
155                         [this]{
156                                 resource_pool->clean_context();
157                         });
158                 card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
159                 card->usb->configure_card();
160         }
161
162         BMUSBCapture::start_bm_thread();
163
164         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
165                 cards[card_index].usb->start_bm_capture();
166         }
167
168         // Set up stuff for NV12 conversion.
169
170         // Cb/Cr shader.
171         string cbcr_vert_shader =
172                 "#version 130 \n"
173                 " \n"
174                 "in vec2 position; \n"
175                 "in vec2 texcoord; \n"
176                 "out vec2 tc0; \n"
177                 "uniform vec2 foo_chroma_offset_0; \n"
178                 " \n"
179                 "void main() \n"
180                 "{ \n"
181                 "    // The result of glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0) is: \n"
182                 "    // \n"
183                 "    //   2.000  0.000  0.000 -1.000 \n"
184                 "    //   0.000  2.000  0.000 -1.000 \n"
185                 "    //   0.000  0.000 -2.000 -1.000 \n"
186                 "    //   0.000  0.000  0.000  1.000 \n"
187                 "    gl_Position = vec4(2.0 * position.x - 1.0, 2.0 * position.y - 1.0, -1.0, 1.0); \n"
188                 "    vec2 flipped_tc = texcoord; \n"
189                 "    tc0 = flipped_tc + foo_chroma_offset_0; \n"
190                 "} \n";
191         string cbcr_frag_shader =
192                 "#version 130 \n"
193                 "in vec2 tc0; \n"
194                 "uniform sampler2D cbcr_tex; \n"
195                 "out vec4 FragColor; \n"
196                 "void main() { \n"
197                 "    FragColor = texture(cbcr_tex, tc0); \n"
198                 "} \n";
199         vector<string> frag_shader_outputs;
200         cbcr_program_num = resource_pool->compile_glsl_program(cbcr_vert_shader, cbcr_frag_shader, frag_shader_outputs);
201
202         float vertices[] = {
203                 0.0f, 2.0f,
204                 0.0f, 0.0f,
205                 2.0f, 0.0f
206         };
207         cbcr_vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
208         cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
209         cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
210
211         r128.init(2, OUTPUT_FREQUENCY);
212         r128.integr_start();
213
214         locut.init(FILTER_HPF, 2);
215
216         // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
217         // and there's a limit to how important the peak meter is.
218         peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
219
220         alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
221 }
222
223 Mixer::~Mixer()
224 {
225         resource_pool->release_glsl_program(cbcr_program_num);
226         glDeleteBuffers(1, &cbcr_vbo);
227         BMUSBCapture::stop_bm_thread();
228
229         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
230                 {
231                         unique_lock<mutex> lock(bmusb_mutex);
232                         cards[card_index].should_quit = true;  // Unblock thread.
233                         cards[card_index].new_data_ready_changed.notify_all();
234                 }
235                 cards[card_index].usb->stop_dequeue_thread();
236         }
237
238         h264_encoder.reset(nullptr);
239 }
240
241 namespace {
242
243 int unwrap_timecode(uint16_t current_wrapped, int last)
244 {
245         uint16_t last_wrapped = last & 0xffff;
246         if (current_wrapped > last_wrapped) {
247                 return (last & ~0xffff) | current_wrapped;
248         } else {
249                 return 0x10000 + ((last & ~0xffff) | current_wrapped);
250         }
251 }
252
253 float find_peak(const float *samples, size_t num_samples)
254 {
255         float m = fabs(samples[0]);
256         for (size_t i = 1; i < num_samples; ++i) {
257                 m = max(m, fabs(samples[i]));
258         }
259         return m;
260 }
261
262 void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
263 {
264         size_t num_samples = in.size() / 2;
265         out_l->resize(num_samples);
266         out_r->resize(num_samples);
267
268         const float *inptr = in.data();
269         float *lptr = &(*out_l)[0];
270         float *rptr = &(*out_r)[0];
271         for (size_t i = 0; i < num_samples; ++i) {
272                 *lptr++ = *inptr++;
273                 *rptr++ = *inptr++;
274         }
275 }
276
277 }  // namespace
278
279 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
280                      FrameAllocator::Frame video_frame, size_t video_offset, uint16_t video_format,
281                      FrameAllocator::Frame audio_frame, size_t audio_offset, uint16_t audio_format)
282 {
283         CaptureCard *card = &cards[card_index];
284
285         unsigned width, height, second_field_start, frame_rate_nom, frame_rate_den, extra_lines_top, extra_lines_bottom;
286         bool interlaced;
287
288         decode_video_format(video_format, &width, &height, &second_field_start, &extra_lines_top, &extra_lines_bottom,
289                             &frame_rate_nom, &frame_rate_den, &interlaced);  // Ignore return value for now.
290         int64_t frame_length = int64_t(TIMEBASE * frame_rate_den) / frame_rate_nom;
291
292         size_t num_samples = (audio_frame.len >= audio_offset) ? (audio_frame.len - audio_offset) / 8 / 3 : 0;
293         if (num_samples > OUTPUT_FREQUENCY / 10) {
294                 printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
295                         card_index, int(audio_frame.len), int(audio_offset),
296                         timecode, int(video_frame.len), int(video_offset), video_format);
297                 if (video_frame.owner) {
298                         video_frame.owner->release_frame(video_frame);
299                 }
300                 if (audio_frame.owner) {
301                         audio_frame.owner->release_frame(audio_frame);
302                 }
303                 return;
304         }
305
306         int64_t local_pts = card->next_local_pts;
307         int dropped_frames = 0;
308         if (card->last_timecode != -1) {
309                 dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
310         }
311
312         // Convert the audio to stereo fp32 and add it.
313         vector<float> audio;
314         audio.resize(num_samples * 2);
315         convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, 8, num_samples);
316
317         // Add the audio.
318         {
319                 unique_lock<mutex> lock(card->audio_mutex);
320
321                 // Number of samples per frame if we need to insert silence.
322                 // (Could be nonintegral, but resampling will save us then.)
323                 int silence_samples = OUTPUT_FREQUENCY * frame_rate_den / frame_rate_nom;
324
325                 if (dropped_frames > MAX_FPS * 2) {
326                         fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
327                                 card_index, card->last_timecode, timecode);
328                         card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
329                         dropped_frames = 0;
330                 } else if (dropped_frames > 0) {
331                         // Insert silence as needed.
332                         fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
333                                 card_index, dropped_frames, timecode);
334                         vector<float> silence(silence_samples * 2, 0.0f);
335                         for (int i = 0; i < dropped_frames; ++i) {
336                                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
337                                 // Note that if the format changed in the meantime, we have
338                                 // no way of detecting that; we just have to assume the frame length
339                                 // is always the same.
340                                 local_pts += frame_length;
341                         }
342                 }
343                 if (num_samples == 0) {
344                         audio.resize(silence_samples * 2);
345                         num_samples = silence_samples;
346                 }
347                 card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
348                 card->next_local_pts = local_pts + frame_length;
349         }
350
351         card->last_timecode = timecode;
352
353         // Done with the audio, so release it.
354         if (audio_frame.owner) {
355                 audio_frame.owner->release_frame(audio_frame);
356         }
357
358         {
359                 // Wait until the previous frame was consumed.
360                 unique_lock<mutex> lock(bmusb_mutex);
361                 card->new_data_ready_changed.wait(lock, [card]{ return !card->new_data_ready || card->should_quit; });
362                 if (card->should_quit) return;
363         }
364
365         size_t expected_length = width * (height + extra_lines_top + extra_lines_bottom) * 2;
366         if (video_frame.len - video_offset == 0 ||
367             video_frame.len - video_offset != expected_length) {
368                 if (video_frame.len != 0) {
369                         printf("Card %d: Dropping video frame with wrong length (%ld; expected %ld)\n",
370                                 card_index, video_frame.len - video_offset, expected_length);
371                 }
372                 if (video_frame.owner) {
373                         video_frame.owner->release_frame(video_frame);
374                 }
375
376                 // Still send on the information that we _had_ a frame, even though it's corrupted,
377                 // so that pts can go up accordingly.
378                 {
379                         unique_lock<mutex> lock(bmusb_mutex);
380                         card->new_data_ready = true;
381                         card->new_frame = RefCountedFrame(FrameAllocator::Frame());
382                         card->new_frame_length = frame_length;
383                         card->new_frame_interlaced = false;
384                         card->new_data_ready_fence = nullptr;
385                         card->dropped_frames = dropped_frames;
386                         card->new_data_ready_changed.notify_all();
387                 }
388                 return;
389         }
390
391         PBOFrameAllocator::Userdata *userdata = (PBOFrameAllocator::Userdata *)video_frame.userdata;
392
393         unsigned num_fields = interlaced ? 2 : 1;
394         timespec frame_upload_start;
395         if (interlaced) {
396                 // Send the two fields along as separate frames; the other side will need to add
397                 // a deinterlacer to actually get this right.
398                 assert(height % 2 == 0);
399                 height /= 2;
400                 assert(frame_length % 2 == 0);
401                 frame_length /= 2;
402                 num_fields = 2;
403                 clock_gettime(CLOCK_MONOTONIC, &frame_upload_start);
404         }
405         userdata->last_interlaced = interlaced;
406         userdata->last_frame_rate_nom = frame_rate_nom;
407         userdata->last_frame_rate_den = frame_rate_den;
408         RefCountedFrame new_frame(video_frame);
409
410         // Upload the textures.
411         size_t cbcr_width = width / 2;
412         size_t cbcr_offset = video_offset / 2;
413         size_t y_offset = video_frame.size / 2 + video_offset / 2;
414
415         for (unsigned field = 0; field < num_fields; ++field) {
416                 unsigned field_start_line = (field == 1) ? second_field_start : extra_lines_top + field * (height + 22);
417
418                 if (userdata->tex_y[field] == 0 ||
419                     userdata->tex_cbcr[field] == 0 ||
420                     width != userdata->last_width[field] ||
421                     height != userdata->last_height[field]) {
422                         // We changed resolution since last use of this texture, so we need to create
423                         // a new object. Note that this each card has its own PBOFrameAllocator,
424                         // we don't need to worry about these flip-flopping between resolutions.
425                         glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
426                         check_error();
427                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, cbcr_width, height, 0, GL_RG, GL_UNSIGNED_BYTE, nullptr);
428                         check_error();
429                         glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
430                         check_error();
431                         glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, width, height, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr);
432                         check_error();
433                         userdata->last_width[field] = width;
434                         userdata->last_height[field] = height;
435                 }
436
437                 GLuint pbo = userdata->pbo;
438                 check_error();
439                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
440                 check_error();
441                 glMemoryBarrier(GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT);
442                 check_error();
443
444                 glBindTexture(GL_TEXTURE_2D, userdata->tex_cbcr[field]);
445                 check_error();
446                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, cbcr_width, height, GL_RG, GL_UNSIGNED_BYTE, BUFFER_OFFSET(cbcr_offset + cbcr_width * field_start_line * sizeof(uint16_t)));
447                 check_error();
448                 glBindTexture(GL_TEXTURE_2D, userdata->tex_y[field]);
449                 check_error();
450                 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RED, GL_UNSIGNED_BYTE, BUFFER_OFFSET(y_offset + width * field_start_line));
451                 check_error();
452                 glBindTexture(GL_TEXTURE_2D, 0);
453                 check_error();
454                 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
455                 check_error();
456                 GLsync fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
457                 check_error();
458                 assert(fence != nullptr);
459
460                 if (field == 1) {
461                         // Don't upload the second field as fast as we can; wait until
462                         // the field time has approximately passed. (Otherwise, we could
463                         // get timing jitter against the other sources, and possibly also
464                         // against the video display, although the latter is not as critical.)
465                         // This requires our system clock to be reasonably close to the
466                         // video clock, but that's not an unreasonable assumption.
467                         timespec second_field_start;
468                         second_field_start.tv_nsec = frame_upload_start.tv_nsec +
469                                 frame_length * 1000000000 / TIMEBASE;
470                         second_field_start.tv_sec = frame_upload_start.tv_sec +
471                                 second_field_start.tv_nsec / 1000000000;
472                         second_field_start.tv_nsec %= 1000000000;
473
474                         while (clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
475                                                &second_field_start, nullptr) == -1 &&
476                                errno == EINTR) ;
477                 }
478
479                 {
480                         unique_lock<mutex> lock(bmusb_mutex);
481                         card->new_data_ready = true;
482                         card->new_frame = new_frame;
483                         card->new_frame_length = frame_length;
484                         card->new_frame_field = field;
485                         card->new_frame_interlaced = interlaced;
486                         card->new_data_ready_fence = fence;
487                         card->dropped_frames = dropped_frames;
488                         card->new_data_ready_changed.notify_all();
489
490                         if (field != num_fields - 1) {
491                                 // Wait until the previous frame was consumed.
492                                 card->new_data_ready_changed.wait(lock, [card]{ return !card->new_data_ready || card->should_quit; });
493                                 if (card->should_quit) return;
494                         }
495                 }
496         }
497 }
498
499 void Mixer::thread_func()
500 {
501         eglBindAPI(EGL_OPENGL_API);
502         QOpenGLContext *context = create_context(mixer_surface);
503         if (!make_current(context, mixer_surface)) {
504                 printf("oops\n");
505                 exit(1);
506         }
507
508         struct timespec start, now;
509         clock_gettime(CLOCK_MONOTONIC, &start);
510
511         int frame = 0;
512         int stats_dropped_frames = 0;
513
514         while (!should_quit) {
515                 CaptureCard card_copy[MAX_CARDS];
516                 int num_samples[MAX_CARDS];
517
518                 {
519                         unique_lock<mutex> lock(bmusb_mutex);
520
521                         // The first card is the master timer, so wait for it to have a new frame.
522                         // TODO: Make configurable, and with a timeout.
523                         cards[0].new_data_ready_changed.wait(lock, [this]{ return cards[0].new_data_ready; });
524
525                         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
526                                 CaptureCard *card = &cards[card_index];
527                                 card_copy[card_index].usb = card->usb;
528                                 card_copy[card_index].new_data_ready = card->new_data_ready;
529                                 card_copy[card_index].new_frame = card->new_frame;
530                                 card_copy[card_index].new_frame_length = card->new_frame_length;
531                                 card_copy[card_index].new_frame_field = card->new_frame_field;
532                                 card_copy[card_index].new_frame_interlaced = card->new_frame_interlaced;
533                                 card_copy[card_index].new_data_ready_fence = card->new_data_ready_fence;
534                                 card_copy[card_index].dropped_frames = card->dropped_frames;
535                                 card->new_data_ready = false;
536                                 card->new_data_ready_changed.notify_all();
537
538                                 int num_samples_times_timebase = OUTPUT_FREQUENCY * card->new_frame_length + card->fractional_samples;
539                                 num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
540                                 card->fractional_samples = num_samples_times_timebase % TIMEBASE;
541                                 assert(num_samples[card_index] >= 0);
542                         }
543                 }
544
545                 // Resample the audio as needed, including from previously dropped frames.
546                 assert(num_cards > 0);
547                 for (unsigned frame_num = 0; frame_num < card_copy[0].dropped_frames + 1; ++frame_num) {
548                         {
549                                 // Signal to the audio thread to process this frame.
550                                 unique_lock<mutex> lock(audio_mutex);
551                                 audio_task_queue.push(AudioTask{pts_int, num_samples[0]});
552                                 audio_task_queue_changed.notify_one();
553                         }
554                         if (frame_num != card_copy[0].dropped_frames) {
555                                 // For dropped frames, increase the pts. Note that if the format changed
556                                 // in the meantime, we have no way of detecting that; we just have to
557                                 // assume the frame length is always the same.
558                                 ++stats_dropped_frames;
559                                 pts_int += card_copy[0].new_frame_length;
560                         }
561                 }
562
563                 if (audio_level_callback != nullptr) {
564                         unique_lock<mutex> lock(compressor_mutex);
565                         double loudness_s = r128.loudness_S();
566                         double loudness_i = r128.integrated();
567                         double loudness_range_low = r128.range_min();
568                         double loudness_range_high = r128.range_max();
569
570                         audio_level_callback(loudness_s, 20.0 * log10(peak),
571                                              loudness_i, loudness_range_low, loudness_range_high,
572                                              gain_staging_db, 20.0 * log10(final_makeup_gain),
573                                              correlation.get_correlation());
574                 }
575
576                 for (unsigned card_index = 1; card_index < num_cards; ++card_index) {
577                         if (card_copy[card_index].new_data_ready && card_copy[card_index].new_frame->len == 0) {
578                                 ++card_copy[card_index].dropped_frames;
579                         }
580                         if (card_copy[card_index].dropped_frames > 0) {
581                                 printf("Card %u dropped %d frames before this\n",
582                                         card_index, int(card_copy[card_index].dropped_frames));
583                         }
584                 }
585
586                 // If the first card is reporting a corrupted or otherwise dropped frame,
587                 // just increase the pts (skipping over this frame) and don't try to compute anything new.
588                 if (card_copy[0].new_frame->len == 0) {
589                         ++stats_dropped_frames;
590                         pts_int += card_copy[0].new_frame_length;
591                         continue;
592                 }
593
594                 for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
595                         CaptureCard *card = &card_copy[card_index];
596                         if (!card->new_data_ready || card->new_frame->len == 0)
597                                 continue;
598
599                         assert(card->new_frame != nullptr);
600                         insert_new_frame(card->new_frame, card->new_frame_field, card->new_frame_interlaced, card_index, &input_state);
601                         check_error();
602
603                         // The new texture might still be uploaded,
604                         // tell the GPU to wait until it's there.
605                         if (card->new_data_ready_fence) {
606                                 glWaitSync(card->new_data_ready_fence, /*flags=*/0, GL_TIMEOUT_IGNORED);
607                                 check_error();
608                                 glDeleteSync(card->new_data_ready_fence);
609                                 check_error();
610                         }
611                 }
612
613                 // Get the main chain from the theme, and set its state immediately.
614                 Theme::Chain theme_main_chain = theme->get_chain(0, pts(), WIDTH, HEIGHT, input_state);
615                 EffectChain *chain = theme_main_chain.chain;
616                 theme_main_chain.setup_chain();
617                 //theme_main_chain.chain->enable_phase_timing(true);
618
619                 GLuint y_tex, cbcr_tex;
620                 bool got_frame = h264_encoder->begin_frame(&y_tex, &cbcr_tex);
621                 assert(got_frame);
622
623                 // Render main chain.
624                 GLuint cbcr_full_tex = resource_pool->create_2d_texture(GL_RG8, WIDTH, HEIGHT);
625                 GLuint rgba_tex = resource_pool->create_2d_texture(GL_RGB565, WIDTH, HEIGHT);  // Saves texture bandwidth, although dithering gets messed up.
626                 GLuint fbo = resource_pool->create_fbo(y_tex, cbcr_full_tex, rgba_tex);
627                 check_error();
628                 chain->render_to_fbo(fbo, WIDTH, HEIGHT);
629                 resource_pool->release_fbo(fbo);
630
631                 subsample_chroma(cbcr_full_tex, cbcr_tex);
632                 resource_pool->release_2d_texture(cbcr_full_tex);
633
634                 // Set the right state for rgba_tex.
635                 glBindFramebuffer(GL_FRAMEBUFFER, 0);
636                 glBindTexture(GL_TEXTURE_2D, rgba_tex);
637                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
638                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
639                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
640
641                 RefCountedGLsync fence(GL_SYNC_GPU_COMMANDS_COMPLETE, /*flags=*/0);
642                 check_error();
643
644                 const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
645                 h264_encoder->end_frame(fence, pts_int + av_delay, theme_main_chain.input_frames);
646                 ++frame;
647                 pts_int += card_copy[0].new_frame_length;
648
649                 // The live frame just shows the RGBA texture we just rendered.
650                 // It owns rgba_tex now.
651                 DisplayFrame live_frame;
652                 live_frame.chain = display_chain.get();
653                 live_frame.setup_chain = [this, rgba_tex]{
654                         display_input->set_texture_num(rgba_tex);
655                 };
656                 live_frame.ready_fence = fence;
657                 live_frame.input_frames = {};
658                 live_frame.temp_textures = { rgba_tex };
659                 output_channel[OUTPUT_LIVE].output_frame(live_frame);
660
661                 // Set up preview and any additional channels.
662                 for (int i = 1; i < theme->get_num_channels() + 2; ++i) {
663                         DisplayFrame display_frame;
664                         Theme::Chain chain = theme->get_chain(i, pts(), WIDTH, HEIGHT, input_state);  // FIXME: dimensions
665                         display_frame.chain = chain.chain;
666                         display_frame.setup_chain = chain.setup_chain;
667                         display_frame.ready_fence = fence;
668                         display_frame.input_frames = chain.input_frames;
669                         display_frame.temp_textures = {};
670                         output_channel[i].output_frame(display_frame);
671                 }
672
673                 clock_gettime(CLOCK_MONOTONIC, &now);
674                 double elapsed = now.tv_sec - start.tv_sec +
675                         1e-9 * (now.tv_nsec - start.tv_nsec);
676                 if (frame % 100 == 0) {
677                         printf("%d frames (%d dropped) in %.3f seconds = %.1f fps (%.1f ms/frame)\n",
678                                 frame, stats_dropped_frames, elapsed, frame / elapsed,
679                                 1e3 * elapsed / frame);
680                 //      chain->print_phase_timing();
681                 }
682
683                 if (should_cut.exchange(false)) {  // Test and clear.
684                         string filename = generate_local_dump_filename(frame);
685                         printf("Starting new recording: %s\n", filename.c_str());
686                         h264_encoder->shutdown();
687                         httpd.close_output_file();
688                         httpd.open_output_file(filename.c_str());
689                         h264_encoder.reset(new H264Encoder(h264_encoder_surface, global_flags.va_display, WIDTH, HEIGHT, &httpd));
690                 }
691
692 #if 0
693                 // Reset every 100 frames, so that local variations in frame times
694                 // (especially for the first few frames, when the shaders are
695                 // compiled etc.) don't make it hard to measure for the entire
696                 // remaining duration of the program.
697                 if (frame == 10000) {
698                         frame = 0;
699                         start = now;
700                 }
701 #endif
702                 check_error();
703         }
704
705         resource_pool->clean_context();
706 }
707
708 void Mixer::audio_thread_func()
709 {
710         while (!should_quit) {
711                 AudioTask task;
712
713                 {
714                         unique_lock<mutex> lock(audio_mutex);
715                         audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
716                         task = audio_task_queue.front();
717                         audio_task_queue.pop();
718                 }
719
720                 process_audio_one_frame(task.pts_int, task.num_samples);
721         }
722 }
723
724 void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
725 {
726         vector<float> samples_card;
727         vector<float> samples_out;
728
729         // TODO: Allow mixing audio from several sources.
730         unsigned selected_audio_card = theme->map_signal(audio_source_channel);
731         assert(selected_audio_card < num_cards);
732
733         for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
734                 samples_card.resize(num_samples * 2);
735                 {
736                         unique_lock<mutex> lock(cards[card_index].audio_mutex);
737                         if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
738                                 printf("Card %d reported previous underrun.\n", card_index);
739                         }
740                 }
741                 if (card_index == selected_audio_card) {
742                         samples_out = move(samples_card);
743                 }
744         }
745
746         // Cut away everything under 120 Hz (or whatever the cutoff is);
747         // we don't need it for voice, and it will reduce headroom
748         // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
749         // should be dampened.)
750         if (locut_enabled) {
751                 locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
752         }
753
754         // Apply a level compressor to get the general level right.
755         // Basically, if it's over about -40 dBFS, we squeeze it down to that level
756         // (or more precisely, near it, since we don't use infinite ratio),
757         // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
758         // entirely arbitrary, but from practical tests with speech, it seems to
759         // put ut around -23 LUFS, so it's a reasonable starting point for later use.
760         {
761                 unique_lock<mutex> lock(compressor_mutex);
762                 if (level_compressor_enabled) {
763                         float threshold = 0.01f;   // -40 dBFS.
764                         float ratio = 20.0f;
765                         float attack_time = 0.5f;
766                         float release_time = 20.0f;
767                         float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
768                         level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
769                         gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
770                 } else {
771                         // Just apply the gain we already had.
772                         float g = pow(10.0f, gain_staging_db / 20.0f);
773                         for (size_t i = 0; i < samples_out.size(); ++i) {
774                                 samples_out[i] *= g;
775                         }
776                 }
777         }
778
779 #if 0
780         printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
781                 level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
782                 level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
783                 20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
784 #endif
785
786 //      float limiter_att, compressor_att;
787
788         // The real compressor.
789         if (compressor_enabled) {
790                 float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
791                 float ratio = 20.0f;
792                 float attack_time = 0.005f;
793                 float release_time = 0.040f;
794                 float makeup_gain = 2.0f;  // +6 dB.
795                 compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
796 //              compressor_att = compressor.get_attenuation();
797         }
798
799         // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
800         // Note that since ratio is not infinite, we could go slightly higher than this.
801         if (limiter_enabled) {
802                 float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
803                 float ratio = 30.0f;
804                 float attack_time = 0.0f;  // Instant.
805                 float release_time = 0.020f;
806                 float makeup_gain = 1.0f;  // 0 dB.
807                 limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
808 //              limiter_att = limiter.get_attenuation();
809         }
810
811 //      printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
812
813         // Upsample 4x to find interpolated peak.
814         peak_resampler.inp_data = samples_out.data();
815         peak_resampler.inp_count = samples_out.size() / 2;
816
817         vector<float> interpolated_samples_out;
818         interpolated_samples_out.resize(samples_out.size());
819         while (peak_resampler.inp_count > 0) {  // About four iterations.
820                 peak_resampler.out_data = &interpolated_samples_out[0];
821                 peak_resampler.out_count = interpolated_samples_out.size() / 2;
822                 peak_resampler.process();
823                 size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
824                 peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
825                 peak_resampler.out_data = nullptr;
826         }
827
828         // At this point, we are most likely close to +0 LU, but all of our
829         // measurements have been on raw sample values, not R128 values.
830         // So we have a final makeup gain to get us to +0 LU; the gain
831         // adjustments required should be relatively small, and also, the
832         // offset shouldn't change much (only if the type of audio changes
833         // significantly). Thus, we shoot for updating this value basically
834         // “whenever we process buffers”, since the R128 calculation isn't exactly
835         // something we get out per-sample.
836         //
837         // Note that there's a feedback loop here, so we choose a very slow filter
838         // (half-time of 100 seconds).
839         double target_loudness_factor, alpha;
840         {
841                 unique_lock<mutex> lock(compressor_mutex);
842                 double loudness_lu = r128.loudness_M() - ref_level_lufs;
843                 double current_makeup_lu = 20.0f * log10(final_makeup_gain);
844                 target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
845
846                 // If we're outside +/- 5 LU uncorrected, we don't count it as
847                 // a normal signal (probably silence) and don't change the
848                 // correction factor; just apply what we already have.
849                 if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
850                         alpha = 0.0;
851                 } else {
852                         // Formula adapted from
853                         // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
854                         const double half_time_s = 100.0;
855                         const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
856                         alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
857                 }
858
859                 double m = final_makeup_gain;
860                 for (size_t i = 0; i < samples_out.size(); i += 2) {
861                         samples_out[i + 0] *= m;
862                         samples_out[i + 1] *= m;
863                         m += (target_loudness_factor - m) * alpha;
864                 }
865                 final_makeup_gain = m;
866         }
867
868         // Find R128 levels and L/R correlation.
869         vector<float> left, right;
870         deinterleave_samples(samples_out, &left, &right);
871         float *ptrs[] = { left.data(), right.data() };
872         {
873                 unique_lock<mutex> lock(compressor_mutex);
874                 r128.process(left.size(), ptrs);
875                 correlation.process_samples(samples_out);
876         }
877
878         // Send the samples to the sound card.
879         if (alsa) {
880                 alsa->write(samples_out);
881         }
882
883         // And finally add them to the output.
884         h264_encoder->add_audio(frame_pts_int, move(samples_out));
885 }
886
887 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
888 {
889         GLuint vao;
890         glGenVertexArrays(1, &vao);
891         check_error();
892
893         glBindVertexArray(vao);
894         check_error();
895
896         // Extract Cb/Cr.
897         GLuint fbo = resource_pool->create_fbo(dst_tex);
898         glBindFramebuffer(GL_FRAMEBUFFER, fbo);
899         glViewport(0, 0, WIDTH/2, HEIGHT/2);
900         check_error();
901
902         glUseProgram(cbcr_program_num);
903         check_error();
904
905         glActiveTexture(GL_TEXTURE0);
906         check_error();
907         glBindTexture(GL_TEXTURE_2D, src_tex);
908         check_error();
909         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
910         check_error();
911         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
912         check_error();
913         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
914         check_error();
915
916         float chroma_offset_0[] = { -0.5f / WIDTH, 0.0f };
917         set_uniform_vec2(cbcr_program_num, "foo", "chroma_offset_0", chroma_offset_0);
918
919         glBindBuffer(GL_ARRAY_BUFFER, cbcr_vbo);
920         check_error();
921
922         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
923                 glEnableVertexAttribArray(attr_index);
924                 check_error();
925                 glVertexAttribPointer(attr_index, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
926                 check_error();
927         }
928
929         glDrawArrays(GL_TRIANGLES, 0, 3);
930         check_error();
931
932         for (GLint attr_index : { cbcr_position_attribute_index, cbcr_texcoord_attribute_index }) {
933                 glDisableVertexAttribArray(attr_index);
934                 check_error();
935         }
936
937         glUseProgram(0);
938         check_error();
939         glBindFramebuffer(GL_FRAMEBUFFER, 0);
940         check_error();
941
942         resource_pool->release_fbo(fbo);
943         glDeleteVertexArrays(1, &vao);
944 }
945
946 void Mixer::release_display_frame(DisplayFrame *frame)
947 {
948         for (GLuint texnum : frame->temp_textures) {
949                 resource_pool->release_2d_texture(texnum);
950         }
951         frame->temp_textures.clear();
952         frame->ready_fence.reset();
953         frame->input_frames.clear();
954 }
955
956 void Mixer::start()
957 {
958         mixer_thread = thread(&Mixer::thread_func, this);
959         audio_thread = thread(&Mixer::audio_thread_func, this);
960 }
961
962 void Mixer::quit()
963 {
964         should_quit = true;
965         mixer_thread.join();
966         audio_thread.join();
967 }
968
969 void Mixer::transition_clicked(int transition_num)
970 {
971         theme->transition_clicked(transition_num, pts());
972 }
973
974 void Mixer::channel_clicked(int preview_num)
975 {
976         theme->channel_clicked(preview_num);
977 }
978
979 void Mixer::reset_meters()
980 {
981         peak_resampler.reset();
982         peak = 0.0f;
983         r128.reset();
984         r128.integr_start();
985         correlation.reset();
986 }
987
988 Mixer::OutputChannel::~OutputChannel()
989 {
990         if (has_current_frame) {
991                 parent->release_display_frame(&current_frame);
992         }
993         if (has_ready_frame) {
994                 parent->release_display_frame(&ready_frame);
995         }
996 }
997
998 void Mixer::OutputChannel::output_frame(DisplayFrame frame)
999 {
1000         // Store this frame for display. Remove the ready frame if any
1001         // (it was seemingly never used).
1002         {
1003                 unique_lock<mutex> lock(frame_mutex);
1004                 if (has_ready_frame) {
1005                         parent->release_display_frame(&ready_frame);
1006                 }
1007                 ready_frame = frame;
1008                 has_ready_frame = true;
1009         }
1010
1011         if (has_new_frame_ready_callback) {
1012                 new_frame_ready_callback();
1013         }
1014 }
1015
1016 bool Mixer::OutputChannel::get_display_frame(DisplayFrame *frame)
1017 {
1018         unique_lock<mutex> lock(frame_mutex);
1019         if (!has_current_frame && !has_ready_frame) {
1020                 return false;
1021         }
1022
1023         if (has_current_frame && has_ready_frame) {
1024                 // We have a new ready frame. Toss the current one.
1025                 parent->release_display_frame(&current_frame);
1026                 has_current_frame = false;
1027         }
1028         if (has_ready_frame) {
1029                 assert(!has_current_frame);
1030                 current_frame = ready_frame;
1031                 ready_frame.ready_fence.reset();  // Drop the refcount.
1032                 ready_frame.input_frames.clear();  // Drop the refcounts.
1033                 has_current_frame = true;
1034                 has_ready_frame = false;
1035         }
1036
1037         *frame = current_frame;
1038         return true;
1039 }
1040
1041 void Mixer::OutputChannel::set_frame_ready_callback(Mixer::new_frame_ready_callback_t callback)
1042 {
1043         new_frame_ready_callback = callback;
1044         has_new_frame_ready_callback = true;
1045 }